第十课判别式与韦达定理
(人教版初中数学)韦达定理

判别式与韦达定理〖知识点〗一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理 〖大纲要求〗1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况.对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围;2.掌握韦达定理及其简单的应用;3.会在实数范围内把二次三项式分解因式;4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题. 内容分析1.一元二次方程的根的判别式一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.2.一元二次方程的根与系数的关系(1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,ac x x =21(2)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P,x 1x 2=q(3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0.3.二次三项式的因式分解(公式法)在分解二次三项式ax 2+bx+c 的因式时,如果可用公式求出方程ax 2+bx+c=0的两个根是x 1,x 2,那么ax 2+bx+c=a(x-x 1)(x-x 2).〖考查重点与常见题型〗1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如:关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如:设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )(A )15 (B )12 (C )6 (D )33.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题.在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力.考查题型1.关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定2.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )(A )15 (B )12 (C )6 (D )33.下列方程中,有两个相等的实数根的是( )(A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2-2 6 x+1=04.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是( )(A ) y 2+5y -6=0 (B )y 2+5y +6=0 (C )y 2-5y +6=0 (D )y 2-5y -6=05.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,那么x 1·x 2等于( )(A )2 (B )-2 (C )1 (D )-16.如果一元二次方程x 2+4x +k 2=0有两个相等的实数根,那么k =7.如果关于x 的方程2x 2-(4k+1)x +2 k 2-1=0有两个不相等的实数根,那么k 的取值范围是8.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=9.若关于x 的方程(m 2-2)x 2-(m -2)x +1=0的两个根互为倒数,则m =二、考点训练:1、 不解方程,判别下列方程根的情况:(1)x 2-x=5 (2)9x 2-6 2 +2=0 (3)x 2-x+2=02、 当m= 时,方程x 2+mx+4=0有两个相等的实数根;当m= 时,方程mx 2+4x+1=0有两个不相等的实数根;3、 已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m= ,这时方程的另一个根是 ;若两根之和为-35,则m= ,这时方程的两个根为 . 4、 已知3- 2 是方程x 2+mx+7=0的一个根,求另一个根及m 的值.5、 求证:方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根.6、 求作一个一元二次方程使它的两根分别是1- 5 和1+ 5 .7、 设x 1,x 2是方程2x 2+4x -3=0的两根,利用根与系数关系求下列各式的值:(1) (x 1+1)(x 2+1) (2)x 2x 1 + x 1x 2(3)x 12+ x 1x 2+2 x 1 解题指导1、 如果x 2-2(m+1)x+m 2+5是一个完全平方式,则m= ;2、 方程2x(mx -4)=x 2-6没有实数根,则最小的整数m= ;3、 已知方程2(x -1)(x -3m)=x(m -4)两根的和与两根的积相等,则m= ;4、 设关于x 的方程x 2-6x+k=0的两根是m 和n,且3m+2n=20,则k 值为 ;5、 设方程4x 2-7x+3=0的两根为x 1,x 2,不解方程,求下列各式的值:(1) x 12+x 22 (2)x 1-x 2 (3)x1 +x2 *(4)x 1x 22+12x 1 *6.实数s、t分别满足方程19s2+99s+1=0和且19+99t+t2=0求代数式st+4s+1t的值. 7.已知a 是实数,且方程x 2+2ax+1=0有两个不相等的实根,试判别方程x 2+2ax+1-12(a 2x 2-a 2-1)=0有无实根?8.求证:不论k 为何实数,关于x 的式子(x -1)(x -2)-k 2都可以分解成两个一次因式的积.9.实数K 在什么范围取值时,方程kx2+2(k-1)x-(K -1)=0有实数正根?