葡萄酒的鉴定 2012年数模国赛A题论文

合集下载

2012年数学建模A题优秀论文

2012年数学建模A题优秀论文

基于数理分析的葡萄评价体系摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。

本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。

对于问题一,我们首先用配对样品t 检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS 软件对两组评酒员的评分的各个指标以及总评分进行了配对样本t 检验。

得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异,白葡萄、红葡萄以及整体的评价存在显著性差异。

接着我们建立了数据可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。

首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。

然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。

得到第 2 组的方差明显小于第1 组的,从而得出了第2 组评价数据的可信度更高的结论。

对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。

一方面,我们对酿酒葡萄的一级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27 种葡萄理化指标的综合得分及其排序。

另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27 种葡萄酒质量的综合得分并排序。

最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5 级。

对于问题三,首先我们将众多的葡萄理化指标用主成分分析法综合成 6 个主因子,并将葡萄等级也列为主因子之一。

对葡萄的 6 个主因子,以及葡萄酒的10 个指标用SPSS 软件进行偏相关分析,得到酒黄酮与葡萄的等级正相关性较强等结论。

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

葡萄酒理化指标与质量的评鉴分析摘要用好的葡萄也许酿不出好酒,但没人能用劣质葡萄酿出好酒。

巧妇难为无米之炊,再优秀的酿酒师,如果没有优质的葡萄,也很难酿出好酒。

不同葡萄品种酿制出的葡萄酒是不同的,但是,除了品种间的差异,葡萄自身的质量是酿制高品质葡萄酒的关键。

本文通过建立meansK-聚类模型、典型相关分析等模型,逐步探求用葡萄和葡萄酒的理化指标来评鉴葡萄酒质量的方法。

问题一要求我们分析附件1中两组评酒员的评价结果是否存在显著性差异,为此我们依据小概率原理建立模型Ⅰ-显著性检验模型。

首先我们利用F检验求解两组评酒员之间是否存在显著性差异,再利用配对t检验对检验样本做再次检验,以提高研究效率,确保评价结果的准确性。

利用Excel软件处理数据后,进行t、F的联合检验,当联合检验均被接受,得到两组评酒员的评价结果有显著性差异的结论。

同时通过对两组品酒员对55种葡萄酒样品评分的稳定性、统一性分析,确定第二组品酒员的评价结果更可信。

针对问题二本文根据附件2提供的数据,利用模糊数学原理[3],建立模型ⅢK-聚类模型,对酿酒葡萄进行分类,再以葡萄酒品尝评分作为质量评价依据,means对酿酒葡萄进行分级。

首先,考虑到酿酒葡萄的理化指标过多,不便分类,我们利用多元统计分析原理对红、白酿酒葡萄进行主成分分析,得出红、白酿酒葡萄分别有8个和11个主成分,从而大大减少了分类指标。

再利用meansK-算法求出最佳聚类数k,建立meansK-聚类模型对各种葡萄样品在各个主成分上的得分进行聚类,将红、白葡萄样品分别划分为3类和4类。

最后,根据每个类别中葡萄样品对应的葡萄酒的品尝评分,对各类酿酒葡萄进行分级。

针对问题三建立模型Ⅳ-典型相关分析模型,定量分析酿酒葡萄与葡萄酒的理化指标之间的联系。

我们首先选取酿酒葡萄与葡萄酒皆含有的花色苷、单宁等成分作为理化指标,然后构建典型相关分析模型,研究酿酒葡萄与葡萄酒两组样品的理化指标之间的相关性。

2012年大学生数学建模竞赛A题(优秀论文A题葡萄酒)

2012年大学生数学建模竞赛A题(优秀论文A题葡萄酒)

葡萄酒质量的评价摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。

本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。

首先,采用双因子可重复方差分析方法,对红、白葡萄酒评分结果分别进行检验,利用Matlab软件得到样品酒各个分析结果,结合01-数据分析,发现对于红葡酒有70.3%的评价结果存在显著性差异,对于白葡萄酒只有53%的评价结果存在显著性差异。

