第一章 函数极限与连续答案
第一章函数、极限与连续习题答案

第一章函数、极限与连续习题答案第一章函数、极限与连续1 .若」t =t 31,贝U 「t 3 1 =( D )A. t 3 1B. t 62 C. t 92 D. t 9 3t 6 3t 322.设函数 f x = In 3x ? 1 ? i 5 - 2x ? arcsin x 的定义域是(C )3.下列函数f x 与g x 相等的是(A )4.下列函数中为奇函数的是(A )2x x八sin xf-c 2—22 ?A . y2B . y - xe x Csin xD . y = x cosx xsin xx25 .若函数 fx l=x , - 2:;x :::2,则 f x-1 的值域为(B )A . 0,2B . 0,3C . 0,21D . 0,316 .函数y =10x4 -2的反函数是(D)xA . y =igB . log x 2 x —2C .1y =Iog 2_D . y =1 lg x 2xa XX 是有理数 7.设函数%是无理数°<a< p="">",则(B )1 5 3,2C .-1,1 3D . -1,1A . f x = x 2 , g x - x 4—2B . fx=x , gx= xC . x -1f X gx 「X 1x2=(A )C. 0A .当X r J 时,f x 是无穷大B .当x - 工:时,f x 是无穷小C .当X r -■时,f x 是无穷大D .当x —. -■时,f x 是无穷小f x 在点X 。
连续的(10.若函数f x 在某点X 。
极限存在,则(C )f x 在X o 的函数值必存在且等于极限值8 .设f x 在R 上有定义,函数f x 在点X 。
左、右极限都存在且相等是函数A .充分条件B .充分且必要条件C .必要条件D .非充分也非必要条件x 2 a,cos x,x —1在R 上连续,则a 的值为(D ) x ::: 1C . -1D . -2B . f x 在X o 函数值必存在,但不一定等于极限值C . f X 在X o 的函数值可以不存在D . 如果f X o 存在的话, 11.数列0,3,2, A .以0为极限4,…是(B )B. 以1为极限C .以口为极限n2 . lim xsin ( CxD .不存在在极限B .不存在C . 1D . 019. lim xln x =0 __________ 。
专升本高数第一章极限与连续

金融领域
连续复利在金融领域中有着广泛 的应用,如债券、股票、基金等 投资产品的价值计算。
100%
保险领域
在保险领域中,连续复利可以用 于计算保险产品的未来价值,帮 助客户了解保险合同未来的收益 情况。
80%
养老金领域
在养老金领域中,连续复利可以 用于计算个人养老金账户的未来 价值,帮助个人了解自己退休后 的养老金收益情况。
极值的计算
对于可导的函数,其一阶导数为0的点可能是极值点。然后通过判断二阶导数的正负来判断是极大值还是极小值。 如果二阶导数大于0,则为极小值;如果二阶导数小于0,则为极大值。
极值的应用
最大最小值问题
在生产、生活中经常遇到求最大最小值的问题,极值的概念可以用来解决这类问题。例如,在经济学中求成本最低、 利润最大的方案等。
02
(1) lim(x->0) (sin x / x)
03
(2) lim(x->0) ((1 + x)^(1/x))
04
(3) lim(x->∞) ((1 + 1/x)^x)
连续复利部分的习题
(2) A = P(1 + r/n)^nt / (1 + r/n)^n
(1) A = P(1 + r/n)^nt
单调性
如果函数在某个区间内单调递增或递减,则该区间 内导数大于等于0或小于等于0。
极值点
如果函数在某一点的导数为0,且该点两侧的 导数符号相反,则该点为极值点。
04
函数的单调性与极值
单调性的判断方法
01
02
03
定义法
导数法
图像法
通过比较函数在某区间内任意两点x1和 x2的函数值f(x1)和f(x2),判断单调性。 如果f(x1)<f(x2),则函数在此区间内单 调递增;反之,则单调递减。
高等数学题库第01章(函数,极限,连续).