独立训练(一)1、 不解方程,请判别下列方程根的情况;(1)2t 2+3t -4=0, ; (2)16x 2+9=24x, ;(3)5(u 2+1)-7u=0, ;2、 若方程x 2-(2m -1)x+m 2+1=0有实数根,则m 的取值范围是 ;3、 一元二次方程x 2+px+q=0两个根分别是2+ 3 和2- 3 ,则p= ,q= ;4、 已知方程3x 2-19x+m=0的一个根是1,那么它的另一个根是 ,m= ;5、 若方程x 2+mx -1=0的两个实数根互为相反数,那么m 的值是 ;6、 m,n 是关于x 的方程x 2-(2m-1)x+m 2+1=0的两个实数根,则代数式m n = .7、 已知关于x 的方程x 2-(k+1)x+k+2=0的两根的平方和等于6,求k 的值;8、 如果α和β是方程2x 2+3x -1=0的两个根,利用根与系数关系,求作一个一元二次方程,使它的两个根分别等于α+1 β 和β+1 α; 9、 已知a,b,c 是三角形的三边长,且方程(a 2+b 2+c 2)x 2+2(a+b+c)x+3=0有两个相等的实数根,求证:这个三角形是正三角形10.取什么实数时,二次三项式2x 2-(4k+1)x+2k 2-1可因式分解.11.已知关于X 的一元二次方程m2x2+2(3-m)x+1=0的两实数根为α,β,若s=1 α+1 β,求s的取值范围. 独立训练(二)1、 已知方程x 2-3x+1=0的两个根为α,β,则α+β= , αβ= ;2、 如果关于x 的方程x 2-4x+m=0与x 2-x -2m=0有一个根相同,则m 的值为 ;3、 已知方程2x 2-3x+k=0的两根之差为212,则k= ; 4、 若方程x 2+(a 2-2)x -3=0的两根是1和-3,则a= ;5、 方程4x 2-2(a-b)x -ab=0的根的判别式的值是 ;6、 若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值为 ;7、 已知p<0,q<0,则一元二次方程x 2+px+q=0的根的情况是 ;8、 以方程x 2-3x -1=0的两个根的平方为根的一元二次方程是 ;9、 设x 1,x 2是方程2x 2-6x+3=0的两个根,求下列各式的值:(1)x 12x 2+x 1x 22 (2) 1x 1 -1x 210.m 取什么值时,方程2x 2-(4m+1)x+2m 2-1=0(1) 有两个不相等的实数根,(2)有两个相等的实数根,(3)没有实数根;11.设方程x 2+px+q=0两根之比为1:2,根的判别式Δ=1,求p,q 的值.12.是否存在实数k,使关于x的方程9x 2-(4k-7)x -6k2=0的两个实根x 1,x 2,满足|x 1 x 2|=32 ,如果存在,试求出所有满足条件的k的值,如果不存在,请说明理由.。
判别式与韦达定理

判别式与韦达定理一、基本知识:1、一元二次方程的根的判别式一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根, 当△<0时,方程没有实数根. 2、一元二次方程的根与系数的关系(1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,ac x x =21(2)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=qx 1x 2=q(3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0.x 2-(x 1+x 2)x+x 1x 2=0.二、例题讲解:例1 已知关于x 的一元二次方程0221222=-+-k kx x , (1)求证:不论k 为何值,方程总有两个不相等的实数根;(2)设21、x x 是方程的两根,且52221121=+-x x kx x ,求k 之值。
例 2 已知关于x 的方程07442=++b bx x 有两个相等的实数根,21、yy 是关于y 的方程04)2(2=+-+y b y 的两个根,求以21y 、y 为根的一元二次方程。
例3 已知△ABC 的两边长a=3,c=5,且第三边长b 为关于x 的一元二次方程042=+-m x x 的两个正整数根之一,求证△ABC 为直角三角形。
例4 已知关于x 的一元二次方程01222=--+p px x 的两个实数根为1x 和2x 。
(1)若此方程的两根之和不大于两根之积,求p 之值;(2)若p=-1,求2223122x x x ++之值。
例5 若关于x 的方程012=++kx x 的一个根是32+,则方程的另一根是多少?k 值是多少?例6 已知方程012=--x x 的两个实数根为21,x x ,求:(1)2221x x +2111)2(x x + (3)21x x -)1)(1)(4(21--x x三、典型练习:(一)、选择题:1.方程022=+-m x x 的一个根是31+,则另一根和m 的值依次是( ) A . 13-和2B. 31-和2C. 31-和-2D. 13-和-22.设21、x x 是方程01322=--x x 的两根,则2111x x +的值是( ) A . 3B. -3C. 23D. 23-3.以数52+和52-为两根的一元二次方程是( ) A . 0142=-+x x B. 0142=--x x C. 0142=++x xD. 0142=+-x x4.已知方程05107,05207,05107,052072222=-+=-+=++=++x x x x x x x x 中,两根均为负数的方程的个数为( )A . 1 B. 2 C. 3 D. 45、设二次方程02=++q px x 的两个实数根恰为p 、q ,则pq 的值是( )A. 0B. -2C. 0或-2D. 非上述答案(二)、填空题:1.若方程0522=+-k x x 的两根之比是2:3,则k= 。
一元二次方程根的判别式与韦达定理

于是,上述方程两个根的和、积与系数的关系分别有如下关系:
x1+x2=-p,x1x2=q
例1
(1)已知关于x的一元二次方程x2Байду номын сангаас2x+m=0有解,求m的范围.
