最新人教版高中数学选修2-2第三章《数系的扩充与复数的引入》本章概览

合集下载

(完整版)高中数学选修2-2第三章数系的扩充与复数的引入

(完整版)高中数学选修2-2第三章数系的扩充与复数的引入

第三章数系的扩充与复数的引入目录§3.1.1 数系的扩充与复数的概念(新授课)§3.1.2 复数的几何意义(新授课)§3.2.1 复数的代数形式的加减运算及其几何意义(新授课)§3.2.2 复数的代数形式的乘除运算(新授课)第三章数系的扩充与复数的引入小结与复习(复习课)选修2-2 第三章复数基础练习(一)选修2-2 第三章复数基础练习(一)答案选修2-2 第三章复数基础练习(二)选修2-2 第三章复数基础练习(二)答案第三章数系的扩充与复数的引入一、课程目标:本章学习的主要内容是数系的扩充与复数的概念,复数代数形式的四则运算。

复数的引入是中学阶段数系的又一次扩充,这不仅可以使学生对于数的概念有一个初步的、完整的认识,也为进一步学习数学打下了基础。

通过本章学习,要使学生在问题情景中了解数系扩充的过程以及引入复数的必要性,学习复数得一些基本知识,体会人类理性思维在数系扩充中的作用。

二、学习目标:(1)、在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。

(2)、理解复数的基本概念以及复数相等的充要条件。

(3)、了解复数的代数表示法及其几何意义。

(4)、能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义。

三、本章知识结构:四、课时安排:本章教学时间约4课时,具体分配如下:3.1 数系的扩充与复数的概念约2课时3.2 复数代数形式的四则运算约2课时§3.1.1 数系的扩充与复数的概念(新授课)一、教学目标:知识与技能:了解数系的扩充过程,理解复数及其有关概念。

理解数系的扩充是与生活密切相关的,明白复数及其相关概念。

过程与方法:采取“阅读、质疑、探究”的过程,让学生体验数系的扩充过程。

情感、态度与价值观:让学生在“发现问题,解决问题”中增长技能,充分认识人类理性思维的能动性,使学生在掌握知识的同时增强战胜困难的信心和技能。

最新人教版高中数学选修2-2第三章《数系的扩充与复数的引入》本章综述

最新人教版高中数学选修2-2第三章《数系的扩充与复数的引入》本章综述

第三章数系的扩充与复数的引入
本章综述
复数是16世纪人们在研究求解一元二次、三次方程的问题时引入的.大约经过一个世纪,才逐步形成完整的理论.现在它已在数学、力学、电学以及其他科学领域里获得了广泛的应用.复数的初步知识是进一步学习高等数学的基础,在初等数学范围内,它与平面解析几何、三角函数、指数和对数等也有密切的联系,为解决一些问题提供了方便.因此,复数也属于初等数学的基础知识.
本章的主要内容有两部分,一是理解复数的概念及复数的几何意义,并能用复数的概念和几何意义解决相关问题;二是掌握复数的加法、减法的运算法则及其几何意义,掌握复数的乘法、除法的运算法则,并能熟练、准确地运用运算法则解决相关的问题.本章的重点是复数的概念与复数相等的应用,难点是复平面内求点的轨迹及复数加法、减法的几何意义的理解应用.
在学习数系的扩充这一节时,可以采取自学的方式,通过阅读,找出数系在每一次扩充时遇到的问题实例,然后可以多举一些生产生活中的实例以加深理解,并通过研究对数系的扩充的必要性和合理性加深认识.
通过学习,要把复数的有关概念和分类搞透彻,并结合复数的几何意义加强理解.
在复数的学习中,应避免繁琐的计算,同时注意技巧的训练.感兴趣的同学,可以学一些引申的内容:如求x3=1的根,代数学基本定理等.。

最新人教版高中数学选修2-2第三章《数系的扩充与复数的引入》本章小结

最新人教版高中数学选修2-2第三章《数系的扩充与复数的引入》本章小结

知识建构1.复数的意义形如___________的数叫做复数,其中i 叫___________,满足___________,a 叫做___________,b 叫做___________,复数集记作___________,数集N 、Z 、Q 、R 、C 的关系是___________.z=a +b i (a 、b ∈R )是实数的充要条件是___________;是虚数的充要条件是___________;是纯虚数的充要条件是___________.答案:a +b i 虚数单位 i 2=-1 实部 虚部 Cb=0 b≠0 a =0且b≠02.复数的相等两个复数相等,则 .答案:实部与虚部分别相等3.共轭复数及复数的模的代数表示 z=a +b i (a 、b ∈R )与z =___________互为共轭复数.答案:a -b i4.复数的代数运算对于i ,有i 4n =___________,i 4n+1=___________,i 4n+2=___________,i 4n+3=___________ (n ∈N).已知两个复数z 1=a +b i ,z 2=c+d i (a 、b 、c 、d ∈R ),则z 1±z 2=___________;z 1·z 2=___________;特别地,若z=a +b i (a 、b ∈R ),则z·z =___________; 21z z = . 答案:1 i -1 -i (a ±c)+(b±d)i (a c-bd)+(a d+bc)ia 2+b 22222d c ad -bc d c bd ac ++++i 实践探究1.对于任意两个复数z 1=x 1+y 1i ,z 2=x 2+y 2i (x 1、y 1、x 2、y 2为实数),定义运算“⊙”为:z 1⊙z 2=x 1x 2+y 1y 2,设非零复数ω1、ω2在复平面内对应的点分别为P 1、P 2,点O 为坐标原点,如果ω1⊙ω2=0,那么在△P 1OP 2中,求∠P 1OP 2的大小.解析:设P 1(x 1,y 1)、P 2(x 2,y 2),由已知ω1=x 1+y 1i ,ω2=x 2+y 2i , 依题意ω1⊙ω2=0,即x 1x 2+y 1y 2=02211x y x y ⋅⇒=-1,即k OP 1·k OP 2=-1,∴OP 1⊥OP 2,则∠P 1OP 2=2π.2.若虚数z 同时满足下列两个条件:①z+z 5是实数;②z+3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z;若不存在,请说明理由.解析:设z=a +b i (a 、b ∈R 且b≠0),则z+z 5=(a +b i )+bi a 5+=a (1+22b a 5+)+b(1-22b a 5+)i ∈R . 又z+3=a +3+b i ,依题意,有⎪⎩⎪⎨⎧=+=+-b.3a 0,)b a 5-b(122 又由于b≠0,因此⎩⎨⎧-==+.3-a b ,5b a 22解之,得⎩⎨⎧-=-=⎩⎨⎧-=-=.1b ,2a 2b ,1a 或∴z=-1-2i 或-2-i . 3.设z 1=3+i ,z 2=1+i ,试问满足z 1n =z 2m 的最小正整数m 、n 是否存在?若存在,求出m 、n 的值.解析:∵z 1=3+i ,z 2=1+i ,若z 1n =z 2m ,∴|z 1n |=|z 2m |,即|z 1|n =|z 2|m .∴2n =(2)m .∴n=2m .①∴z 1n =z 2m 时,即z 1n =z 22n . ∴(221z z )n =1.∴[2i)(1i 3++]n =1.∴(2321 i )n =1.显然n=6k 时,k ∈N *成立. 故存在最小的n=6,m=12满足条件.。

