遗传、生化名词解释.2doc
生化名词解释

46、多聚核糖体(polysome)原核细胞或真核细胞的核糖体依次结合起始密码子并沿着5′→3′方向读码移动,同时进行肽链合成,这种mRNA与多个核糖体形成的聚合物称为多聚核糖体。
40、断裂基因(split gene)真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因。
41、外显子(exon)在真核生物中断裂基因及其初级转录产物上出现,并表达为成熟RNA的核酸序列。
42、内含子(intron)真核生物中隔断基因的线性表达,而在剪接过程中被除去的核酸序列。
36、逆转录(reverse transcription)以RNA为模板在逆转录酶的作用下合成DNA的过程。
37、不对称转录(asymmetric transcription)基因组中,按细胞不同的发育时序、生存条件和生理需要,只有少部分的基因发生转录。在DNA分子双链上,一股链用作模板指引转录,另一股链不转录。
23、脂肪动员(fat mobilization)是指储存在脂肪细胞中的甘油三脂,被脂酶逐步水解为游离脂酸和甘油并释放入血,通过血液运输至其他组织氧化利用的过程。
24、氧化呼吸链(oxidative respiratory)又称电子传递链,指线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合体,可通过链锁的氧化还原反应将电子最终传递给氧生成水。
47、分子伴侣(molecular chaperon)分子伴侣是细胞内一类可识别肽链的非天然构象,促进各功能域和整体蛋白质正确折叠的保守蛋白质。
医学遗传学一名词解释

医学遗传学一名词解释中文版医学遗传学一名词解释1、遗传:是指生物繁殖过程中,子代与亲代相似的现象,不仅形态外貌上相似,而且在生物体的结构生理和生化特征等方面都相似一保持世代间的延续,保证物种的相对稳定。
2、变异:是指生物世代间延续的过程中子代与亲代,子代个体之间的差异。
3、单基因病:主要受一对基因所控制的疾病,即由一对染色体〔同源染色体〕上单个基因或一对等位基因发生突变所引起的疾病。
呈孟德尔式遗传。
4、多基因病:由两对以上〔多对或假设干对〕基因和环境因素共同作用所致的疾病。
5、染色体病:或称染色体异常综合征,是指因为染色体数目异常或结构异常所导致的疾病。
6、基因:基因是特定的DNA片段,带有遗传信息,可通过控制细胞内RNA和蛋白质〔酶〕的合成,进而决定生物的遗传性状。
7、调空基因:调控基因指可调节控制结构基因表达的基因。
8、结构基因:结构基因指可控制结构基因表达的基因。
9、断裂基因:指编码序列不连续,被非编码序列分隔嵌合排列的断裂形式的基因。
如人类的结构基因。
10、基因组:指生物承受生殖细胞〔单倍体细胞〕DNA分子的全部基因总和。
11、基因表达:指储存在基因中的遗传信息通过转录和翻译,转变成蛋白质或酶分子,形成生物特定性状的过程。
12、转录:转录指以DNA为膜板,在RNA聚合酶作用下合成RNA的过程,13、翻译:翻译指mRNA指导下的蛋白质生物合成过程。
14:基因突变:基因突变指基因的核苷酸序列或数目发生改变。
15:移码突变:是指DNA链上插入或丧失一、两个或多个碱基时,引起变化点下游的碱基发生位移,密码子重新组合,导致变化点以后多肽的氨基酸种类和序列发生改变。
16:整码突变:指DNA链上密码子之间插入或丧失一个或几个密码子,导致多肽链增加或减少了一个或几个氨基酸,但变化点前后的氨基酸不便。
17:染色质:是一种核蛋白复合体。
呈细丝状。
为细胞间期和中解旋染色体的形态表现。
18:染色体:呈棒状,是有丝分裂期的螺旋化、浓缩了的染色质。
生化名词解释

生化名词解释第一章1、肽键:一个氨基酸α-羧基与另一个氨基酸α-氨基脱去一分子水形成的化学键叫肽键。