通过比较可知,两组评酒员对红葡萄酒的评分结果更具有显著性差异,而对于白葡萄酒的评分,评价差异性较为不明显。

为了评价两组结果的可信度,借助Alpha模型用克伦巴赫α系数衡量,并结合F检验,得出红葡萄酒第一组评酒员的评价结果可信度更高,而对白葡萄酒的品尝评分,第二组评酒员的评价结果可信度更高。

综合来看,主观因素对葡萄酒质量的评价具有不确定性。

结合已分析出的两组品酒师可靠性结果,对葡萄酒的理化指标进行加权平均,最终得出十位品酒师对样品酒的综合评价得分。

将每一样品酒的综合得分与其所对应酿酒葡萄的理化指标(一级指标)共同构成一个数据矩阵,采用聚类分析法,利用SPSS软件对葡萄酒样进行分类,根据分类的结果以及各葡萄样品酒综合得分最终将酿酒葡萄分为A(优质)、B(良好)、C(中等)、D(差)四个等级,客观地反映了酿酒葡萄的理化指标与葡萄酒质量之间的联系。

为了分析酿酒葡萄与葡萄酒理化指标之间的联系,采用相关分析法,能有效地反映出两者间的联系,取与葡萄各成分相关性显著的葡萄酒理化指标,与葡萄成分做多元线性回归得出葡萄酒理化指标与酿酒葡萄的拟合方程,从而反映酿酒葡萄与葡萄酒理化指标之间的联系。

由于已经通过回归分析建立了酿酒葡萄和葡萄酒理化指标之间的关系,因此从酿酒葡萄成分对葡萄酒的理化指标的影响,再研究出葡萄酒理化指标与葡萄酒质量的联系,便可作为一个桥梁,反映出葡萄与葡萄酒理化指标对葡萄酒的质量的作用。

2012全国数学建模论文a题(葡萄酒)省一等奖范文

2012全国数学建模论文a题(葡萄酒)省一等奖范文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):指导组日期:2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):2葡萄酒的评价摘要本文主要根据评酒员对葡萄酒的一系列指标的打分,从而对葡萄酒的质量作出判别。

考虑到酿酒葡萄的好坏、所酿葡萄酒的质量和酿酒工艺、陈酿技术等约束条件,为此我们建立模型来确定影响葡萄酒评价的各种因素。

在这模型中利用excel,spss,matlab等一系列的数学工具对模型进行求解,综合统计分析的应用对所给的结果进行比较,从而得出最终的结果。

首先,对于问题1,分析两组评酒员的评价结果,每个评酒员对外观、口感、香气、平衡/整体四个方面指标得分进行求和,得到其总分,确定葡萄酒的质量。

由于葡萄酒的质量满足正态分布,为了能分辨出两组的差异,所以利用spss进行配对T检验,从而得出两组评酒员有显著的差异。

其次,用excel对两组进行方差分析,根据所得到的P值大小,得出第一组的评价结果更为可信。

对于问题2,在问题1的基础下,根据所给的理化指标和葡萄酒的质量利用spss统计分析软件进行分析,相关性分析对数据进行预备分析,剔除与葡萄酒质量无显著性相关的指标,再利用系统聚类的方法对酿酒葡萄进行分级。

2012年数学建模A题优秀论文

2012年数学建模A题优秀论文

基于数理分析的葡萄评价体系摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。

本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。

对于问题一,我们首先用配对样品t 检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS 软件对两组评酒员的评分的各个指标以及总评分进行了配对样本t 检验。

得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异,白葡萄、红葡萄以及整体的评价存在显著性差异。

接着我们建立了数据可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。

首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。

然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。

得到第 2 组的方差明显小于第1 组的,从而得出了第2 组评价数据的可信度更高的结论。

对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。

一方面,我们对酿酒葡萄的一级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27 种葡萄理化指标的综合得分及其排序。