高中数学教案选修2-2《第3章 数系的扩充与复数的引入》最新修正版

高中数学教案选修2-2《第3章 数系的扩充与复数的引入》最新修正版

目标定位:数的概念的发展与数系扩充是数学发展的一条重要线索.数系扩充的过程体现了数学的发现和创造过程,也体现了数学发生、发展的客观需要.复数作为数系扩充的结果引入,体现了实际需求与数学内部的矛盾在数系扩充过程中的作用,以及数系扩充过程中数系结构与运算性质的变化.《标准》在选修1-2与选修2-2中设计了数系的扩充与复数的引入的内容,突出数系的扩充过程,实现了基础教育数学课程中数系从实数到复数的又一次扩充.《标准》强调复数的代数表示法及代数形式的加减运算的几何意义,淡化烦琐的计算和技巧性训练,从而体会数学体系的建构过程、数形结合思想以及人类理性思维在数学发展中的作用,有助于发展学生的创新意识.引进虚数,把实数集扩充到复数集,这是中学课程里数的概念的最后一次扩充.虚数的引入,虽然最先是由于数学本身的需要,但也只有当复数表示平面上的点这一几何解释出现之后,在解决实际问题中才得到广泛的应用,复数才被人们承认并且巩固了下来.复数与平面向量有着密切的联系.复数的向量形式是它的几何意义之一;借助向量,我们可以得到复数的加法法则,并赋予其几何意义;复数减法的几何意义与向量减法也是一致的.这种数形结合的思想丰富了我们研究问题和解决问题的范围和手段.同时,复数作为一种新的“数学语言”也为我们今后用代数方法解决几何问题提供了可能.数系的扩充与复数的引入与2002年颁布的《全日制普通高级中学数学教学大纲》相比,删去了复数的三角形式以及复数三角形式的乘法、除法、乘方、开方等内容,突出了数系的扩充过程、复数的代数表示法、代数形式的四则运算以及加减运算的几何意义.教材解读:复数的内容是高中数学课程中的传统内容.对于复数,《标准》要求在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;理解复数的基本概念以及复数相等的充要条件;了解复数的代数表示法及其几何意义;能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.注重提高学生的数学思维能力是高中数学课程的基本理念之一,也是高中数学教育的基本目标之一.人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程.它们是数学思维能力的具体体现.数系的扩充与复数的引入具体地综合体现了上述数学思维过程.这些使得学生可以在以往具体经历各种数学思维方式的基础上,在更高层次上加以理解.本章教学内容虽然不多,但中学阶段重要的数学思想方法都有所体现.时,常用到待定系数法建立相应的方程组来解决.这充分体现了转化化归思想和方程思想.复数包括实数和虚数两部分,虚数还分纯虚数和非纯虚数.解决与复数概念有关的问题时,对虚部b的讨论十分关键.要合理地加以分类讨论,要注意不重复且不遗漏.复数的四则运算可类比实数运算来学习,但它不是实数运算合情推理的结果,而是一种“规定”,是新的定义.复数的四则运算本身也是一个建构的过程,其前提是对虚数单位i的两个规定,从而形成了一个具有公理化结构特点的小系统.公理化思想的有机渗透,对学生体会数学精神,感悟数学本质很有教育价值.对本章的教学提出以下建议:1.数的概念的发展与数系扩充是数学发展的一条重要线索.数系扩充的过程体现了数学的发现和创造过程,也体现了数学发生、发展的客观需求.教学中,应突出数系的扩充过程,让学生通过回忆以往的学习历程,了解数集的每一次扩充,既是客观实际的需要,又是数学内部发展的需要.从数的运算和解方程的角度感悟“实数不够用了”,从而理解引入虚数的必要性.2.复数的运算是一种新的规定,它是数学体系建构过程中的重要组成部分.学生通过类比归纳、运算求解,进一步体会在新的数集中,原有的运算及其性质仍然适用,同时解决了某些运算在原来数集中不是总可以实施的矛盾,有利于形成对数学较为完整的认识.3.在复数运算的教学中,可以类比多项式的运算法则来理解和记忆.应注意避免烦琐的计算与技巧训练.对于有兴趣的学生,可以安排一些引申的内容,如求x3=1的根,介绍代数学基本定理等.4.复数的几何意义和复数加减法的几何意义,可结合平面解析几何和平面向量中的有关知识来学习,这种数形结合的思想丰富了我们研究问题和解决问题的范围和手段.。

高中数学 第三章 数系的扩充与复数的引入本章整合 新人教A版选修2-2(2021年最新整理)

高中数学 第三章 数系的扩充与复数的引入本章整合 新人教A版选修2-2(2021年最新整理)

编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章数系的扩充与复数的引入本章整合新人教A版选修2-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章数系的扩充与复数的引入本章整合新人教A版选修2-2的全部内容。

—2知识网络专题探究专题一 复数的实部与虚部定义的区分对于复数z =a +b i(a ,b ∈R ),其中a 和b 分别叫做复数z 的实部和虚部,一定要记清楚b i 并不是虚部.如2+i 的实部为2,虚部为1,而不是i 。

【例1】复数错误!+错误!的虚部是( )A .15i B .错误! C .-错误!i D .-错误!解析:错误!+错误!=错误!+错误!=错误!+错误!=-错误!+错误!i ,故虚部为错误!。

答案:B专题二 纯虚数概念的理解对于复数z =a +b i(a ,b ∈R ),当a =0,且b ≠0时,叫做纯虚数,特别要注意记清“a =0"这一必备的前提条件.【例2】若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( )A.1 B.2C.1或2 D.-1解析:由纯虚数的定义,可得错误!解得a=2.答案:B专题三复数的几何意义1.复数的几何意义及应用(1)复数的几何意义主要体现在以下三个方面:①复数z与复平面内的点Z及向量OZ的一一对应关系;②复数的加减运算与向量的加减运算的对应关系;③复数z-z0模的几何意义.(2)复数几何意义的应用:①求复数问题转化为解析几何的求解问题;②复数的加减运算与向量的加减运算的相互转化;③利用|z-z0|判断复数所对应的点的轨迹及轨迹方程,也可以求|z|的最值.2.复数几何意义中数形结合的思想方法复数的实质是有序实数对,也就是复平面内点的坐标.如果复数按照某种条件变化,那么复平面上的对应点就构成具有某种特征的点的集合或轨迹,这种数形的有机结合,成为复数问题转化为几何问题的重要途径之一.【例3】复数z=错误!在复平面上对应的点位于( )A.第一象限 B.第二象限C.第三象限 D.第四象限解析:化简复数z,z=错误!=错误!=错误!=错误!,所以复数z对应复平面内的点的坐标为错误!,位于第一象限.故选A.答案:A【例4】在复平面内,点P,Q分别对应复数z1,z2,且z2=2z1+3-4i,|z1|=1,则点Q的轨迹是()A.线段 B.圆C.椭圆 D.双曲线解析:∵z2=2z1+3-4i,∴2z1=z2-(3-4i).∵|z1|=1,∴|2z1|=2,∴|z2-(3-4i)|=2,由模的几何意义可知点Q的轨迹是以(3,-4)为圆心,2为半径的圆.故选B.答案:B【例5】已知等腰梯形OABC的顶点O,A,B在复平面上对应的复数分别为0,1+2i,-2+6i,OA CB∥,求顶点C所对应的复数z.提示:根据题意,画出图形,由OA CB∥,四边形OABC为等腰梯形,知||=||OC AB,从而可建立方程组求得点C的坐标,即得点C所对应的复数z。

人教a版数学【选修2-2】第3章《数系扩充与复数引入》总结课件

人教a版数学【选修2-2】第3章《数系扩充与复数引入》总结课件

[答案] A
[解析] z=(a+i)2=(a2-1)+2ai,据条件有
2 a -1=0, 2a<0.
∴a=-1.
3.(2013· 吉林白山一中高二期末)若复数 1+i、-2+i、3 -2i 在复平面上的对应点分别为 A、B、C,BC 的中点 D,则 → 向量AD对应的复数是( 3 5 A.2-2i 3 5 C.-2+2i ) 1 3 B.2+2i 1 3 D.-2-2i
[答案] 1
[解析] 设 z1=a+bi(a,b∈R), 则 z2=a+bi-i(a-bi)=a-b+(b-a)i. ∵z2 的实部是-1.即 a-b=-1, ∴z2 的虚部 b-a=1.
典例探究学案
复数的概念 熟练掌握复数的代数形式,复数的相等及复数表示各类数的 条件是熟练解答复数题的前提.
成才之路 · 数学
人教A版 · 选修2-2
路漫漫其修远兮 吾将上下而求索
第三章
数系的扩充与复数的引入
第三章 章末归纳总结
1
自主预习学案
1.复数代数形式z=a+bi中,a、b∈R应用复数相等的条件, 必须先化成代数形式. 2.复数表示各类数的条件,其前提必须是代数形式z=a+ bi(a,b∈R),z为纯虚数的条件为a=0且b≠0,注意虚数与纯 虚数的区别. 3.复数运算的法则,不要死记硬背,加减可类比合并同类 项,乘法可类比多项式乘法,除法可类比分母有理化.
[答案] A
)
B.在圆上 D.不能确定
2+i 2+i1+i [解析] ∵a+bi= = 2 1-i 1 3 =2+2i(a,b∈R), 1 a=2 ∴ b=3 2