2、等电点:当蛋白质溶液处于某一pH值时,其分子解离成正负离子的趋势相等,蛋白质分子所带净电荷为零,此时溶液的pH值称为该蛋白质的等电点。
3、一级结构:是指蛋白质分子中以肽键相连的氨基酸的组成和排列顺序,包括二硫键的位置。
4、膜体:在蛋白质分子中,可发现2个或3个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构想,并具有相同的功能。
第二章1、核苷与核苷酸:嘌呤的N9或嘧啶的N1与戊糖的C1通过C—N糖苷键相连形成的化合物叫糖苷。
由脱氧核糖参与形成的核苷叫脱氧核苷。
核苷或脱氧核苷与磷酸通过磷酸二脂键结合即形成核苷酸或脱氧核苷酸。
2、密码与反密码:mRNA分子上每三个相邻的核苷酸叫做一组密码,tRNA分子反秘密环上三个相邻的核苷酸叫做反密码。
3、碱基互不原则:由于DNA分子的碱基结构不同,其形成氢键的能力也不同,因此产生了固有的配对方式:A与T以两个氢键相连,G与C以三个氢键相连。
4、增色效益与减色效益:核酸变性时,260nm的紫外吸收显著升高,称为增色效益,在一定条件下,变性核酸可以复性,260nm的紫外吸收又重新恢复至原来水平,这种现象称为减色效益。
5、Z-DNA:即左手螺旋DNA,由于主链中磷原子连接线呈锯齿形,好似Z字形扭曲。
6、重复顺序:真核细胞染色质DNA具有许多重复的核苷酸序列,称为重复序列,包括高度重复顺序,中度重复顺序和单一顺序。
7、单顺反子和多顺反子:真核细胞中的一个mRNA分子只为一种多肽链编码,称为单顺反子,在原核生物,一个mRNA分子可作为多种多肽和蛋白质合成的模板,此称为多顺反子。
8、分子病:由于DNA遗传性缺陷引起的mRNA和蛋白质的结构功能异常导致的疾病。
9、蛋白质的三级结构:指整条多肽链中全部氨基酸残基的相对空间位置,即整条多肽链所有原子在三维空间的排布位置。
生化名词解释

生化名词解释(整理)1、增色效应:在DNA变性解链过程中,由于碱基之中的共轭双键被暴露出来,使DNA在260nm 处的吸光值增加,称为增色效应。
2、核酶:具有催化活性的RNA称为核酶。
其在rRNA转录后加工过程中起自身剪接的作用,催化部位具有特殊的锤头结构。
3、底物水平磷酸化:底物高能磷酸基团直接转移给ADP生成ATP,这种ADP或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直接相偶联的反应称为底物水平磷酸化。
4、Tm:DNA的变性从开始解链到完全解链,是在一个相当窄的温度内完成的,在这个范围内,紫外光吸收值达到最大值50%时的温度称为DNA的解链温度(Tm)。
一种DNA的Tm值的大小与其所含的碱基中的G+C比例相关,G+C比例越高,Tm值越高。
5、Klenow片段:利用特异的蛋白酶将DNA聚合酶Ⅰ水解为大、小两个片段,其中C端的大片段具有DNA聚合酶活性和5ˊ→3ˊ核酸外切酶活性,称为Klenow片段。
它是分子生物学研究中常用的工具酶。
6、顺式作用元件:指可影响自身基因表达活性的DNA序列。
按功能特性分为启动子、增强子及沉默子。
7、框移突变:基因编码区域插入或缺失碱基,DNA分子三联体密码的阅读方式改变,使转录翻译出的氨基酸排列顺序发生改变,称为框移突变。
8、酶的比活力:即酶纯度的量度,指单位重量的蛋白质中所具有酶的活力单位数,一般用IU/mg蛋白质来表示。
一般而言,酶的比活力越高,酶纯度越高。
9、SD序列:原核生物mRNA上起始密码子上游,普遍存在AGGA序列,因其发现者是Shin- Dalgarno而称为SD序列。
此序列能与核糖体小亚基上的16S rRNA近3ˊ端的UCCU序列互补结合,与翻译起始复合物的形成有关。