第一章函数、极限、连续习题一一.选择题1.下列各组中的函数f(x)与g(x)表示同一个函数的是() A.f(x)=x,g(x)=x2B.f(x)=2lgx,g(x)=lgx2 x,g(x)=x2C.f(x)=xD.f(x)=x,g(x)=-x2.函数y=4-x+sinx的定义域是( )A.[0,1]B.[0,1)(1,4]C.[0,+∞)D.[0,4]3.下列函数中,定义域为(-∞,+∞)的有( ) A.y=x-1323 B.y=x2 C. y=x3 D.y=x-24.函数y=x2-1单调增且有界的区间是( )A. [-1,1]B. [0,+∞)C. [1,+∞)D. [1,2]5.设y=f(x)=1+logx+32,则y=f-(x)=( )A.2x+3B. 2x-1-3C. 2x+1-3D. 2x-1+36.设f(x)=ax7+bx3+cx-1,其中a,b,c是常数,若f(-2)=2,则f(2)=(A.-4B.-2C.-3D.6二.填空题1.f(x)=3-xx+2的定义域是2.设f(x)的定义域是[0,3],则f(lnx)的定义域是。
3.设f(2x)=x+1,且f(a)=4,则a= 。
4.设f(x+11x)=x2+x2,则f(x)5.y=arcsin1-x2的反函数是。
6.函数y=cos2πx-sin2πx的周期T。
)⎧π⎪sinx,x<17.设f(x)=⎨则f(-)=。
4⎪⎩0,x≥12⎧⎧1,x≤12-x,x≤1⎪⎪8.设f(x)=⎨,g(x)=⎨,当x>1时,g[f(x)]= 。
x>1x>1⎪⎪⎩0⎩29.设f(x)=ax3-bsinx,若f(-3)=3,则f(3)=。
10.设f(x)=2x,g(x)=x2,则f[g(x)]=。
三.求下列极限 x3-1x2-91.lim2 2.lim x→1x-1x→3x-33.limx→52x-1-3+2x2-14. lim x→0xx-5x2-3x+2x+2-35.lim 6. lim3x→1x→1x-xx+1-27.limx→1x+4-2-x-+x 8. lim2x→0sin3xx-1sinx2-49. lim2 x→2x+x-6()习题二1.下列数列中,发散的是( ) 1π2n-11+(-1)n(-1)nA.xn=sinB.xn=5+C.xn=D.xn= nn3n+22n22设limf(x)=A(A为常数),则在点x0处f(x)( ) x→x0A. 一定有定义且f(x0)=AB.有定义但f(x0)可为不等于A的值B. 不能有定义 D.可以有定义,也可以没有定义f(x)=limf(x)是limf(x)存在的( ) 3.lim+-x→x0x→0x→x0A.充分必要条件B. 充分而非必要条件C. 必要而非充分条件D. 既非充分也非必要条件4.limh→0x+h-x=() hA.0 B.12x C.2x D.不存在x3(1+a)+1+bx2=-1则a,b的值为( ) 5.若limx→∞x2+1A.a=-1,b=-1B. a=1,b=-1C. a=-1,b=1D. a=1,b=16.设limf(x)=A,limg(x)=B,且A>B,则当x充分接近xo时,必有( ) x→x0x→x0A.f(x)≥g(x)B. f(x)>g(x)C. f(x)≤g(x)D. f(x)<g(x)7.数列{xn}有界是收敛的( )A.充分必要条件B. 必要而非充分条件C.充分而非必要条件D.既非充分也非必要条件8.设f(x)=1-x,g(x)=1-x,当x→1时,( )A.f(x)是比g(x)较高阶的无穷小量B. f(x)是比g(x)较低阶的无穷小量C.f(x)与g(x)同阶无穷小量D. f(x)与g(x)等价无穷小量9.当x→0时,为无穷小量的是()-1A.lnsinx B.sin C.cotx D.ex x1⎧n,n为奇数⎪10.设数列xn=⎨1,则{xn}是( ) ,n为偶数⎪⎩nA.无穷大量B. 无穷小量C.有界变量D. 无界变量二.填空题lnx= 。
2015函数、极限与连续习题加答案