1 3 5 2 2 ∵ 2 + 2 =2>2,

人教课标版高中数学选修2-2《数系的扩充与复数的概念》名师教案

第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念一、教学目标1.核心素养:通过学习数系的扩充和复数的概念,初步形成基本的数学抽象和逻辑推理能力.2.学习目标:(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.(2)理解复数的基本概念,复代数形式及复数相等的充要条件.(3)复数的向量表示.3.学习重点:复数的概念,复数的代数形式,复数的向量表示.4.学习难点:复数相等的条件,复数的向量表示.二、教学设计(一)课前设计1.预习任务x+=在实数集中无解.联系从自然数系任务1、阅读教材P102,思考:方程210到实数系的扩充过程,你能设想一种方法,使这个方程有解吗?任务2、阅读教材P103,思考:复数集C和实数集R有什么关系?任务3、阅读教材P104-P105,思考:实数与数轴上的点一一对应,因此,实数可以用数轴上的点来表示.类比实数的几何意义,复数的几何意义是什么呢?2.预习自测1.下列复数中,满足方程x2+2=0的是( )A.±1B.±iC.±2iD.±2i答案:C解析:略2.已知复数z=a2-(2-b)i的实部和虚部分别是2和3,则实数a,b的值分别是( )A.2,1B.2,5C.±2,5D.±2,1答案:C解析:略3、如果z=m(m+1)+(m2-1)i为纯虚数,则实数m的值为( )A.1B.0C.-1D.-1或1答案:B解析:略(二)课堂设计1.知识回顾(1)对数集因生产和科学发展的需要而逐步扩充的过程进行概括自然数→分数→负数→整数→有理数→无理数→实数2.问题探究问题探究一:数系的扩充x+=,没有实数根.我们能否将实数集进行扩充,对于实系数一元二次方程210使得在新的数集中,该问题能得到圆满解决呢?●活动一:回顾旧知,回顾数集的扩充过程对数集因生产和科学发展的需要而逐步扩充的过程进行概括自然数→分数→负数→整数→有理数→无理数→实数(教师引导)●活动二:类比旧知,探究数系的扩充.对于实系数一元二次方程210x +=,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?我们说,实系数一元二次方程210x +=没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.解决这一问题,其本质就是解决一个什么问题呢?最根本的问题是要解决-1的开平方问题.即一个什么样的数,它的平方会等于-1.我们引入一个新数i ,它的平方等于-1 ●活动三:类比探究,研究新数i 的运算性质把实数和新引进的数i 像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数?根据前面讨论结果,我们引入一个新数i ,i 叫做虚数单位,并规定: ①虚数单位i 的平方等于-1,即21i =-②i 的周期性:41n ii +=,421n i +=-43n +4n ③实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.有了前面的讨论,引入新数i ,可以说是水到渠成的事.这样,就可以解决前面提出的问题(1-可以开平方,而且1-的平方根是i ±).问题探究二:复数的概念 ●活动一:理解概念,复数的代数形式 怎样表示一个复数?根据虚数单位i 的第③条性质,i 可以与实数b 相乘,再与实数a 相加.由于满足乘法交换律及加法交换律,从而可以把结果写成a bi +这样,数的范围又扩充了,出现了形如(,)a bi a b R +∈的数,我们把它们叫做复数.复数通常用字母z 表示,即z =a +bi ,(其中a ,b ∈R ),这一表示形式叫做复数的代数形式,其中a 、b 分别叫做复数z 的实部与虚部.复数的实部、虚部满足什么条件表示实数? 对于复数a +bi (a,b ∈R ),当且仅当b =0时,它是实数; 当且仅当a =0且b =0时,它是实数0; 当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数; ●活动二:剖析概念复数m +ni 的实部、虚部一定是m 、n 吗?不一定,只有当m ∈R ,n ∈R ,则m 、n 才是该复数的实部、虚部. 对于复数a +bi 和c +di (a,b,c,d ∈R ),你认为满足什么条件时,这两个复数相等?(a =c 且b =d ,即实部与虚部分别相等时,这两个复数相等.) 任意两个实数可以比较大小,复数呢?如果两个复数不全是实数,那么它们不能比较大小. ●活动三:完善知识体系复数集、实数集、虚数集、纯虚数集之间的关系是怎样的?复数z =(,)a bi a b R +∈包括:0,0)0)0,0)a a ⎧⎪≠≠⎧⎨≠⎨⎪≠=⎩⎩实数 (b=0)复数z 一般虚数(b 虚数 (b 纯虚数(b●活动四:复数基本概念、复数的代数形式、复数充要条件的应用 例1、实数m 为什么值时()11z m m i=++-是(1)实数(2)虚数(3)纯虚数答案:见解析解析:(1)当10m -=,即1m =时,复数z 是实数; (2)当10m -≠即1m ≠时,复数z 是虚数;(3)当10,10m m +=-≠即m 1=-时,复数z 是纯虚数.点拨:本题是对实数、虚数、纯虚数概念的考察.因为m R ∈,所以()()1,1m R m R +∈-∈.由z a bi =+是实数、虚数、纯虚数的条件可以确定m 的值.例2、已知x 2-x -6x +1=(x 2-2x -3)i (x ∈R ),求x 的值.答案:见解析解析:由复数相等的定义得⎩⎨⎧x 2-x -6x +1=0.x 2-2x -3=0.解得:x =3,所以x =3为所求.点拨:本题考察复数相等的充要条件.对于复数a +bi 和c +di (a,b,c,d ∈R )当且仅当a =c 且b =d ,即实部与虚部分别相等时,这两个复数相等例3、设z 1=m 2+1+(m 2+m -2)i ,z 2=4m +2+(m 2-5m +4)i ,若z 1<z 2,求实数m 的取值范围. 答案:见解析解析:由于z 1<z 2,m ∈R ,∴z 1∈R 且z 2∈R ,当z 1∈R 时,m 2+m -2=0, m =1或m =-2.当z 2∈R 时,m 2-5m +4=0, m =1或m =4,∴当m =1时,z 1=2,z 2=6,满足z 1<z 2. ∴z 1<z 2时,实数m 的取值为m =1.点拨:本题考察对复数概念的理解.如果两个复数不全是实数,那么它们不能比较大小.●活动一 类比实数的几何意义,探究复数的几何意义若把a,b 看成有序实数对(a,b ),则(a,b )与复数a +bi 是怎样的对应关系?有序实数对(a,b )与平面直角坐标系中的点是怎样的对应关系?(一一对应关系) 实数可以用数轴上的点来表示实数 一一对应实数轴上的点(几何模型)任何一个复数z =a +bi,都可以由一个有序实数对(a,b )唯一确定.因为有序实数对(a,b )与平面直角坐标系中的点一一对应,所以复数集与平面直角坐标系中的点集之间可以建立一一对应.复数z =a +bi (a ,b ∈R )一一对应,复平面内的点Z (a ,b );如图:复数z =a +bi 可以用点Z (a,b )(复数的几何形式)来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴. 显然,实轴上的点都表示实数,虚轴上的点(除了原点)都表示纯虚数例4、实数m 取什么值时,复平面内表示复数()()22815514m m m m i -++--的点(1)位于第四象限;(2)位于y =x 上. 答案:见解析解析:(1)由()22815,514m m m m -+--位于第四象限,得2281505140m m m m ⎧-+>⎨--<⎩,解得,2357m m -<<<<或(2)由()22815,514m m m m -+--位于直线y =x 上,得22815=514m m m m -+--即293m =点拨:本题考察复数的几何意义即复数z =a +bi,与点Z (a,b )一一对应.复数z a bi =+表示的点坐标为(),a b ,分别由条件,点()22815,514m m m m -+--位于第四象限、y =x 上可得●活动二:类比探究复数的另外一个几何意义除了用平面里的点表示复数,还可以用什么表示复数?还可以用向量! 设复平面内的点Z (相对于原点来说)也可以由向量OZ 唯一确定.反之,也成立.因此,复数z =a +bi 与OZ 也是一一对应的(实数0与零向量对应),这是复数的另一种几何意义.