10、信号肽:即Signal Peptide,它是一段由3-60个氨基酸组成的短肽序列,常指新合成多肽链中用于指导蛋白质跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端),至少含有一个带正电荷的氨基酸,中部有一高度疏水区以通过细胞膜。
生化名词解释翻译的意思

生化名词解释翻译的意思生化学作为一门综合性学科,旨在研究生物体内各种生理过程所涉及的物质及其相互作用。
它涵盖了许多复杂的概念和名词,其中一项重要的任务是将这些名词解释和翻译成准确而易于理解的语言,以便广大科学家和研究人员能够更好地理解和分享研究成果。
本文将针对一些常见的生化名词进行解释,并探讨其翻译的意义。
1. 基因(Gene)基因是生物体内负责遗传信息传递的物质单位,它位于染色体上,通过DNA编码蛋白质的合成过程参与了生物体的生长与发育。
基因的准确解释和翻译对于遗传学和分子生物学的研究至关重要。
基因的翻译意义在于使科学家们能够理解基因对于生命活动的重要性,进而深入研究基因的功能机制。
2. 酶(Enzyme)酶是生物体内的一类蛋白质,它在生物反应中起到催化作用,促进化学反应的进行而不自身参与反应的过程。
酶的解释和翻译有助于科学家们更好地理解酶的作用机理,并利用这一知识来研发新的药物和治疗方法。
酶的翻译意义在于扩大对酶类蛋白质的认识,进一步拓展酶的应用领域。
3. 蛋白质(Protein)蛋白质是生物体内一类重要的大分子化合物,它由许多氨基酸的聚合物组成,并参与了生物体内众多重要的生理过程。
蛋白质的解释和翻译对于生物化学研究具有重要意义,它有助于科学家们更好地理解蛋白质的结构和功能,从而进一步深入研究蛋白质的生物学角色和临床应用。
4. 核酸(Nucleic acid)核酸是生物体内一类重要的大分子化合物,包括DNA(脱氧核酸)和RNA(核糖核酸)。
核酸承载着生物体的遗传信息,参与了遗传物质的传递和蛋白质合成等关键过程。
核酸的解释和翻译对于基因与遗传研究至关重要,它有助于科学家们理解DNA和RNA的结构和功能,进一步揭示生物体内复杂的生物学过程。
5. 代谢(Metabolism)代谢是生物体内一系列化学反应的总称,包括物质的转化、能量的产生和利用等过程。
代谢的解释和翻译有助于科学家们更好地理解生物体内的能量转换和物质转化过程,进一步揭示生命活动的本质和机制。
生化名词解释

第一章核酸化学一、名词解释1、核苷:是由一个碱基和戊糖通过糖苷键连接的化合物。
2、核苷酸:是核苷与磷酸通过磷酸酯键结合形成的化合物,核酸的基本结构单位。
3、磷酸二酯键:是两个核苷酸分子核苷酸残基的两个羟基分别与同一磷酸基团形成的共价连接键。
4、核酸:由核苷酸或脱氧核苷酸通过3'-5'磷酸二酯键连接而成的大分子。
具有非常重要的生物功能,主要储存遗传物质和传递遗传信息。
5、核酸的一级核苷酸结构:是指DNA分子中各种脱氧核苷酸之间的连接方式和排列顺序。
6、DNA二级结构:是指构成DNA的多聚脱氧核苷酸链之间通过链间氢键卷曲而成的构象。
7、碱基互补规律:在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是A(腺嘌呤)一定与T (胸腺嘧啶)配对,G(鸟嘌呤)一定与C(胞嘧啶)配对,反之亦然。
碱基间的这种一一对应的关系叫做碱基互补配对原则。
8、环化核苷酸:是指单核苷酸中的磷酸基分别与戊糖的3'-OH及5'-OH形成的酯键,这种磷酸内酯的结构成为环化核苷酸。
9、Tm值:是指DNA热变形时,增色效应达到50%是的温度。
10、增色效应:DNA从双螺旋的双链结构变为单链的无规则的卷曲状态时,在260nm处的紫外光吸收值增加。
11、减色效应:是变形的核酸复性时,其在260nm处的紫外光吸收值降低甚至恢复到未变形时的水平。
12、分子杂交:是使单链DNA或RNA分子与具有互补碱基的另一DNA或RNA 片断结合成双链的技术。