2015函数、极限与连续习题加答案制题人: 兰 星 第一章 函数、极限与连续2 第一章 函数、极限与连续第一讲:函数一、是非题1.2x y =与xy =相同;2.)1ln()22(2x x y x x +++=-是奇函数;( )3.凡是分段表示的函数都不是初等函数; ( )4. )0(2>=x x y 是偶函数;( )5.两个单调增函数之和仍为单调增函数; ( )6.实数域上的周期函数的周期有无穷多个;制题人: 兰 星 第一章 函数、极限与连续3 ( )7.复合函数)]([x g f 的定义域即)(x g 的定义域; ( )8.)(x f y =在),(b a 内处处有定义,则)(x f 在),(b a 内一定有界。
( ) 二、填空题1.函数)(x f y =与其反函数)(x y ϕ=的图形关于 对称;2.若)(x f 的定义域是]1,0[,则)1(2+x f 的定义域是 ; 3.122+=xxy 的反函数是 ;4.1)(+=x x f ,211)(x x +=ϕ,则]1)([+x f ϕ= , ]1)([+x f ϕ= ; 5.)2(sin log2+=x y 是由简单函数 和复合而成; 6.1)(2+=xx f ,x x 2sin )(=ϕ,则)0(f = ,___________)1(=af ,___________)]([=x f ϕ。
制题人: 兰 星 第一章 函数、极限与连续4 三、选择题1.下列函数中既是奇函数又是单调增加的函数是( )A 、x 3sin B 、13+x C 、xx +3D 、xx -32.设54)(2++=bx x x f ,若38)()1(+=-+x x f x f ,则b 应为( )A 、1B 、-1C 、2D 、-23.)sin()(2x xx f -=是( )A 、有界函数B 、周期函数C 、奇函数D 、偶函数 四、计算下列各题1.求定义域523arcsin3xx y -+-=2.求下列函数的定义域制题人: 兰 星 第一章 函数、极限与连续5 (1)342+-=x x y(2)1142++-=x x y(3)1)2lg(++=x y (4)x y sin lg =3.设2)(x x f =,xe x g =)(,求)]([)],([)],([)],([x g g xf f x fg x g f ;4.判断下列函数的奇偶性制题人: 兰 星 第一章 函数、极限与连续6 (1)3)(-=x x f (2)xx f )54()(=(3) xx x f -+=11lg)( (4)x x x f sin )(=5.写出下列函数的复合过程 (1))58(sin 3+=x y (2))5tan(32+=x y(3)212x y -= (4))3lg(x y -=制题人: 兰 星 第一章 函数、极限与连续76.设⎩⎨⎧≥<=.1,0,1,)(x x x x ϕ求)51(ϕ,)21(-ϕ,)2(-ϕ,并作出函数)(x y ϕ=的图形。
第一章 函数与极限答案

第一章 函数与极限一 函数(见§1.1) Ⅰ 内容要求(ⅰ)在中学已有函数知识的基础上,加深对函数概念的理解和函数性质(奇偶性、单调性、周期性和有界性)的了解。
(ⅱ)理解复合函数的概念,了解反函数的概念,了解分段函数的概念。
(ⅲ)记忆基本初等函数的图象,了解初等函数的概念,自学双曲函数及反双曲函数。
(ⅳ)学会建立简单实际问题中的函数关系式。
Ⅱ 基本题型(ⅰ)有关确定函数定义域的题型1.(4分)1)2ln()(+-=x x x f 的定义域为 21<<-x2.(4分))2ln(1)(x x x f -+=的定义域为 [))2,1(1,1 -3.(4分))32arcsin(-=x y 的定义域为--------------- ( D ) A )2,1( B )2,1[ C ]2,1( D ]2,1[ 4.设)(x f 的定义域D = ]1,0[,求下列各函数的定义域: (1)(6分))(2x f []1,1-∈x(2)(6分))2(xf (]0,∞-∈x(3)(7分))31()31(-++x f x f ⎥⎦⎤⎢⎣⎡∈32,31x (ⅱ)有关确定函数(反函数)表达式的题型 5.(4分)已知: x xf cos 1)2(sin+=,则)(x f =)1(22x - 6.