复数z ,点Z (a,b ),OZ 三者关系如下:复数z a bi =+复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ . 复数的向量形式.以原点O 为始点的向量,规定:相等的向量表示同一个复数. ●活动三:探究复数的模的几何意义向量OZ 的模叫做复数z a bi =+的模,记作||z 或||a bi +. 由模的定义知:22||||(0,)z a bi r a b r r R =+==+≥∈例5、已知复数z =3+ai ,且|z |<4,求实数a 的取值范围.答案:见解析解析:方法一:∵z =3+ai (a ∈R ),∴|z |=32+a 2, 由已知得32+a 2<42,∴a 2<7,∴a ∈(-7,7).方法二:利用复数的几何意义,由|z |<4知,z 在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z =3+ai 知z 对应的点在直线x =3上, 所以线段AB (除去端点)为动点Z 的集合. 由图可知:-7<a <7点拨:本题考察复数的几何意义即复数的模及考察数形结合思想.例6、设z ∈C ,在复平面内对应点Z ,试说明满足下列条件的点Z 的集合是什么图形.(1)|z |=2;(2)1≤|z |≤2. 答案:见解析解析:(1)方法一:|z |=2说明复数z 在复平面内对应的点Z 到原点的距离为2, 这样的点Z 的集合是以原点O 为圆心,2为半径的圆.方法二:设z =a +bi ,由|z |=2,得a 2+b 2=4.故点Z 对应的集合是以原点O 为圆心,2为半径的圆.(2)不等式|z |≤2的解集是圆|z |=2及该圆内部所有点的集合.不等式|z |≥1的解集是圆|z |=1及该圆外部所有点的集合.这两个集合的交集,就是满足条件1≤|z |≤2的点的集合.如图中的阴影部分,所求点的集合是以O 为圆心,以1和2为半径的两圆所夹的圆环,并且包括圆环的边界.点拨:解决复数的模的几何意义的问题,应把握两个关键点:一是|z |表示点Z 到原点的距离,可依据|z |满足的条件判断点Z 的集合表示的图形; 二是利用复数的模的概念,把模的问题转化为几何问题来解决 3.课堂总结 【知识梳理】(1)复数的分类:复数(z =a +bi ,a ,b ∈R )⎩⎪⎨⎪⎧实数b =0虚数b ≠0⎩⎨⎧纯虚数a =0非纯虚数a ≠0(2)复数相等的充要条件设a ,b ,c ,d 都是实数,那么a +bi =c +di ⇔ a =c 且b =d . (3)复数与点、向量间的对应①复数z =a +bi (a ,b ∈R )一一对应,复平面内的点Z (a ,b ); ②复数z =a +bi (a ,b ∈R )一一对应,平面向量OZ →=(a ,b ).(4)复数的模复数z =a +bi (a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模,记作|z |,且|z |=a 2+b 2. 【重难点突破】(1)对于复数概念,首先要在变化中认识复数代数形式的结构,正确判断复数的实部、虚部,然后依据复数是实数、虚数、纯虚数的条件,用列方程(或不等式)的方法求出相应参数的取值(或取值范围)(2)对于复数相等的问题.必须保证实部和虚部都分别相等.(3)对于复数的向量表示,一定先准确找出复数所表示的向量是关键. 4.随堂检测1.若复数(a 2-a -2)+(|a -1|-1)i (a ∈R )不是纯虚数,则( ) A.a =-1 B.a ≠-1且a ≠2 C.a ≠-1 D.a ≠2 答案:C.解析:若一个复数不是纯虚数,则该复数是一个虚数或是一个实数.当a 2-a -2≠0时,已知的复数一定不是纯虚数,解得a ≠-1且a ≠2;当a 2-a -2=0且|a -1|-1=0时,已知的复数也不是一个纯虚数,解得a =2.综上所述,当a ≠-1时,已知的复数不是一个纯虚数.点拨:纯虚数的概念、复数的代数形式2.如果z =m (m +1)+(m 2-1)i 为纯虚数,则实数m 的值为( ) A.1 B.0 C.-1 D.-1或1 答案:B解析:由题意知⎩⎨⎧m (m +1)=0m 2-1≠0∴m =0.点拨:复数的概念、复数的代数形式3.在复平面内,复数z =i +2i 2对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限 答案:B解析:∵z =i +2i 2=-2+i ,∴实部小于0,虚部大于0,故复数z 对应的点位于第二象限点拨:复数几何意义4.在复平面内,O 为原点,向量OA→对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →对应的复数为( )A.-2-iB.-2+iC.1+2iD.-1+2i 答案:B解析:∵A (-1,2)关于直线y =-x 的对称点B (-2,1),∴向量OB →对应的复数为-2+i点拨:复数几何意义 (三)课后作业 基础型自主突破1.说出复数i i 31,5,32--+的实部和虚部.答案:见解析解析: 复数2+3i 的实部是2,虚部是3;-5的实部是-5,虚部是0;i 31-的实部是0,虚部是31-点拨:复数的概念、复数的代数形式2.指出下列各数中,哪些是实数,哪些是虚数,哪些是纯虚数?72+,618.0,i 72,0,i ,2i ,85+i ,i 293-实数: 虚数: 纯虚数: 答案:实数有:72+,618.0,0,2i虚数有:i 72,i ,85+i ,i 293-纯虚数有:i 72,i 解析:略点拨:复数的概念、复数的代数形式3.设O 是原点,向量,OA OB →→对应的复数分别为23,32i i --+,那么向量BA →对应的复数是( ).55A i -+.55B i --.55C i +.55D i -答案:B解析:BA OA OB →→→=-(23)(32)i i =---+55i =-点拨:复数的概念、复数的几何意义4.下列n 的取值中,使n i =1(i 是虚数单位)的是( )A.n =2B .n =3C .n =4D .n =5答案:C.解析:因为41i =,点拨:复数的概念、复数的代数形式5.设z 是复数,()a z 表示满足1n z =的最小正整数n ,则对虚数单位i ,()a i =()A.8B.6C.4D.2答案:C解析:()a i =1=n i ,则最小正整数n 为4,点拨:复数的概念、复数的代数形式6.若复数()()i m m m m 36522-++-为纯虚数,试求实数m 的值.答案:见解析解析:若复数()()i m m m m 36522-++-为纯虚数,则⎪⎩⎪⎨⎧≠-=+-0306522m m m m ∴2=m 点拨:复数的概念、复数的代数形式能力型师生共研7.若θ∈(3π4,5π4),则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:B.解析:∵θ∈(3π4,5π4),∴cos θ+sin θ<0,sin θ-cos θ>0.点拨:复数的几何意义8.复数2(2)(11)()a a a i a R --+--∈不是纯虚数,则有( ).0A a ≠.2B a ≠.02C a a ≠≠且.1D a =-答案:C 解析:需要110a --≠,即02a a ≠≠且.点拨:复数的概念、复数的代数形式9.集合{Z ︱Z =Z n i i n n ∈+-,},用列举法表示该集合,这个集合是( )A.{0,2,-2}B.{0,2}C.{0,2,-2,2i}D.{0,2,-2,2i,-2i}答案:A解析:略点拨:根据n i成周期性变化可知.10.设A、B为锐角三角形的两个内角,则复数z=(cos B-tan A)+tan Bi对应的点位于复平面的( )A.第一象限B.第二象限C.第三象限D.第四象限答案:B解析:略点拨:复数的几何意义探究型多维突破11、复数z1=3+4i,z2=0,z3=c+(2c-6)i在复平面内对应的点分别为A、B、C,若∠BAC是钝角,求实数c的取值范围.答案:见解析解析:在复平面内三点坐标分别为A(3,4),B(0,0),C(c,2c-6),由∠BAC是钝角得AB AC<0,且B、A、C不共线,由(-3,-4)·(c-3,2c-10)<0解得c>49,11其中当c=9时,(6,8)2AC AB==-,三点共线,故c≠9.∴c的取值范围是c>4911且c≠9.点拨:复数的几何意义,代数形式12、在复平面内,满足下列复数形式方程的动点Z的轨迹是什么?(1)|z-1-i|=|z+2+i|(2)|z+i|+|z-i|=4(3)|z+2|-|z-2|=1(4)若将(2)中的等于改为小于呢?