(2)己知关于x的一元二次方程x2- x-m=0有两个不相等实数根,求m的取值范围.
(3)求证:关于x的一元二次方程ax2-(3a+l)x+2(a+l)=0(a≠0)总有实数根
(4)已知关于x的方程ax2-(3a+l)x+2(a+l)=0有两个不相等的实数根,求a的取值范围
(2)己知:a、b、c分别是△ABC的三边长,
求证:关于x的方程b2x2+(b2+c2一a2)x+c2=0没有实数根.
练习
己知△ABC三边a,b,c,关于x的方程(a+c)x2+2bx-a+c=0,x2+2ax+b2=0均有两个相等的实数根,试判断△ABC的形状.
模块二一元二次方程根与系数关系
知识导航:
练习
(1)方程x2—2x-1=0的两个实数根分别为x1、x2,(x1-l)(x2-1)=______________
cz,设x1、x2是方程2x2—6x+l=o的两个实数根,则(x1- )(x2- )的值为__________
【总结】
1、用韦达定理,常见的恒等变形有:
+ = ,x12+x22=(x1+x2)2-2x1x2,(x1-x2)2=(x1+x2)2-4x1x2
(2)一元二次方程x2—4x-c=0的一个根是3,则另一个根是____,c=___________
一元二次方程的判别式、韦达定理应用举例

一元二次方程的判别式、韦达定理应用举例抛物线
1. 判别式:
判别式是用来判别一元二次方程的根(解)是实根、重根还是无解的
一个实用公式,它是欧拉定理的重要应用。
判别式的表达式为:D=b²-4ac。
其中a、b、c分别为一元二次方程中的系数:ax²+bx+c=0。
2. 韦达定理应用举例:
韦达定理是欧几里得几何中的重要定理,可以用来证明几何图形的线
段关系。
举例说明:
假设有ABC三角形,设三点的坐标分别为A(2,3),B(-1,-4),C(1,-1),根据韦达定理可得:
d(AB)² + d(BC)² =d(AC)²
即求出d(AB)² + d(BC)² 与d(AC)²的值,如果相等,证明该三角形
是等腰的。
3. 抛物线:
抛物线是第二次多项式函数的一类,表达式为:y=ax²+bx+c,其中a、b、c分别为常数,x为变量。
抛物线的性质:当a>0时,抛物线是一条开
口向上的“U”形线,当a<0时,抛物线是一条开口向下的“∩”形线。
精品 九年级数学上册 一元二次方程判别式和韦达定理

6
13. 已知方程 x2 + 2( m – 3 )x + m2 – 7m – n + 12 = 0 有两个相等的实数根, 且 m、 n 满足 2m – n = 0. (1)求 m、n 的值, (2)证明方程 ( -m + n )x2 + nkx + 2k – ( m + n ) = 0 有两个不相等的实数根.
B.有两个相等的实数根 D.根的情况无法判断 ).
练习 2.关于 x 的方程 (a 6) x 2 8 x 6 0 有实数根,则整数 a 的最大值( A.6 B.7 C.8 D.9
练习3.已知关于x的方程x 2 (3k 1) x 2k 2 2k 0. (1)求证 : 无论k 取何实数值, 方程总有实数根; (2)若等腰三角形ABC的一边长a 6,, 另两边b, c恰好是这个方程的两个根, 求此三角形的周长.
y2 4y 4 0
4.若关于 x 的方程 2 x 2 m 2 x 3m 5 0 的两个根互为负倒数,则 m 的值是 ( ) A. 4
[巩固练习]
1.以 3 和-2 为根的一元二次方程是( A. x 2 x 6 0 B. x 2 x 6 0 ) C. x 2 x 6 0 D.
x2 x 6 0
2.已知α,β满足α+β=5 且αβ=6,以α,β为两根的一元二次方程是( A. x 2 5x 6 0 B. x 2 5x 6 0 C. x 2 5x 6 0 ) D.