第二章蛋白质化学一、名词解释1、构象:是指具有相同结构式和相同构型的分子在空间里可能的多种形态。
2、构型:是指具有相同分子式的立体结构体中取代基团在空间的相同取向。
3、肽平面:是指多肽链或蛋白质分子中,组成肽键的C、O、N、H4个原子与两个相邻的α—碳原子共处一个平面。
4、α—螺旋:蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。
医学遗传学习题集名词解释
医学遗传学习题集名词解释第一章绪论1 遗传性疾病(genetic disease):是指其发生需要有一定的遗传基础,通过这种遗传基础、并按一定的方式传于后代发育形成的疾病。
2 先天性疾病(congenital disease):一般是指婴儿出生时就已表现出来的疾病。
3 家族性疾病(familial disease):是指一个家族中多个成员都表现出来的同一种病,即某一种疾病有家族史。
第二章人类基因1卫星DNA(satellite DNA):以5bp、10bp或20bp、200bp为一个重复单位,经过多次重复串联,长度可达105bp,约占整个基因组10%~15%的简单序列DNA。
2 基因组(genome):一个物种所有遗传信息的总称。
通常表述为一个单倍体细胞中全部的基因或遗传物质。
3 结构基因(structural gene):是决定合成某一种蛋白质或RNA分子结构相应的一段DNA。
结构基因的功能是把携带的遗传信息转录给mRNA,再以mRNA为模板合成具有特定氨基酸序列的蛋白质或RNA。
4 断裂基因(split gene):是真核生物的结构基因,编码序列往往被非编码序列所分割,呈现断裂状的结构。
5 基因家族(gene family):是一组来源相同、结构相似、功能相关的基因。
它们在基因组中的拷贝只有微小的差别,并行使相关的功能。
6 单一基因(solitary gene):指在基因组中只有单个或极少数拷贝的基因。
7 外显子和内含子(exon and intron):外显子(exon)是指编码氨基酸的序列,内含子(intron)是指位于外显子之间的非编码序列。
8 调节基因(regulator gene):是指能控制结构基因转录起始和产物合成速率并能影响其他基因活性的一类基因。
9 串联重复基因(tandemly repeated gene):连续或不连续的首尾串联重复排列的多拷贝基因。
10 拟基因(假基因,pseudogene):在多基因家族中,某些成员不产生有功能的基因产物的基因。
医学遗传学名词解释(生化遗传学)
医学遗传学名词解释(生化遗传学)1、分子病(molecular disease)分子病是指基因突变使蛋白质的分子结构或合成的量异常直接引起机体功能障碍的一类疾病。
包括血红蛋白病、血浆蛋白病、受体病、膜转运蛋白病、结构蛋自缺陷病、免疫球蛋白缺陷病等。
2、先大性代谢缺陷病(inborn errors of metabolism)先天性代谢缺陷也称遗传性酶病,指由于遗传上的原因(通常是基因突变)而造成的酶蛋白质分子结构或数量的异常所引起的疾病。
3、融合基因(fusion gene)融合基因指由两种不同基因的局部片段拼接而成的DNA片段。
4、血友病(hemophilia)血友病是一类遗传性凝血功能障碍的出血性疾病,包括血友病A,血友病B及血友病C。
5、受体病(receptor disease)由于受体蛋白的遗传性缺陷导致的疾病称为受体病。
6、血红蛋白病(hemoglobinopathy)血红蛋白病是由于红蛋白分子合成异常引起的疾病,习惯上分为血红蛋白病和地中海贫血两类。
7、结构蛋白病(structural of protein disease)结构蛋自缺陷病是构成细胞的基本结构和骨架的蛋白的遗传性缺陷引起的疾病,主要包括胶原蛋自病、肌营养不良症等。