答案:(1)直线;(2)椭圆;(3)双曲线延伸:(4)椭圆及其内部解析:略点拨;复数四则运算及复数几何意义自助餐1.已知i是虚数单位,则复数z=i2015的虚部是()A.0B.﹣1C.1D.﹣i答案:D解析:略点拨:复数的乘法运算2.设i是虚数单位,则复数1﹣2i+3i2﹣4i3等于()A.﹣2﹣6iB.﹣2+2iC.4+2iD.4﹣6i答案:B解析:略点拨:复数的乘法运算3.实数x,y满足(1+i)x+(1﹣i)y=2,则xy的值是()A.2B.1C.﹣1D.﹣2答案:B解析:略点拨:复数的运算、复数相等的概念4.设复数z=1+bi(b∈R)且|z|=2,则复数的虚部为()A.B.C.±1D.答案:D解析:略点拨:复数的概念、复数的代数形式、复数的模5.2+7,27i,0,8+5i,(1-3)i,0.618这几个数中,纯虚数的个数为( )A.0B.1C.2D.3答案:C.解析:27i,(1-3)i是纯虚数,2+7,0,0.618是实数,8+5i是虚数.点拨:复数的概念、复数的代数形式6.已知复数z=1a-1+(a2-1)i是实数,则实数a的值为( )A.1或-1B.1C.-1D.0或-1 答案:C.解析:因为复数z=1a-1+(a2-1)i是实数,且a为实数,则⎩⎨⎧a2-1=0,a-1≠0,解得a =-1点拨:复数的概念、复数的代数形式7.复数z =i cos θ,θ∈[0,2π)的几何表示是( )A.虚轴B.虚轴除去原点C.线段PQ ,点P ,Q 的坐标分别为(0,1),(0,-1)D.C 中线段PQ ,但应除去原点答案:C解析:略点拨:复数的几何意义8.已知(2m -5n )+3i =3n -(m +5)i ,m ,n ∈R ,则m +n =________.答案:-10解析:根据复数相等的充要条件可知:⎩⎨⎧ 2m -5n =3n ,3=-(m +5),解得⎩⎨⎧m =-8,n =-2.所以m +n =-10.点拨:复数的概念、复数的代数形式9.若复数(m 2-3m -4)+(m 2-5m -6)i 是虚数,则实数m 满足________.答案:m ≠-1且m ≠6解析:m ≠-1且m ≠6. 因为m 2-3m -4+(m 2-5m -6)i 是虚数,所以m 2-5m -6≠0,所以m ≠-1且m ≠6.点拨:复数的概念、复数的代数形式10、如果12log (m +n )-(m 2-3m )i >-1,如何求自然数m ,n 的值?答案:m =0,n =1 解析:因为12log (m +n )-(m 2-3m )i >-1,所以12log (m +n )-(m 2-3m )i 是实数, 从而有21230log (m n)1m m ⎧-=⎪⎨+>-⎪⎩ 由①得m =0或m =3,当m =0时,代入②得n <2,又m +n >0,所以n =1;当m =3时,代入②得n <-1,与n 是自然数矛盾,综上可得m =0,n =1.点拨:复数的概念、复数的代数形式11.设复数z =lg(m 2-2m -3)+(m 2+3m +2)i ,(1)当实数m 为何值时,z 是纯虚数?(2)当实数m 为何值时,z 是实数?答案:见解析解析:(1)因为复数z =lg(m 2-2m -3)+(m 2+3m +2)i 是纯虚数,所以⎩⎨⎧ m 2-2m -3>0,lg(m 2-2m -3)=0,m 2+3m +2≠0.解得m =1±5,所以当m =1±5时,z 是纯虚数.(2)因为复数z =lg(m 2-2m -3)+(m 2+3m +2)i 是实数,所以⎩⎨⎧m 2-2m -3>0,m 2+3m +2=0,解得m =-2,所以当m =-2时,z 是实数.点拨:复数的概念、复数的代数形式12.已知复数|z |=1,求复数3+4i +z 的模的最大值及最小值.答案:见解析解析:令ω=3+4i +z ,则z =ω-(3+4i ).∵|z |=1,∴|ω-(3+4i )|=1,∴复数ω在复平面内对应的点的轨迹是以(3,4)为圆心,1为半径的圆, 如图,容易看出,圆上的点A 所对应的复数ωA 的模最大,为+1=6;圆上的点B 所对应的复数ωB 的模最小,为-1=4,∴复数3+4i +z 的模的最大值和最小值分别为6和4.点拨:复数的几何意义数学视野自然数的产生,起源于人类在生产和生活中计数的需要.开始只有很少几个自然数,后来随着生产力的发展和记数方法的改进,逐步认识越来越多的自然数..从某种意义上说,幼儿认识自然数的过程,就是人类祖先认识自然数的过程的再现.随着生产的发展,在土地测量、天文观测、土木建筑、水利工程等活动中,都需要进行测量.在测量过程中,常常会发生度量不尽的情况,如果要更精确地度量下去,就必然产生自然数不够用的矛盾.这样,分数就应运而生.据数学史书记载,三千多年前埃及纸草书中已经记有关于分数的问题.引进分数,这是数的概念的第一次扩展.最初人们在记数时,没有“零” 的概念.后来,在生产实践中,需要记录和计算的东西越来越多,逐渐产生了位值制记数法.有了这种记数法,零的产生就不可避免的了.我国古代筹算中,利用“空位”表示零.公元6世纪,印度数学家开始用符号“0”表示零. 但是,把“0”作为一个数是很迟的事.引进数0,这是数的概念的第二次扩充.以后,为了表示具有相反意义的量,负数概念就出现了.我国是认识正、负数最早的国家,《九章算术》中就有了正、负数的记载.在欧洲,直到17世纪才对负数有一个完整的认识.引进负数,这是数的概念的第三次扩充.数的概念的又一次扩充渊源于古希腊.公元前5世纪,古希腊毕达哥拉斯(Pythagqras,约公元前580~前500)学派发现了单位正方形的边长与对角线是不可公度的,为了得到不可公度线段比的精确数值,导致了无理数的产生.当时只是用几何的形象来说明无理数的存在,至于严格的实数理论,直到19世纪70年代才建立起来.引进无理数,形成实数系,这是数的概念的第四次扩充.数的概念的再一次扩充,是为了解决数学自身的矛盾.16世纪前半叶,意大利数学家塔尔塔利亚发现了三次方程的求根公式,胆地引用了负数开平方的运算,得到了正确答案.由此,虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用,成功地经受了理论和实践的检验,最后于18世纪末至19世纪初确立了虚数在数学中的地位.引进虚数,形成复数系,这是数的概念的第五次扩充.上面,我们简要地回顾了数的发展过程.必须指出,数的概念的产生,实际上是交错进行的.例如,在人们还没有完全认识负数之前,早就知道了无理数的存在;在实数理论还未完全建立之前,经运用虚数解三次方程了.直到19世纪初,从自然数到复数的理论基础,并未被认真考虑过.后来,由于数学严密性的需要以及公理化倾向的影响,促使人们开始认真研究整个数系的逻辑结构.从19世纪中叶起,经过皮亚诺(G.Peano,1855~1939)、康托尔(G.Cantor,1845~1918)、戴德金(R.Dedekind,1831~1916)、外尔斯特拉斯(K.Weierstrass,1815~1897)等数学家的努力,完成了建立整个数系的逻辑工作.近代数学关于数的理论,是在总结数的历史发展的基础上,用代数结构的观点和比较严格的公理系统加以整理而建立起来的.作为数的理论系统的基础,首先要建立自然数系,然后逐步加以扩展.一般采用的扩展过程是N--------→Z--------→Q--------→R--------→C(自然数集) (整数集) (有理数集) (实数集) (复数集)科学的数集扩充,通常采用两种方法:一是添加元素法,即把新元素添加到已建立的数集中去;二是构造法,即从理论上构造一个集合,然后指出这个集合的某个真子集与先前的数集是同构的.中、小学数学教学中,为了适应学生的年龄特征和接受能力,关于数系的扩充,主要是渗透近代数学观点,采用添加元素并强调运算的方法来进行的.其扩充过程是:自然数集(添零)→扩大的自然数集(添正分数)→算术数集(添负有理数) →有理数集(添无理数)→实数集(添虚数)→复数集数系的每一次扩充,都解决了一定的矛盾,从而扩大了数的应用范围.但是,数系的每一次扩充也会失去某些性质.例如,从自然数系N扩充到整数系Z后,Z 对减法具有封闭性,但失去N的良序性质,即N中任何非空子集都有最小元素.又如,由实数系R扩充到复数系C后,C是代数闭域,即任何代数方程必有根,但失去了R的顺序性,C中元素已无大小可言.数系扩充到复数系后,能否继续扩充?这个问题的答案是有条件的.如果要求完全满足复数系的全部运算性质,那么任何扩充都是难以成功的.如果放弃某些要求,那么进一步的扩充是可能的.比如,放弃乘法交换律,复数系C可以扩充为四元数系H,如果再适当改变对乘法结合律的要求,四元数系H又可扩充为八元数系Ca等等.当然,在现代数学中,通常总是把“数”理解为复数或实数,只有在个别情况,经特别指出,才用到四元数.至于八元数的使用就更罕见了.。