1 x1 + x2 = ,则 x1 · x2 = 3
。
2
类题练习: ( 1 ) 若 x1 、 x 2 是 方 程 x 2 x m 0 的 两 个 根 , 且
根的判别式与韦达定理

根的判别式与韦达定理教学目的:(1)通过教学A 组同学能掌握韦达定理与根的判别式的简单应用;(2)通过教学B 或C 组同学能掌握韦达定理与根的判别式的综合应用; 教学重点与难点:韦达定理与根的判别式的综合应用; 教学过程:一、知识点复习:1、根的判别式:△=b 2-4ac :⎪⎩⎪⎨⎧⇔〈-=∆⇔=-=∆⇔〉-=∆方程没有实数根时根方程有两个相等的实数时数根方程有两个不相等的实时040404222ac b ac b ac b 2、韦达定理:一元二次方程的一般式:ax 2+bx+c=0有两个实数根x 1、x 2,则有x 1+x 2=-b/a ,x 1·x 2=c/a ; 应用:(1)求值应用:x 12+x 22=-(x 1+x 2)2-2x 1x 2,(x 1-x 2)2=(x 1+x 2)2-4x 1x 2, x 13+x 23=-(x 1+x 2)3-3x 1x 2(x 1+x 2),()()21221221214x x x x x x x x -+=-=-,21212111x x x x x x +=+,()222121221222122212221211x x x x x x x x x x x x -+=+=+,()2121221212x x x x x x x x ++=+=+,(x 1+k )(x 2+k )=x 1x 2+(x 1+x 2)+k 2,()212122121222112212x x x x x x x x x x x x x x ++=+=+, (2)求字母系的值;(此时要验证方程有没有实数根)(3)求作新方程:以x 1、x 2为根的一元二次方程为x 2+(x 1+x 2)x+x 1x 2=0; (4)解方程组:⎩⎨⎧==+bxy ay x 则能够把x 、y 看作是一元二次方程z 2-az+b=0的两根;(5)确定根的符号:若则方程有两个正根⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆〉=〉-=+0002121a c x x a b x x 若x 1·x 2=c/a <0,则方程两根符号相反;若则方程有两个负根⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆〉=〈-=+0002121a c x x ab x x3、注意点:(1) 方程有实数根时,要看一看是否是一元二次方程,否则要分两种情况考虑;若是一元二次方程还不能忘记考虑二次项系数不能为0;(2) 在求字母系数的值时水要忘记检验一元二次方有没有实数根; 二、双基训练:(A 组同学做练习1-6)1、 关于x 的方程4x 2+kx -6=0的一个根是否,另一根是x 1,则k=;x 1=;2、 关于x 的一元二次方程x 2-ax -3=0的根的情况是;3、 以2和-3为根的一元二次方程为;4、 若x 1、x 2是方程x 2+3x -1=0的两个根,则(x 1+x 2)2=;5、 若方程x 2-2x+k=0的两个根的倒数和为8/3,则k=;6、 若x 1、x 2是方程x 2+3x -1=0的两个根,则x 1+x 2=;x 1·x 2=;方程x 2-1-3x=0的两根之和等于;两根之积等于;7、 若x 1,x 2是方程x 2+3x -5=0的两个根,则(x 1+1)(x 2+1)的值为;8、 已知a,b 是方程x 2+2x -5=0的两个根,则a 2+ab+2a 的值为 ;9、 如果a,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b+ab 2+b 3的值等于;10、关于x 的一元二次方程(k 2-1)x 2+(2k -1)x+1=0有两个不相等的实数根,那么k的取值范围是 ;11、已知关于x 的一元二次方程0112)21(2=-+--x k x k 有两个不相等的实数根,则k 的取值范围为;12、已知实数x 1,x 2是满足x 12-6x 1+2=0和x 22-6x 2+2=0,那么2112x x x x +的值是 ; 13、已知关于x 的方程x 2-2(m -2)x+m 2=0问:是否存在实数m ,使方程的两个实数根的平方和等于56,若存在,求出m 的值;若不存在,请说明理由。
根的判别式与韦达定理

一元二次方程根的判别式和韦达定理一、根的判别式21.4022.02043.,22ac b b ac b x x a a ⎧⎪≠-∆⎪⎪∆>⎧⎪⎪⎪∆=⎨⎨⎪⎪∆<⎩⎪⎪-±--±∆⎪==⎪⎩22概念:对于一个一元二次方程ax +bx+c=0(a 0)来说,b 称为根的判别式,记为。
时,方程有个不相等的根根的判别式意义:时,方程有个相等的根时,方程没有实数根公式法:解为即为 【典型例题】1.当m 取什么值时,关于x 的方程0)22()12(222=++++m x m x 。
(1)有两个相等实根;(2)有两个不相等的实根; (3)没有实根。
2.当m 为什么值时,关于x 的方程01)1(2)4(22=+++-x m x m 有实根。
3.已知关于x 的方程01)12(22=+-+x k x k 有两个不相等的实数根1x 、2x ,问是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由。
【课堂练习】一、填空题:1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中,无实根的方程是 。
2、已知关于x 的方程022=+-mx x 有两个相等的实数根,那么m 的值是 。
二、选择题:1、下列方程中,无实数根的是( )A 、011=-+-x xB 、 762=+yy C 、021=++x D 、0232=+-x x 2、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实根,则m 的取值范围是( )A 、43<mB 、m ≤43C 、43>m 且m ≠2D 、m ≥43且m ≠2 3、在方程02=++c bx ax (a ≠0)中,若a 与c 异号,则方程( )A 、有两个不等实根B 、有两个相等实根C 、没有实根D 、无法确定一、试证:关于x 的方程1)2(2-=+-x m mx 必有实根。
初中数学知识点总结:判别式法与韦达定理

初中数学知识点总结:判别式法与韦达定理导读:数学,尤其是初中数学,就是一个梦魇,仿佛只是底下头捡了一只笔就错了一个世纪,再也听不懂数学课了。