8、膜转运蛋白病(membranous transmitted protein disease)由于膜转运蛋白的遗传缺陷导致的疾病称为膜转运蛋白病。
如胱氨酸尿症、囊性纤维样变及先天性葡萄糖、半乳糖吸收不良症等。
9、地中海贫血(tha1assemia )地中海贫血是指由于某种或某些珠蛋白链合成速率降低,造成一些肽链缺乏,另一些肽链相对过多,出现肽链数量的不平衡,而导致的溶血性贫血10、镰状细胞贫血(sick1e cel1 anemia)镰状细胞贫血是因β珠蛋白基因缺陷而引起的一种疾病,呈常染色体隐性遗传。
大学生物遗传学名词解释
大学生物遗传学名词解释1. 遗传学(Genetics)是研究物种内遗传特征的科学,包括遗传的法则、遗传变异的机制、遗传信息的传递和遗传信息的表达等。
2. 基因(Gene)生物体中控制特定遗传特征的基本单位。
基因位于染色体上,由DNA序列编码,决定着生物体的遗传性状。
3. 表现型(Phenotype)个体在特定环境条件下所显示的形态、生理和行为特征。
4. 基因型(Genotype)个体在基因层面上的遗传信息组合,由基因组成。
5. 染色体(Chromosome)细胞核中的结构,携带着细胞的遗传物质DNA,是遗传信息的主要载体。
6. 突变(Mutation)遗传物质发生的突发性变异,导致基因或染色体结构和功能的改变。
7. 交叉互换(Crossing Over)染色体在减数分裂过程中的重组事件,导致染色体上的遗传信息重新组合。
8. 遗传变异(Genetic Variation)种群个体间在遗传特征上的差异,是进化的基础。
9. 遗传漂变(Genetic Drift)随机因素导致种群个体在遗传特征上的变化,通常发生在小种群中。
10. 自交(Self-fertilization)个体自身花药中的花粉与个体的雌蕊相结合,使个体自行对自己进行受精。
11. 杂交(Hybridization)来自不同个体或群体的个体进行交配产生的后代,通常具有更广泛的遗传多样性。
12. 突变率(Mutation Rate)在一定时间内个体基因发生突变的频率,用来衡量突变的发生概率。
13. 迁移(Migration)个体或种群之间的基因流动,导致遗传物质的交换和混合。
14. 选择(Selection)环境中某些表现型或基因型的个体具有较高适应度,从而更有可能在繁殖中传递其基因。
15. 群体(Population)一定地理范围内相同物种个体的集合体,具有一定程度的基因流动和遗传变异。
16. 进化(Evolution)生物种群中遗传特征的长期改变,是生物多样性的基础。
生化名词解释 (2)
?第四章?糖代谢?(一)?名词解释1.?乳酸循环(Cori循环):肌肉收缩时生成乳酸,由于肌肉内糖异生活性低,所以乳酸通过细胞膜弥散进入血后,再进入肝,在肝内异生为葡萄糖。
葡萄糖释进入血液后又可被肌肉摄取,这就构成了一个循环,称为乳酸循环。
2.糖异生:由非糖物质乳酸、丙酮酸、甘油、生糖氨基酸等转变成糖原或葡萄糖的过程称为糖异生,糖异生只在肝脏、肾脏发生。
3.高血糖:临床上将空腹血糖浓度高于7.22~7.78mmol/L,称为高血糖。
4.糖尿:指血糖浓度高于8.89~10.00mmol/L,超过了肾小管对葡萄糖的重吸收能力,尿中出现葡萄糖,称为糖尿。
5.糖原合成与糖原分解:糖原为体内糖的贮存形式,也可被迅速动用。
由葡萄糖合成糖原的过程称为糖原合成,糖原合酶为关键酶。
由肝糖原分解为6-磷酸葡萄糖,再水解成葡萄糖释出的过程称为糖原分解,磷酸化酶为关键酶。
6.血糖:血液中所含的葡萄糖称为血糖。
血中葡萄糖水平的正常范围是3.89~6.11mmol/L。
??7.?糖酵解和糖酵解途径:在无氧情况下,葡萄糖经丙酮酸分解成乳酸的过程称为糖酵解。
自葡萄糖分解为丙酮酸的反应阶段为糖酵解和糖有氧氧化所共有,称为糖酵解途径。
8.糖酵解途径:自葡萄糖分解为丙酮酸的反应阶段为糖酵解和有氧氧化所共有,称为糖酵解途径。