人教a版数学【选修2-2】3.1.1《数系的扩充与复数的概念》ppt课件



新知导学 1.数系扩充的原因、脉络、原则 脉络:自然数系→整数系→有理数系→实数系→________ 复数系 原因:数系的每一次扩充都与实际需求密切相关,实际需求 与数学内部的矛盾在数系扩充中起了主导作用.
原则:数系扩充时,一般要遵循以下原则: (1)增添新元素,新旧元素在一起构成新数集; (2)在新数集里,定义一些基本关系和运算,使原有的一些主 要性质(如运算定律)________适用; 依然 (3)旧元素作为新数集里的元素,原有的运算关系 __________ ; (4)新的数集能够解决旧的数集不能解决的矛盾. 保持不变
成才之路 · 数学
人教A版 · 选修2-2
路漫漫其修远兮 吾将上下而求索
第三章
数系的扩充与复数的引入
第三章 3.1 数系的扩充与复数的概念
3.1.1 数系的扩充与复数的概念
1
自主预习学案
2
典例探究学案
3
巩固提高学案案
1.在问题情境中了解数系的扩充过程,体会实际需求与数学 内部的矛盾在数系扩充过程中的作用. 2.理解复数的有关概念,掌握复数的代数表示. 3.理解复数相等的充要条件.
复数的相等与复数的分类 新知导学 3.复数相等的充要条件 设a、b、c、d都是实数,那么a+bi=c+di⇔___________. a=c且b=d 4.复数z=a+bi(a、b∈R),z=0的充要条件是 _____________,a=0是z为纯虚数的____________条件. a=0且b=0 必要不充分
5.复数的分类
b=0 (1)复数 z=a+bi(a、b∈R),z 为实数⇔__________ ,z 为
b≠0 虚数⇔_________ ,z

高中数学 第3章 数系的扩充与复数的引入章末归纳总结课件 新人教B版选修2-2


专题探究
有关复数的概念
设 z=a+bi(a,b∈R),则(1)z 是虚数⇔b≠0;(2)z 是纯虚 数⇔ab= ≠00, ; (3)z 是实数⇔b=0.在解题中,若实部、虚部中含 有分式、根式、对数式等,需先使其有意义,再进行分类.
当两个复数实部相等,虚部互为相反数时,这两个复数叫 做互为共轭复数.如 z=a+bi 的共轭复数为-z =a-bi(a,b∈ R).
6.若复数z1=4+29i,z2=6+9i,其中i是虚数单位,则复 数(z1-z2)i的实部为________.
[答案] -20
[解析] 本题主要考查复数的概念及运算.
= 9+4 2sinθ-4π.
当 sinθ-π4=1 时,|z-z1|2 取得最大值 9+4 2. 从而得到|z-z1|的最大值 2 2+1. 解法 2:|z|=1 可看成半径为 1,圆心为(0,0)的圆,而 Z1 可 看成在坐标系中的点(2,-2), ∴|z-z1|的最大值可以看成点(2,-2)到圆上的点距离最 大.由图可知 |z-z1|max=2 2+1.
另一条主线是用复平面上的点或向量来描述复数.由此引出了 复数运算的几何意义,使复数在平面几何、解析几何中得到广 泛应用.这两条主线在教材中是交替安排的,这样能加强学生 的“形与数”结合的观念,使学生在看到代数形式时就能联想 到几何图形,看到几何图形就能联想到对应的复数.有利于学 生深入理解复数概念,开阔学生的思路,培养和提高用“数形 结合”观点来处理问题的能力.
简解:设 z=x+yi(x,y∈R),则由题意知 x2+y2-3i(x-yi) =1+3i,即 x2+y2-3y-3xi=1+3i,
∴xx=2+-y21-3y=1 ,∴xy= =-0 1 或xy= =-3 1 , ∴z=-1 或-1+3i.