另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27 种葡萄酒质量的综合得分并排序。

最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5 级。

对于问题三,首先我们将众多的葡萄理化指标用主成分分析法综合成 6 个主因子,并将葡萄等级也列为主因子之一。

对葡萄的 6 个主因子,以及葡萄酒的10 个指标用SPSS 软件进行偏相关分析,得到酒黄酮与葡萄的等级正相关性较强等结论。

2012年全国数学建模大赛 A题葡萄酒的评价

2012年全国数学建模大赛 A题葡萄酒的评价

葡萄酒的评价摘要本文就影响葡萄酒的质量的因素进行了探究。

在问题一中,评酒员间存在评价尺度、评价位置以及评价方向等方面的差异,导致不同评酒员对同一酒样的评价差异很大,于是我们需要探讨两组评酒员的可信度。

对此,我们建立了单元素方差模型对其进行了显著性差异的判断,最后我们得出结论:两组评酒员的评价结果有显著性差异,并且第二组评酒员评价的结果更加可信。

在问题二中,我们首先将大量的数据进行了样本住分析塞选,大大减少了计算量,就红、白葡萄酒前17组样本葡萄酒的分数进行训练,由后十组的理性指标进行检验,也可检验俩个的准确性。

最后我们认为可以给酿酒葡萄分为一、二、三、四四个等级。

在问题三中,因为要讨论酿酒葡萄与葡萄酒的理化指标之间的联系,我们就其两者的重要理化指标进行了探讨,应用了回归模型将其各项重要指标进行了多元拟合处理,最后得出了葡萄酒和酿酒葡萄中的重要指标的等式关系。

在问题四中,我们首先利用了回归原理求得葡萄酒质量与葡萄酒和酿酒葡萄的理化指标之间的等式关系,由等式和图像细致的分析了葡萄酒和酿酒葡萄理化指标对葡萄酒质量的影响。

在一定范围内,理化指标的与葡萄酒的质量呈正相关,达到一定的量后呈现负相关趋势。

关键词:显著性差异判别主成分分析 BP神经网络回归模型1.问题的重述现今社会,随着人们生活水平的提高,人们对葡萄酒的质量要求也越来越高。

在确定葡萄酒质量的时候,一般聘请一批资深的评酒员进行评比,根据不同的指标所得的分数从而求得总分,以此确定葡萄酒的质量。

其中酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

本题给出了3份材料,材料1是某一年份一些葡萄酒的评价结果,材料2和材料3分别给出了该年份这些葡萄酒和酿酒葡萄的成分数据。

我们必须解决以下问题:问题一:分析材料1中两组评酒员的评价结果是否有明显的差异,并且求出哪组评酒员的评价结果更可信。

问题二:根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄的品质进行分级。

2012高教社杯全国大学生数学建模竞赛A题葡萄酒的评价

2012高教社杯全国大学生数学建模竞赛葡萄酒的评价摘要本文以概率论与数理统计的相关知识为理论基础,综合运用正态分布和分级的原理,利用统计分析数据,研究了葡萄酒的评价指标体系,针对 葡萄酒的质量评价问题,建立合理的数学模型用以评价。

问题一:(1) 本问题的葡萄酒质量评价指标(即外观分析中的澄清度、色调,香气分析中的纯正度、浓度、质量,口感分析中的纯正度、浓度、持久度,平衡/整体分析),先对指标归类按顺序,统计并整理出相关的数据,再利用正态分布的思想,假设并验证质量评价指标为正态分布并进行差异性分析,对比找出附件1中两组评酒员的显著差异为:两组评酒员对红葡萄酒的评价结果有显著性差异的是外观分析中的色调、香气分析中的浓度,其他的无显著性差异;两组评酒员对白葡萄酒的评价结果有显著性差异的是口感分析中的纯正度、浓度,持久性、质量和平衡/整体评价,其他的无显著性差异。

(2)本问题要求分析附件1中哪组指标更可信,这就要在问题(1)基础上分析两组指标的可信性,建立可信性分析模型,利用matlab 软件编程计算得(程序见附件4): 1var =0.0735 ,2var =0.0398。

可见21var var ,因此第二组可信性高。

问题二:此问题我们的总体思路是这样的:先根据样品葡萄酒的得分高低对葡萄酒进行分级,并且假设葡萄酒得分越高,那么酿酒葡萄就越好,等级就越高,于是我们利用一些分类模型就可以得到相应酿酒葡萄的级别差。