9.钙调蛋白(calmoduline):是细胞内的重要调节蛋白。
由一条多肽链组成,CaM上有4个Ca2+结合位点,当胞质Ca2+浓度升高,Ca2+与CaM结合,其构象发生改变进而激活Ca2+CaM激酶。
10.低血糖:临床上将空腹血糖浓度低于3.33~3.89mmo1/L,称为低血糖。
11.乳酸循环:又称Cori循环,指将肌肉内的糖原和葡萄糖通过糖酵解生成乳酸,乳酸进入血中运输至肝脏,在肝内乳酸异生成葡萄糖并弥散入血,释入血中的葡萄糖又被肌肉摄取利用,构成的循环过程称为乳酸循环。
12.三羧酸循环:又称Krebs循环或枸橼酸循环,为乙酰辅酶A氧化的途径,先由乙酰辅酶A与草酰乙酸缩合生成三羧基酸枸橼酸,再经2次脱羧,4次脱氢等一系列反应,再次生成草酰乙酸,这一循环过程称为三羧酸循环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人类染色体和染色体病1.mosaic 嵌合体P63一个个体内同时存在两种或两种以上的核型的细胞系,这种个体称为嵌合体,如46,XX/47,XXY;45,X/46,XX等。
嵌合体可以是数目异常之间、结构异常之间以及数目和结构异常之间的嵌合。
2.translocation 易位P67一条染色体上的断片移接到另一条非同源染色体的臂上,这种结构畸变成为以为。
常见的易位方式有相互易位、罗伯逊易位和插入易位等。
Robertsonian translocation 罗伯逊易位P68又称着丝粒融合(centric fusion),是发生于近端着丝粒染色体的一种易位形式。
当两个近端着丝粒染色体在着丝粒部位或者是着丝粒附近部位发生断裂后,二者的长臂在着丝粒处接合在一起,形成一条衍生染色体。
两者的短臂则构成一个小染色体(往往在第二次分裂时丢失,可能是由于缺乏着丝粒或者是由于其完全由异染色质构成所致)。
(由于丢失的小染色体几乎全是异染色质,而有两条长臂够成的染色体上则几乎包含了两条染色体的全部基因)因此罗伯逊以为携带者虽然只有45条染色体,但表型一般正常,在形成配子的时候会出现异常,造成胚胎死亡而流产或生出先天畸形患儿。
3.euploid aberration 整倍体畸变P62如果染色体的数目变化是单倍体(n)的整数倍,即以n为基数,整倍地增加或减少,则称为整倍体。
超过二倍体的整倍体被称为多倍体。
这种在胚胎发育过程中造成染色体数目畸变可严重干扰备胎的正常发育而导致流产。
整倍体畸变的机制主要有:双雌受精、双雄受精、核内复制和核内有丝分裂。
4.hyperdiploid 超二倍体P63当体细胞中染色体数目多了一条或数条时,称为超二倍体。
在超二倍体的细胞中某一同源染色体的数目不是2条,而是3条、4条……?5.hypodiploid 亚二倍体P63当体细胞中染色体数目少了一条或数条时,称为亚二倍体。
即在2n的基础上,减少了一条或几条染色体,可写做2n-m(m<n)。
?6.deletion 缺失P65染色体片段的丢失,使位于这个片段的基因也随之发生丢失。
按染色体断点的位置可分为末端缺失和中间缺失两类。
(①末端缺失(terminal ~)是指染色体的臂发生断裂后,未发生重接,无着丝粒的片段不能和纺锤丝相连而丢失;②中间缺失(interstitial ~)指一条染色体的同一臂上发生了两次断裂,两个断点之间的片段丢失,其余的两个片段重接。
)7.inversion 倒位P66是某一染色体发生两次断裂后,两断点之间的片段旋转180°后重接,造成染色体上基因顺序的重排。
染色体的到位可以发生在同一臂(长臂或短臂)内,称为臂内倒位(paracentric ~);也可发生在两臂(长臂和短臂)之间,称为臂间倒位(pericentirc ~)。