最新人教版高中数学选修2-2第三章《数系的扩充与复数的引入复习》示范教案

第三章数系的扩充与复数的引入复习课整体设计教材分析复数的引入是中学阶段数系的又一次扩充,这不仅使学生对数的概念有一个初步的完整的认识,也为进一步的学习打下基础.通过前几节课的学习,同学们对复数的基本概念,基本运算法则,以及复数的几何意义等几个不同的方面有了了解,本节的复习将使学生在问题情景中进一步了解数系扩充的过程和引入复数的必要性,以及用复数解决数学问题的基本方法,复数与以前学习的知识之间的联系与区别,加强对复数的理解,体会实际需要与数学内容的矛盾.课时分配1课时.教学目标知识与技能目标理解复数的概念以及复数相等的充要条件,熟练掌握复数代数形式的四则运算,了解复数及其加减运算的几何意义,复数模的概念及其应用.过程与方法目标引导学生去发现问题,探索问题,解决问题,培养学生数形结合,化归与转化的思想意识.情感、态度与价值观通过对本章的复习,激发学生的学习兴趣,培养学生勇于开拓进取的良好品质,从而形成全面且细致的思维习惯.重点难点重点:复数的基本概念,复数的四则运算和复数相等的充要条件.难点:复数的几何意义以及对复数的模的理解应用.教学过程形成网络提出问题问题1:通过前面的学习,我们已经将数系由实数扩充到了复数,谁来将前面学习的有关复数的内容描述一下?活动设计:学生独立思考,5秒后找一位同学口答,其他同学可以补充.活动成果:复数⎩⎪⎪⎨⎪⎪⎧ 复数的概念⎩⎪⎨⎪⎧ 复数的代数形式及其相等的充要条件复平面、实轴、虚轴和复数对应的点和向量共轭复数复数的运算⎩⎪⎨⎪⎧ 复数的加法及其运算律和几何意义复数的减法及其运算律和几何意义复数的乘法法则和除法法则复平面上两点间的距离公式数系的扩充⎩⎪⎨⎪⎧ 复数的分类实系数的一元二次方程提出问题问题2:(1)计算1-i 1+i=__________; (2)若m +pi =2p +(1-m)i ,则m =__________,p =__________(m ,p ∈R );(3)若复数z =1+2i ,则|z|=__________,复数z 对应的向量OZ →=__________.活动设计:找一个学生到黑板上做,然后一起对答案.活动成果:(1)-i (2)23 13(3)5 (1,2) 设计意图通过问题1、2,从理论和实践两个方面回顾复数的基本内容.典型示例类型一:复数的基本概念例1设m ∈R ,复数z =(2+i)m 2-3(1+i)m -2(1-i).(1)若z 为实数,则m =__________.(2)若z 为纯虚数,则m =__________.思路分析:复数a +bi(a ,b ∈R )包括实数(b =0)和虚数(b ≠0),其中虚数中a =0的数是纯虚数.解:首先整理得:z =(2m 2-3m -2)+(m 2-3m +2)i.在(1)中z 为实数,则m 2-3m +2=0,即m =1或m =2.在(2)中z 为纯虚数,则2m 2-3m -2=0且m 2-3m +2≠0,即m =-12. 点评:解决这类问题,首先把z 化成“z =a +bi ”的形式,分清虚部和实部.若题目条件中直接指明z 为“虚数”,此时我们可设z =a +bi(a ,b ∈R );若指明z 是纯虚数,则可设z =bi(b ∈R 且b ≠0)即可.注意设复数的同时一定加入必需的条件. 巩固练习已知a ∈R ,复数z =a a -3+(a 2+2a -15)i ,当a 为何值时,z 分别为:(1)实数;(2)虚数;(3)纯虚数;(4)z 对应的点在直线y =9上?答案:(1)-5.(2)a ≠-5且a ≠3.(3)0.(4)4或-6.类型二:复数相等的充要条件例2已知集合A ={(m +3)+(n 2-1)i ,8},集合B ={3i ,(m 2-1)+(n +2)i},满足A ∩B ⊂A ,A ∩B ≠∅,求整数m ,n.思路分析:由A ∩B ⊂A ,可知这两个集合有一个公共元素(m +3)+(n 2-1)i 或8,即(m +3)+(n 2-1)i =3i 或8=(m 2-1)+(n +2)i ,或(m +3)+(n 2-1)i =(m 2-1)+(n +2)i.解:依题意,当(m +3)+(n 2-1)i =3i ,即m +3=0,n 2-1=3.解得m =-3,n =±2.经检验m =-3,n =-2时,(m 2-1)+(n +2)i =8不合题意,舍去.所以有m =-3,n =2.当8=(m 2-1)+(n +2)i 时,有m 2-1=8,n +2=0.可解得m =±3,n =-2.但m =-3,n =-2时,(m +3)+(n 2-1)i =3i 不合题意,舍去.所以有m =3,n =-2. 当(m +3)+(n 2-1)i =(m 2-1)+(n +2)i 时,有m +3=m 2-1,n 2-1=n +2,此时m ,n 无整数解,不合题意.综合以上得m =-3,n =2或m =3,n =-2.点评:此题中复数之间的等量关系并未直接给出,而是通过集合之间的关系间接给出,因此复习时注意知识之间的相互联系,也要注意思维的广阔性和严谨性.巩固练习已知集合M ={1,2,(a 2-3a -1)+(a 2-5a -6)i},N ={-1,3},M ∩N ={3},则实数a =__________.答案:-1类型三:复数的基本四则运算例3求值:(1)已知复数z 与(z -3)2-18i 均是纯虚数,则z =__________.(2)已知z 2=4+3i ,则z 3-8z -1z=__________. 思路分析:在(1)中可设z =bi(b ∈R 且b ≠0),将z 代入(z -3)2-18i 中求得b 的值.在(2)中可由z 2=4+3i 求得z 以后,再将z 代入z 3-8z -1z 中求值,也可化简z 3-8z -1z后再求值. 解:(1)设z =bi(b ∈R 且b ≠0),则(z -3)2-18i =(bi -3)2-18i =(9-b 2)-(6b +18)i. 由(z -3)2-18i 为纯虚数,所以9-b 2=0且6b +18≠0,所以有b =3,即z =3i.(2)z 3-8z -1z =z 4-8z 2-1z =(z 2-4)2-17z =-26z =-26z z z =-26z|z|2. 又由z 2=4+3i ,得z =±(322+22i),|z |2=|z|2=|4+3i|=5, ∴z =±(322-22i).∴原式等于3925-1325i 或-3925+1325i. 点评:在解决复数计算问题时,应该先审清题意,尤其是对有条件的求值问题,先审清题意,然后找准切入点,逐步化简求值.巩固练习 -7+i 1+7i +(-21+i )2 012+(3-8i )2-(-3+8i )22-7i. 答案:-1+i.类型四:复数的几何意义例4已知复数|z 1|=|z 2|=3,|z 1-z 2|=4,求|z 1+z 2|的值.思路分析:这里可以先把z 1、z 2、z 1-z 2和z 1、z 2、z 1+z 2两组复数对应的向量分别组成两个三角形,再借助余弦定理求解.解:设z 1对应向量OA →,z 2对应向量OB →,则z 1-z 2对应向量BA →.∴cos ∠AOB =|OA →|2+|OB →|2-|BA →|22|OA →||OB →|=|z 1|2+|z 2|2-|z 1-z 2|22|z 1||z 2|=19. 设z 1+z 2对应向量OC →,则BC →=OA →.∴|z 1+z 2|2=|OC →|2=|OB →|2+|BC →|2-2|OB →||BC →|cos ∠OBC=|z 2|2+|z 1|2+2|z 2||z 1|cos ∠AOB=20.∴|z 1+z 2|=|OC →|=2 5.点评:复数的几何意义体现在将复数问题转化为点或向量的问题,也就是将代数问题转化为几何问题,充分体现了数形结合的思想.变式练习已知|z 1|=|z 2|=|z 1+z 2|=1,求|z 1-z 2|的值.(用代数和几何两种方式求解) 答案: 3.拓展实例例5已知z =m -1-mi(m ∈R ),求|z|的最值.思路分析:可以先将|z|整理出来转化为关于m 的最值问题,还可以转化为几何问题,即z 对应的点在哪里才能使z 对应的点到原点的距离最大或最小的问题.解:代数法:因为|z|=(m -1)2+m 2=2m 2-2m +1=2(m -12)2+12, 所以当m =12时,|z|min =22,但|z|无最大值. 几何法:如下图所示,设z =x +yi ,则有x =m -1,y =-m ,则x +y +1=0,所以z 对应的点Z 在直线x +y +1=0上.因为|z|的几何意义是表示Z 点到原点的距离,因此|z|就是x +y +1=0上的点与原点的距离,|z|的最小值就是原点到直线x +y +1=0的最短距离d =22,显然无最大值.点评:充分运用复数的几何意义,将模的最值问题转化为距离的最值问题.变式练习若复数z 对应的点在(1)以原点为圆心,半径为1的圆上;(2)以(1,1)为圆心,半径为1的圆上;(3)以(3,0),(-3,0)为焦点,以原点为对称中心,长轴长为10的椭圆上,分别写出满足上述条件的z 的表达式.答案:(1)|z|=1;(2)|z -(1+i)|=1;(3)|z -3|+|z +3|=10.变练演编提出问题:(1)当|z 1-1-i|=1时,可以提出什么问题?(2)当|z 1-1-i|=1,z =m -1-mi ,m ∈R 时,可以提出什么问题?活动设计:学生可先独立探索,后互相交流.学情预测:(1)例如:求|z 1-3-i|的范围.