根据这条思路,我们建立如下一些模型来讨论(见表6、7、8)。

为了充分利用文中的数据,我们把第一组第二组葡萄酒品尝得分合并,这样就得到了一个更大的样本,对结论会更有说服力。

为了能比较客观的对葡萄酒分划分合理的等级,我们需要一种能从总体上正确的反应葡萄酒的评分,这里我们利用已经单位化的综合了所有指标的葡萄酒品尝评分的所得分评价,它们的得分范围理论上包含在[0,1]区间上,实际计算红葡萄的单位化归一化后的评分。

2012年国赛A葡萄酒获奖论文带附录(完整版)

2012年国赛A葡萄酒获奖论文带附录(完整版)2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A 题葡萄酒的评价摘要:确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

一方面由于每个品酒员间存在评价尺度、评价位置和评价方向等方面的差异,导致不同品酒员对同一酒样的评价存在差异,从而不能真实地反映不同酒样间的差异。

另一方面葡萄酒的质量和酿酒葡萄的好坏又有直接的关系,于是根据题中所给的条件和问题提出相关的约束条件和目标函数,建立合理的数学模型。

对于问题一,在分析附件1中所给的数据后,首先根据每组的10名评酒员对其中的一种酒进行品尝后确定葡萄的质量,然后在进行分析评酒员评27种红葡萄酒的差异,最后运用方差分析对两组评酒员的评价结果进行测定,得出两组评酒员存在是否有显著性差异的结果,看其哪组评酒员的技术水平更高些。

问题二是为了对酿酒葡萄进行分级,要从酿酒葡萄的理化指标和葡萄酒的质量进行分级,在附件2、3中,发现酿酒葡萄的成分数据中有很多因素,首先对酿酒葡萄的理化指标经过查找资料、专家咨询进行了较为有效的分类,我们从中选取一些有效因素,例如:氨基酸总量、糖、单宁、色差值、酸、芳香物质等。

然后再采取系统聚类分析法对酿酒葡萄进行分级。

等级大致分为优、良、中、差四个级别。

在解决问题三时,不仅要考虑酿酒葡萄还要考虑葡萄酒的理化指标,因而采用多元回归模型,模型如下:其中,b0为常数项,为回归系数,错误!未找到引用源。

是随机误差。

葡萄酒的鉴定 2012年数模国赛A题论文


关键字 :t 检验
主成分析法
典型相关分析
多元线性回归
1
一、问题重述
1.1 问题的背景 确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。 每个评酒 员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定 葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和 酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件 1 给 出了某一年份一些葡萄酒的评价结果,附件 2 和附件 3 分别给出了该年份这些 葡萄酒和酿酒葡萄的成分数据。 1.2 问题的提出 请尝试建立数学模型讨论下列问题: 1. 分析附件 1 中两组评酒员的评价结果有无显著性差异, 哪一组结果更可信? 2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。 3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。 4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡 萄和葡萄酒的理化指标来评价葡萄酒的质量?
二、基本假设
1、假设所有的数据都是可靠的,不包括人为造成的不合理因素。 2、假设数据中的奇异数据和缺省值忽略后对总体信息不会有显著的影响。 3、评酒师对葡萄酒的质量打分能真实的反映葡萄酒质量的好坏。 4、忽略酿酒葡萄和葡萄酒的色泽对酒样品质量的影响。 5、酿酒葡萄的各理化指标,如蛋白质、氨基酸含量在正常范围内越高越好。
5
我们对附件一中的各个评酒员给各种酒的指标打的分数相加之后, 按照酒的 序号分红葡萄酒、白葡萄酒进行排序,见附件 2. 我们对先对第一组的十个评酒员对白葡萄酒的打分总分的一组数据数据进行处 理,把前面处理的数据输入到 SPSS 中,得到的 Q—Q 图,它的 sig 值为 0.449, 大于 0.05,所以所给数据服从正态分布。