8.ring chromosome 环形(状)染色体P69一条染色体的长、短臂同时发生了断裂,含有着丝粒的片段两端发生重接,即形成环状染色体。
9.isochromosome 等臂染色体P69一条染色体的两个臂在形态遗传结构上完全相同,称为等臂染色体。
等臂染色体一般是由于着丝粒分裂异常造成的。
(在正常的细胞分裂中,着丝粒纵裂,姐妹染色单体分离,形成两条具有长、短臂的染色体。
)如果着丝粒横裂,长臂、短臂各自形成一条染色体,即形成了一条具有两个长臂(46,X,i(Xq))和一条具有两个短臂(46,X,i(Xp))的等臂染色体。
10.Lyon hypothesis Lyon假说P48要点:1.X染色体失活发生在胚胎发育早期。
2.X染色体的失活是随机的。
异固缩的X 染色体可以来自父亲或母亲。
3.失活是完全的。
(雌性哺乳动物体细胞内仅有一条X染色体是有活性的,另一条在遗传上是失活的,在间期细胞核中螺旋化而呈异固缩为X染色质。
)4.失活是永久和克隆式繁殖的。
故失活是随机的,又是恒定的。
单基因遗传病11.proband 先证者P82先证者是某个家族中第一个被医生或者遗传研究者发现的罹患某种遗传病的患者或具有某种性状的成员。
12. penetrance 外显率P94外显率是某一显性基因(在杂合状态下)或纯合隐性基因在一个群体中得以表现的百分比。
外显率等与100%时为完全外显,否则则为不完全外显(外显不全)。
某一基因的外显率不是绝对不变的,相反,它随着观察者锁定观察标准的不同而变化。
13.sex-limited inheritance 限性遗传P96限性遗传是常染色体上的基因,由于基因表达的性别限制,只在一种性别表现,而在另一种性别则完全不能表现。
这主要是由于解剖学结构上的性别差异造成的,也可能受性激素分泌方面的差异限制。
(如女性的子宫阴道积水症,男性的前列腺癌等。
)14.manifesting heterozygote 显示杂合子P97偶见X连锁隐性遗传的血友病或Duchenne肌营养不良的男性患者的杂合子母亲也可能受累,这种X连锁隐性遗传的女性杂合子表现出的临床症状是显示杂合子。
女性X染色体有随机失活现象,机遇使她大部分细胞中带有正常基因的X染色体失活,而带有隐形致病基因的那条X染色体恰好有活性,从而表现出或轻或重的临床症状。
15.parental/genetic/genomic imprinting亲代/遗传/基因组印迹P96一个个体的同源染色体(或相应的等位基因)因分别来自其父方或母方而表现出功能上的差异,因此当它们其一发生改变时,所形成的表型也有所不同,这种现象成为遗传印记。
该现象使一些单基因遗传病的表现度和外显率也受到突变基因亲代来源的影响。
16. genetic anticipation 遗传早现P95遗传早现是指一些遗传病(通常为显性遗传病)在连续几代的遗传中,发病年龄提前而且病情严重程度增加。
17. coefficient of relationship,coefficient of kinship 亲缘系数P96是指有共同祖先的两个人,在某一位点上具有同一基因的概率。
近亲婚配可通过测定婚配双方的亲缘系数,以估计他们遗传基础的相似程度。
按双等位基因分离规律,每传一代得到其中一个等位基因的概率是1/2。
如亲子之间的亲缘系数为1/2,同胞之间的亲缘系数也是1/2,祖孙之间的亲缘系数为1/2²,既1/4。
可推知姨表兄妹的亲缘系数为1/8。
18. genetic heterogeneity 遗传异质性P95/P310有些临床症状相似的疾病,可有不同的遗传基础,称之为遗传异质性。
由于遗传基础的不同,它们的遗传方式、发病年龄、病情进展、严重程度、受损部位、愈后以及复发率等等,都可能是不同的。
遗传异质性可分为基因位点异质性(locus heterogeneity)和等位基因异质性(allelic heterogeneity),分别由不同基因位点上的突变和同一位点上的不同突变造成。