为了解决尔等数学渣的苦恼,下面本店铺末宝介绍的9个方法贯穿了整个初中乃至高中数学,同学们务必要掌握哦!1、配方法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10课 判别式与韦达定理
〖知识点〗
一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理 〖大纲要求〗
1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况。
对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围;
2.掌握韦达定理及其简单的应用;
3.会在实数范围内把二次三项式分解因式;
4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题。
内容分析
1.一元二次方程的根的判别式
一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac
当△>0时,方程有两个不相等的实数根;
当△=0时,方程有两个相等的实数根,
当△<0时,方程没有实数根.
2.一元二次方程的根与系数的关系
(1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,a
c x x =21 (2)如果方程x 2
+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=q
x 1x 2=q
(3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0.
x 2-(x 1+x 2)x+x 1x 2=0.
3.二次三项式的因式分解(公式法)
在分解二次三项式ax 2+bx+c 的因式时,如果可用公式求出方程ax 2+bx+c=0的两个根是
x 1,x 2,那么ax 2+bx+c=a(x-x 1)(x-x 2).
〖考查重点与常见题型〗
1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如:
关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( )
(A )有两个相等的实数根 (B )有两个不相等的实数根
(C )没有实数根 (D )不能确定
2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如:
设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )
(A )15 (B )12 (C )6 (D )3
3.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题。
在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力。
考查题型
1.关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( )
(A )有两个相等的实数根 (B )有两个不相等的实数根
(C )没有实数根 (D )不能确定
2.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )
(A )15 (B )12 (C )6 (D )3
3.下列方程中,有两个相等的实数根的是( )
(A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2
-2 6 x+1=0
4.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是( )
(A ) y 2+5y -6=0 (B )y 2+5y +6=0 (C )y 2-5y +6=0 (D )y 2-5y -6=0
5.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,
那么x 1·x 2等于( )
(A )2 (B )-2 (C )1 (D )-1
6.如果一元二次方程x 2+4x +k 2=0有两个相等的实数根,那么k =
7.如果关于x 的方程2x 2-(4k+1)x +2 k 2-1=0有两个不相等的实数根,那么k 的取值范围
是
8.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)
2=
9.若关于x 的方程(m 2-2)x 2-(m -2)x +1=0的两个根互为倒数,则m =
二、考点训练:
1、 不解方程,判别下列方程根的情况:
(1)x 2-x=5 (2)9x 2-6 2 +2=0 (3)x 2-x+2=0
2、 当m= 时,方程x 2+mx+4=0有两个相等的实数根;
当m= 时,方程mx 2+4x+1=0有两个不相等的实数根;
3、 已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m= ,这时方程的另
一个根是 ;若两根之和为-35
,则m= ,这时方程的两个根为 . 4、 已知3- 2 是方程x 2+mx+7=0的一个根,求另一个根及m 的值。
5、 求证:方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。
6、 求作一个一元二次方程使它的两根分别是1- 5 和1+ 5 。
7、 设x 1,x 2是方程2x 2+4x -3=0的两根,利用根与系数关系求下列各式的值:
(1) (x 1+1)(x 2+1) (2)x 2x 1 + x 1x 2
(3)x 12+ x 1x 2+2 x 1 解题指导
1、 如果x 2-2(m+1)x+m 2+5是一个完全平方式,则m= ;
2、 方程2x(mx -4)=x 2-6没有实数根,则最小的整数m= ;
3、 已知方程2(x -1)(x -3m)=x(m -4)两根的和与两根的积相等,则m= ;
4、 设关于x 的方程x 2-6x+k=0的两根是m 和n ,且3m+2n=20,则k 值为 ;
5、 设方程4x 2-7x+3=0的两根为x 1,x 2,不解方程,求下列各式的值:
(1) x 12+x 22 (2)x 1-x 2 (3)x1 +x2 *(4)x 1x 22+12
x 1 *6.实数s、t分别满足方程19s2+99s+1=0和且19+99t+t2=0求代数式
st+4s+1t
的值。
7.已知a 是实数,且方程x 2+2ax+1=0有两个不相等的实根,试判别方程x 2+2ax+1-12 (a 2x 2-
a 2-1)=0有无实根?