2012年数学建模A题一等奖获奖论文

3
分的差异是否在一定的置信区间内,若不在,则认为评分差异性显著。 考虑到本题的背景,两组评分的差异可体现在对样本酒的排名差异上。由于 该问属于食品评价中的感官评价问题,因此,可结合感官评价中的排序检验与非 参数检验中的符号秩检验,对两组评分的显著性进行评价。 1.1.1 样品秩次和秩和的求解 评酒员对每一个酒样均从四大方面进行了评分。根据题意,葡萄酒的质量由 总分所确定。 因此, 我们将每一个方面的评分加和, 得到 i 品酒员对葡萄酒样品 j 的总评分。 以红葡萄酒的评价为例,对于品酒员 i ,将其对 27 种样品的评分进行排序, 评分最高的酒样秩次为 1,当多个样品有相同秩次时,则取平均秩次。记在 i 品 酒员的评价排序中, j 酒样的秩次为 xij ,可得到秩次矩阵为:
6
秩和得到一个新的排序。由于此排序综合了 20 个评酒员的结果,因此,更能反 应酒样的排序真实性,即认为该综合排序为理想排序。记样品 j 在第一组、第二 组排序内的秩次为 X j (1) , X j (2) ,综合之后排序秩次为 X j 。红葡萄酒三种排序的 比较图如下:
二、问题分析
问题一的分析 问题一中,每个品酒员都要从外观、香气、口感、整体四个大方面对每个酒 样进行评分,可将每个方面的评分相加作为总分确定葡萄酒的质量。问题一涉及 的是葡萄酒感官评价结果的统计检验问题,由于样本量偏小,且葡萄酒质量评分 的分布难以确定,因此,可考虑采取非参数检验的办法。 结合本题的背景,对于问题一中感官评价的问题,可选用排列试验中的排序 检验法对总分进行排序。对于 10 种排序结果,根据每一个排序的秩次求得每个 样品的秩和。最后通过秩和的非参数检验的方法评价有无显著性差异。 要评价哪组的评价结果更可信,主要是检验组内品酒员的评分是否集中,即 比较哪组的方差更小, 亦可以通过该组内所有品酒员与最终得分的差异来确定谁 的可信度更改。 问题二的分析 问题二中,对酿酒葡萄进行分级时,根据题意要将葡萄的理化指标与葡萄酒 的质量统一结合作为参考。 而葡萄酒的质量则是通过问题一中感官评价的得分反 应的。由于理化指标过多,因此在解决本问时,首先应该完成对指标的处理,尤 其是怎样将附表三的芳香物质与附表二中的理化指标结合起来。 由于指标的繁杂,且难以确定指标是偏大型还是偏小型,因此,可考虑将众 多指标数据经过转换,统一成与感官排序一样的排序类型数据,这样,转换后的 指标即可直接用来对葡萄进行分级。 本问的整体思想还是可运用排序检验中的求 秩和的方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