几何方法:如图,由|z 1-1-i|=1可知,z 1所对应的点Z 在以C(1,1)为圆心,1为半径的圆C 上,那么|z 1-3-i|就是点A(3,1)与圆C 上的点Z 的连线的距离,所以|z 1-3-i|的最大值为|AC|+1=3,最小值为|AC|-1=1.所以|z 1-3-i|的范围为[1,3].代数方法:设z 1=a +bi ,则|z 1-1-i|=1可转化为(a -1)2+(b -1)2=1,就可以得到|z 1-3-i|=(a -3)2+(b -1)2=(a -3)2+1-(a -1)2=9-4a.因复数z 1对应的点Z(a ,b)在圆(x -1)2+(y -1)2=1上,故0≤a ≤2.所以当a =0时,|z 1-3-i|有最大值3;当a =2时,|z 1-3-i|有最小值1.所以|z 1-3-i|的范围为[1,3].(2)例如:求|z 1-z|的最小值.(答案:322-1) 对于(1)或(2)的问题和答案可以很多,教师可以选有代表性的或有共性的例子拿来讨论. 设计意图加深对复数的代数和几何含义的理解,增强题目的趣味性,训练学生的发散思维,加深对前面知识的理解,考查学生的知识应用能力.达标检测1.设z 1=3-4i ,z 2=-2+3i ,则z 1+z 2在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i3.(1-i)2·i 等于( )A .2-2iB .2+2iC .-2D .2 4.复数(1+1i)2的值是( ) A .2i B .-2iC .2D .-2答案:1.D 2.D 3.D 4.B课堂小结学生独立思考后,概括对复数这一章节的认识,教师最后补充.(1)深刻理解复数、实数、虚数、纯虚数、共轭复数的概念和复数的几何表示,对概念的理解上要善于利用数形结合的思想.(2)掌握复数的分类,明确“复数问题实数化”是解决问题的最基本的思想方法,在解决复数问题时,充分利用复数的有关概念和复数相等的充要条件.(3)代数形式的加、减、乘、除四则运算的运算法则类似于合并同类项,乘法法则类似于多项式的乘法法则,除法的主要内容是分母实数化.复数的代数运算与实数有密切联系但又有区别,要特别注意实数范围内的运算法则和性质是否在复数范围内实用.布置作业补充练习中的2、3题.补充练习基础练习1.设复数z1=2-i,z2=1-3i,则复数iz1+z25的虚部等于__________.答案:1.1拓展练习2.已知a∈R,b∈R,2+ai和b+i(i是虚数单位)是实系数一元二次方程x2+px+q=0的两个根,那么p,q的值分别是多少?3.若复数z满足|z-3|≤5,求|z-(1+4i)|的最大值和最小值.提示:2.根据韦达定理:x1+x2=-p=2+ai+b+i,所以有-p=2+b且a+1=0;x1·x2=q=(2+ai)·(b+i)=(2b-a)+(ab+2)i,所以有ab+2=0,q=2b-a.由此可得p,q的值.3.可利用几何意义:因为满足条件|z-3|≤5的复数z对应的点Z都在以A(3,0)为圆心,5为半径的圆C内和圆C上,因此求|z-(1+4i)|的最值可转化为求点A(1,4)到圆C内或圆C 上哪个点的距离最大和最小的问题.答案:2.p=-4,q=5.3.最大值为|AC|+5=35,最小值|AC|-5= 5.设计说明这一节课是复习课,在开始设计两个问题的目的是引领同学们复习基本知识点,形成这一章的知识网络,后又以典型例题为主,巩固或变式练习为辅,层层展开,步步深入,来复习这一章中涉及到的多个知识点,展现多种不同的题型以及各自的解答方式与解答规律.因为是复习课,所以在复习基本题型的同时,也把复数问题进一步升华提高.这样不但加深了同学们对知识的理解,也更好地提高同学们分析问题、解决问题的能力,进一步培养同学们数形结合,化归与转化的数学思想意识,培养学生思维的严谨性、灵活性和深刻性等良好的思维品质.同时展示数学的内在规律,新旧知识之间的联系,展现复数无穷的魅力.备课资料复数的起源与扩张16世纪意大利米兰学者卡当(Jerome Cardan1501~1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”.他第一个把负数的平方根写到公式中,并且在讨论是否能把10分成两部分,使它们的乘积等于40.他把答案写成=40,尽管他认为和这两个表示式是没有意义的,但他还是把10分成了两部分,并使它们的乘积等于40.给出“虚数”这一名称的是法国数学家笛卡尔(1596~1650),他在《几何学》(1637年发表)中使“虚的数”与“实的数”相对应,从此,虚数才流传开来.数系中发现一颗新星——虚数,引起了数学界的一片困惑,很多大数学家不承认虚数.德国数学家莱布尼兹(1646~1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”.法国数学家棣莫佛(1667~1754)在1730年发现著名的棣莫佛定理.欧拉在1748年发现了有名的关系式,并且是他在《微分公式》(1777年)一文中第一次用i来表示-1的平方根,首创了i作为虚数的单位.“虚数”实际上不是想象出来的,它是确实存在的.挪威的成塞尔(1745~1818)在1779年试图给予这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视.德国数学家阿甘得(1777~1855)在1806年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示.在平面直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数a+bi.像这样,由各点都对应复数的平面叫做“复平面”,后来又称“阿甘得平面”.高斯在1831年,用实数组(a,b)代表复数a+bi,并建立了复数的某些运算,使得复数的某些运算也像实数一样地“代数化”.他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合,统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数一一对应,扩展为平面上的点与复数一一对应.高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间一一对应的关系,阐述了复数的几何加法与乘法.至此,复数理论才比较完整和系统地建立起来了.经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不虚呵!虚数成为了数系大家庭中的一员,从而实数集才扩充到了复数集.随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据.复数概念的进化是数学史中最奇特的一章,那就是数系的历史发展完全没有按照教科书所描述的逻辑连续性.人们没有等待实数的逻辑基础建立之后,才去尝试新的征程.在数系扩张的历史过程中,往往许多中间地带尚未得到完全认识,而天才的直觉随着勇敢者的步伐已经到达了遥远的前哨阵地.回顾数系的历史发展,似乎给人这样一种印象:数系的每一次扩充,都是在旧的数系中添加新的元素.如分数添加于整数,负数添加于正数,无理数添加于有理数,复数添加于实数.但是,现代数学的观点认为:数系的扩张,并不是在旧的数系中添加新元素,而是在旧的数系之外去构造一个新的代数系,其元素在形式上与旧的可以完全不同,但是,它包含一个与旧代数系同构的子集,这种同构必然保持新旧代数系之间具有完全相同的代数构造.当人们澄清了复数的概念后,新的问题是:是否还能在保持复数基本性质的条件下对复数进行新的扩张呢?答案是否定的.当哈米尔顿试图寻找三维空间复数的类似物时,他发现自己被迫要做两个让步:第一,他的新数要包含四个分量;第二,他必须牺牲乘法交换律.这两个特点都是对传统数系的革命.他称这新的数为“四元数”.“四元数”的出现昭示着传统观念下数系扩张的结束.1878年,富比尼(F.Frobenius,1849~1917)证明:具有有限个原始单元的、有乘法单位元素的实系数先行结合代数,如果服从结合律,那就只有实数,复数和实四元数的代数.数学的思想一旦冲破传统模式的藩篱,便会产生无可估量的创造力.哈米尔顿的四元数的发明,使数学家们认识到既然可以抛弃实数和复数的交换性去构造一个有意义、有作用的新“数系”,那么就可以较为自由地考虑甚至偏离实数和复数的通常性质的代数构造.数系的扩张虽然就此终止,但是,通向抽象代数的大门被打开了.(设计者:王明平崔志新)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章数系的扩充与复数的引入
本章要览
内容提要
本章的主要内容是复数的概念、复数的几何意义、复数代数形式的四则运算及数系的扩充等.
本章知识在高中所学数学知识中相对独立,复数的引入是中学阶段数系的又一次扩充,它体现了数学的发现和创造过程.学习复数的一些基本知识,可以深刻体会人类理性思维在数系扩充中的作用.
复数的有关问题,往往转化为实数范围内的代数问题,也常常转化为平面几何问题.因此在本章学习中,注意问题的转化,即复数问题实数化,以及数形结合的数学思想的灵活运用.
本章学习的重点是复数的概念,它是复数运算、复数应用的基础.对概念的理解、掌握是审清题意的关键,也是获得解题思路的源泉.
学法指导
在学习本章时,应注意复数与实数、有理数的联系,复数代数形式的加、减运算与平面向量加、减运算的联系,还应注意复数代数形式的四则运算与多项式加法、减法、乘法运算的联系,善于将复数问题实数化、几何化,注重整体思想的运用.。

相关文档
最新文档