8.求证:不论k 为何实数,关于x 的式子(x -1)(x -2)-k 2都可以分解成两个一次因式的积。
9.实数K 在什么范围取值时,方程kx2+2(k-1)x-(K -1)=0有实数正根?
独立训练(一)
1、 不解方程,请判别下列方程根的情况;
(1)2t 2+3t -4=0, ; (2)16x 2+9=24x, ;
(3)5(u 2+1)-7u=0, ;
2、 若方程x 2-(2m -1)x+m 2+1=0有实数根,则m 的取值范围是 ;
3、 一元二次方程x 2+px+q=0两个根分别是2+ 3 和2- 3 ,则p= ,q= ;
4、 已知方程3x 2-19x+m=0的一个根是1,那么它的另一个根是 ,m= ;
5、 若方程x 2+mx -1=0的两个实数根互为相反数,那么m 的值是 ;
6、 m,n 是关于x 的方程x 2-(2m-1)x+m 2+1=0的两个实数根,则代数式m n = 。
7、 已知关于x 的方程x 2-(k+1)x+k+2=0的两根的平方和等于6,求k 的值;
8、 如果α和β是方程2x 2+3x -1=0的两个根,利用根与系数关系,求作一个一元二次方程,
使它的两个根分别等于α+1 β 和β+1 α
; 9、 已知a,b,c 是三角形的三边长,且方程(a 2+b 2+c 2)x 2+2(a+b+c)x+3=0有两个相等的实数根,
求证:这个三角形是正三角形
10.取什么实数时,二次三项式2x 2-(4k+1)x+2k 2-1可因式分解.
11.已知关于X 的一元二次方程m2x2+2(3-m)x+1=0的两实数根为α,β,若s=1 α
+1 β
,求s的取值范围。
独立训练(二)
1、 已知方程x 2-3x+1=0的两个根为α,β,则α+β= , αβ= ;
2、 如果关于x 的方程x 2-4x+m=0与x 2-x -2m=0有一个根相同,则m 的值为 ;
3、 已知方程2x 2-3x+k=0的两根之差为212
,则k= ; 4、 若方程x 2+(a 2-2)x -3=0的两根是1和-3,则a= ;
5、 方程4x 2-2(a-b)x -ab=0的根的判别式的值是 ;
6、 若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值
为 ;
7、 已知p<0,q<0,则一元二次方程x 2+px+q=0的根的情况是 ;
8、 以方程x 2-3x -1=0的两个根的平方为根的一元二次方程是 ;
9、 设x 1,x 2是方程2x 2-6x+3=0的两个根,求下列各式的值:
(1)x 12x 2+x 1x 22 (2) 1x 1 -1x 2
10.m 取什么值时,方程2x 2-(4m+1)x+2m 2-1=0
(1) 有两个不相等的实数根,(2)有两个相等的实数根,(3)没有实数根;
11.设方程x 2+px+q=0两根之比为1:2,根的判别式Δ=1,求p,q 的值。
12.是否存在实数k,使关于x的方程9x 2-(4k-7)x -6k2=0的两个实根x 1,x 2,满足|x 1 x 2
|=32 ,如果存在,试求出所有满足条件的k的值,如果不存在,请说明理由。