19. ascertainment 确认与校正P303-304讲义对遗传病家系的取样称为确认。
基本类型有:完全确认——所得数据完整、不完全确认——全部是正常同胞的家庭被漏检使遗传比率偏移(截短确认、单个确认、多个确认)。
只有完全确认时,同一婚配类型的同胞合并数据会直接符合遗传比率,但实际上存在漏检现象。
由于隐形遗传病的调查只能是不完全确认,实得的数据中患者偏多,比率偏离希望值,需要通过校正以确定某种遗传病的遗传比率。
校正有各种方法,适用于不同的确认。
Weinberg先证者法可用于单个或多个确认,较为常用。
20. pleiotropy 基因多效性P94一对或一对突变基因产生的多种继发效应,称为基因多效性。
其为基因产物在机体内复杂代谢的结果:一是基因产物(蛋白质或酶)直接或间接控制和影响了不同组织和器官的代谢和功能,即初级效应;二是在基因初级效应的基础上通过连锁反应引起的一系列次级效应,如镰型红细胞贫血症(AR)等。
21.phenocopy 拟表型/表现型模拟P94拟表型指在个体发育过程中,环境因素的作用使个体产生一种症状与某一特定基因所产生的表现型十分相似,或者说由环境因素引起的疾病模拟了由遗传决定的表现型,又称表现型模拟。
由于并非生殖细胞中基因本身的改变所致,故不会遗传给后代。
22.expressivity 表现度P94表现度是基因在个体中的表现程度,或者说具有同一基因型的不同个体或同一个体的不同部位,由于各自遗传背景的不同,所表现的程度可能有显著的差异。
当一种畸形疾病或综合症的表现极为轻微而无临床意义时,称为顿挫型。
23.sex-influenced inheritance 从性遗传/ P95从性遗传是位于常染色体上的基因,由于性别的差异而显示出男女性分布比例上的差异或基因表达程度上的差异,例如早秃。
多基因遗传病24. liability 易患性P104在多基因遗传病发生中,遗传因素和环境因素共同作用决定一个个体患某种遗传病的可能性称为易患性。
一般群体中,易患性很高或很低的个体很少,大部分个体接近平均值,因此群体的易患性变异也呈正态分布。
一个个体的易患性高低无法测量,但一个群体的易患性平均值可以从该群体的患病率作出估计。
(可再表述群体易患性阈值发病率的关系)25. susceptibility 易感性P104易感性特指由遗传因素决定的患病风险,仅代表个体所含有的遗传因素;但在一定的环境条件下,易感性高低可以代表易患性高低。
26. heritability 遗传度P105在多基因遗传病中,遗传度的含义是多基因累加效应对疾病易患性变异的贡献大小。
~愈大,表明遗传因素对病因的贡献愈大。
广义遗传度H或h²是指遗传方差占表型方差的比值,它表示数量性状从亲代传递给子代的相对能力。
其公式为h²=VG/Vp×100%。
(Vp=VG+VE)27. threshold of multifactorial disease 多基因病阈值P104当一个个体易患性高到一定限度就可能发病。
这种由易患性所导致的多基因遗传病发病最低限度成为发病阈值。
其标志着在一定的环境条件下,患者所必需的最低的致病基因数量,所以多基因遗传性状亦属于阈值性状。
(可再表述群体易患性阈值发病率的关系)多基因遗传病的遗传特点:(1)患病率与亲属的级别有关(2)亲属的再发风险与亲属中患病人数有关(3)亲属的再发风险与患者畸形或疾病的严重程度有关(3)当遗传病的群体发病率出现性别差异时,亲属再发风险也与性别有关。
群体遗传28. inbreeding coefficient 近婚系数P139指有亲缘关系的配偶,从他们共同的祖先得到同一基因,有奖这一基因传递给他们子女使之成为纯合子的概率。
近亲婚配除了通过亲缘系数来测判断双方的相似程度之外,还可以通过近婚系数来测定近亲婚配子女的基因纯合程度。