日期: 2012
9 月 10 日
赛区评阅编号(由赛区组委会评阅前进行编号):
2012 高教社杯全国大学生数学建模竞赛
编 号 专 用 页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号
X i (i 1
p)
酿酒葡萄样品指标
xij (i 1 n; j 1
p)
第 i 个酿酒样品的第 j 个指标值
f i (i 1 n) 第 i 个酿酒样品的综合得分
4.3 第三问符号说明:
xi , i 1, 2
酿酒葡萄的各项理化指标; , 27:
yi , i 1, 2
, 6: 葡萄酒的各项理化指标;
Y 1.6377 X 3 0.4619 X 5 1.7985 X 6 0.4359 X 7 ,
对于白葡萄酒,我们得到质量与各指标的关系为:
Y1 1.2346X 4 1.0963X 6 0.2528X 8 0.4396X 9 。
由于两个模型的可信度都不是太高, 不能完全用葡萄和葡萄酒的理化指标来评价 葡萄酒的质量。再加入芳香物质的两个指标后,可信度明显上升,由原来红葡萄 酒的 80.11%、白葡萄酒的 60.70%上升到 96.66%和 72.84%。
关键字 :t 检验
主成分析法
典型相关分析
多元线性回归
1
一、问题重述
1.1 问题的背景 确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。 每个评酒 员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定 葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和 酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件 1 给 出了某一年份一些葡萄酒的评价结果,附件 2 和附件 3 分别给出了该年份这些 葡萄酒和酿酒葡萄的成分数据。 1.2 问题的提出 请尝试建立数学模型讨论下列问题: 1. 分析附件 1 中两组评酒员的评价结果有无显著性差异, 哪一组结果更可信? 2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。 3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。 4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡 萄和葡萄酒的理化指标来评价葡萄酒的质量?
葡萄酒的评价探讨
摘要
本文分析了两组评酒员评价结果的差异性和结果的可信度, 根据酿酒葡萄的 理化指标和葡萄酒的质量对酿酒葡萄进行了分级, 研究了酿酒葡萄与葡萄酒的理 化指标之间的联系以及酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。 对于问题一,对两组评酒员对葡萄酒的打分进行 f 检验和双总体 t 检验, 得 到两组评酒员对葡萄酒的评价都无显著差异的结论。 比较两组评酒员对葡萄酒打 分的平均方差, 第一组的方差明显大于第二组, 得到第二组评酒员的结果更可信 的结论。 对于问题二,我们首先运用主成分析法对酿酒葡萄的理化进行指标分析, 选 取主成分,并把主成分按方差贡献率加权求和,得到各酿酒葡萄的得分。再根据 评酒师对葡萄酒的打分得到其对应的酿酒葡萄的得分。最后, 根据这两个得分用 聚类分析法分别得出了红葡萄和白葡萄的质量的等级分类。 对于问题三,采用典型相关分析,讨论酿酒葡萄的理化指标与葡萄酒的理 化指标间的关系。 首先用利用 matlab7.0 软件, 使用典型相关分析的原理和方法, 得到 27 种酒样品的酿酒葡萄和葡萄酒综合指标的典型相关系数、综合指标与各 理化指标的相关系数。 利用综合指标变量与各理化指标变量的函数关系式,找出 其中系数较大的酿酒葡萄理化指标变量 x 和系数较大的葡萄酒理化指标变量 y , 从而得到 x 与 y 代表的指标变量间的相关性。 对于第四问, 选择酿酒葡萄的得分以及葡萄酒的理化指标 (包括花色苷含量、 丹宁含量、总分含量、酒总黄酮含量、白藜芦醇、DPPH 半抑制体积)这七个影 响因素为自变量, 葡萄酒的质量得分为因变量,用 matlab7.0 软件进行多元线性 回归分析。对于红葡萄酒,我们得到质量与各指标之间的关系为:
3
的理化指标与酿酒葡萄的质量之间的关系时, 由于酿酒葡萄的理化指标过多, 数 据量过大,我们采用了主成分析法分析酿酒葡萄的理化指标,选取主成分,并把 主成分按方差贡献率加权求和, 得出各酿酒葡萄的得分指数。 再根据葡萄酒的质 量得出对应的酿酒葡萄的质量得分。 最后将这两个因素综合考虑用聚类分析法进 行对酿酒葡萄进行分级处理。 问题三分析酿酒葡萄与葡萄酒的两组理化指标之间的联系, “联系”仅仅是 一个宽泛的概念, 因此在实际生活中需要将联系转化为有参考价值的数据时,往 往需要利用数学建模的方法对其进行定性与定量的分析。 通常在我们研究变量间 联系时,一般采用一元统计分析、复相关系数统计、典型相关分析。在一元统计 分析中, 用相关系数来衡量两个随机变量之间的线性相关关系; 用复相关系数统 计一个随机变量和多个随机变量的线性或非线性关系。然而, 这些统计方法在研 究两组变量之间的相关关系时却无能为力。 为此, 我们在研究两组变量之间的相 关关系时引入了典型相关分析. 问题四中, 评价葡萄酒的质量影响因素多种多样, 自变量的选择应该从全面 性、重点性、可量化及可控制的原则出发,尽可能包含有效变量、不包含无效变 量。 我们考虑其主要因素有酿酒葡萄得分以及葡萄酒的理化指标 (包括花色苷含 量、丹宁含量、总分含量、酒总黄酮含量、白藜芦醇、DPPH 半抑制体积)。我 们选择这七个影响因素为自变量, 葡萄酒的质量得分为因变量进行多元线性回归 分析。
5
我们对附件一中的各个评酒员给各种酒的指标打的分数相加之后, 按照酒的 序号分红葡萄酒、白葡萄酒进行排序,见附件 2. 我们对先对第一组的十个评酒员对白葡萄酒的打分总分的一组数据数据进行处 理,把前面处理的数据输入到 SPSS 中,得到的 Q—Q 图,它的 sig 值为 0.449, 大于 0.05,所以所给数据服从正态分布。
五、模型的建立与求解
5.1 问题一的模型建立与求解 5.1.1 评判的方法 双总体 t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显 著。双总体 t 检验又分为两种情况,一是相关样本平均数差异的显著性检验,用 于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据 的差异性, 这两种情况组成的样本即为相关样本。 二是独立样本平均数的显著性 检验。各实验处理组之间毫无相关存在,即为独立样本。该检验用于检验两组非 相关样本被试所获得的数据的差异性。 我们即使用独立样本平均数的显著性检验 方法,但是对方法做了一些修改。我们的样本和总体是相同的,直接对总体的显 著性进行检验。 (1)正态分布的检验 在 SPSS 中用 Q—Q 图对所拥有的数据进行正态分布检验 正态分布的 Q-Q 图:在 spss 里的基本统计分析功能里的探索性分析里面可 以通过观察数据的 q-q 图来判断数据是否服从正态分布。 图的横坐标为改变量的 观测值,纵坐标为分位数。若该组数据服从正态分布,则图中的点应该靠近图中 直线。纵坐标为分位数,是根据分布函数公式 F(x)=i/n+1 得出的.i 为把一组数 从小到大排序后第 i 个数据的位置,n 为样本容量。若该数组服从正态分布则其 q-q 图应该与理论的 q-q 图(也就是图中的直线)基本符合。对于理论的标准正 态分布,其 q-q 图为 y=x 直线。非标准正态分布的斜率为样本标准差,截距为样 本均值。同时在 SPSS 软件处理过程中,如果 sig 的值大于 0.05,也说明所给的 数据服从正态分布 (2)方差齐性检验
三、符号说明
4.1 第一问符号说明:
i2 :第 i 组评酒员对葡萄酒打分的方差;
i :评酒员对葡萄酒打分的平均得分;
:相关样本的相关系数;
df :自由度;
t(n-1) 0.05 :自由度为 n-1 的 p=0.05 的临界值;
2
4.2 第二问符号说明:
n :酿酒葡萄样品数 p : 酿酒葡萄样品指标数
二、基本假设
1、假设所有的数据都是可靠的,不包括人为造成的不合理因素。 2、假设数据中的奇异数据和缺省值忽略后对总体信息不会有显著的影响。 3、评酒师对葡萄酒的质量打分能真实的反映葡萄酒质量的好坏。 4、忽略酿酒葡萄和葡萄酒的色泽对酒样品质量的影响。 5、酿酒葡萄的各理化指标,如蛋白质、氨基酸含量在正常范围内越高越好。
4
独立小样本是指两个样本容量 n1 和 n2 都小于 30,或者其中一个小于 30 的 两独立样本。在做双总体 t 检验之前要对两组数据进行方差齐性检验。方差齐性 检验是进行假设性检验的前提, 方差齐性检验是对两样本方差是否相同进行的检 验。 假设: 方差齐性检验公式: , 分子值大于分母值 计算出 F 的值与 F 临界值比较,对总体方差齐性与否做出判断。推断规则: 当 F 的检验结果 F 的实际值小于各自由度水平上的临界值时,则方差齐性,可继 续做独立小样本差异显著性检验。 (3)双总体 t 检验 我们分析数据之后,由于我们既要考虑比零假设好的一方面, 也要考虑比零 假设差的一方面,所以我们选择双侧检验。 零假设: ; ;
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写) : 我们的参赛报名号为(如果赛区设置报名号的话) : 所属学校(请填写完整的全名) : 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名) : 重庆邮电大学 王永强 韩双双 厚玉伟 刘平 年
A 02013
备择假设: 双总体 t 检验公式:

t
X1 X 2
2 2 X X 2 X X
1 2 1 2
n 1
在这里, X 1 , X 2 分别为两样本平均数;
2 2 X , X 分别为两样本方差;
1 2
为相关样本的相关系数,因为数据是相互独立的所以 为 0。
(4)判断 根据自由度 df=n-1 的值,查 t 值表 t(n-1) 0.05 的值,如果实际计算出来的 t 值 t < t(n-1) 0.05 则接受零假设,拒绝备择假设。否则则拒绝零假设,接受备择 假设。 5.1.2 数据处理与结论 (1)对正态分布的检验
相关文档
最新文档