(4分)设⎪⎪⎩⎪⎪⎨⎧>=<-=0,10,00,1)(x x x x f ,则=)]([x f f ⎪⎪⎩⎪⎪⎨⎧>=<-=0,10,00,1)(x x x x f7.求下列函数的反函数(1)(4分)31+=x y 1,133-=-=x y y x (2)(4分)x x y +-=11 xxy y y x +-=+-=11,11 )1(-≠x(3)(6分))2ln(1++=x y 2211-=⇒-=--x y e y e x8.(7分)已知:,2sin )(,)(3x x x x x f =-=ϕ 求)].([)],([x f x f ϕϕ解:x x x x x f 2cos 2sin 2sin 2sin )]([233-=-=-=ϕϕϕ)(2s i n )(2s i n )]([3x x x f x f -==ϕ9.(10分)设x e x g x x x x f =⎪⎪⎩⎪⎪⎨⎧>-=<=)(,1||,11||,01||,1)(,求)]([x g f 和)]([x f g ,并作出这两个函数的图形。
(完整版)函数、极限与连续习题及答案

第一章 函数、极限与连续(A)1.区间[)+∞,a 表示不等式( )A .+∞<<x aB .+∞<≤x aC .x a <D .x a ≥ 2.若()13+=t t ϕ,则()=+13t ϕ( )A .13+tB .26+tC .29+tD .233369+++t t t 3.设函数()()x x x x f arcsin 2513ln +-++=的定义域是( )A .⎪⎭⎫ ⎝⎛-25,31B .⎪⎭⎫ ⎝⎛-25,1C .⎪⎭⎫⎝⎛-1,31 D .()1,1-4.下列函数()x f 与()x g 相等的是( )A .()2x x f =,()4x x g =B .()x x f =,()()2x x g =C .()11+-=x x x f ,()11+-=x x x g D . ()112--=x x x f ,()1+=x x g 5.下列函数中为奇函数的是( )A .2sin xx y = B .xxe y 2-= C .x x x sin 222-- D .x x x x y sin cos 2+= 6.若函数()x x f =,22<<-x ,则()1-x f 的值域为( ) A .[)2,0 B .[)3,0 C .[]2,0 D .[]3,0 7.设函数()x e x f =(0≠x ),那么()()21x f x f ⋅为( )A .()()21x f x f +B .()21x x f +C .()21x x fD .⎪⎪⎭⎫⎝⎛21x x f8.已知()x f 在区间()+∞∞-,上单调递减,则()42+x f 的单调递减区间是( ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在 9.函数()x f y =与其反函数()x fy 1-=的图形对称于直线( )A .0=yB .0=xC .x y =D .x y -=10.函数2101-=-x y 的反函数是( ) A .2lg-=x x y B .2log x y = C .xy 1log 2= D .()2lg 1++=x y 11.设函数()⎩⎨⎧=是无理数是有理数x x a x f x ,0,10<<a ,则( )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 12.设()x f 在R 上有定义,函数()x f 在点0x 左、右极限都存在且相等是函数()x f 在点0x 连续的( )A .充分条件B .充分且必要条件C .必要条件D .非充分也非必要条件13.若函数()⎩⎨⎧<≥+=1,cos 1,2x x x a x x f π在R 上连续,则a 的值为( )A .0B .1C .-1D .-2 14.若函数()x f 在某点0x 极限存在,则( ) A . ()x f 在0x 的函数值必存在且等于极限值 B .()x f 在0x 函数值必存在,但不一定等于极限值 C .()x f 在0x 的函数值可以不存在 D .如果()0x f 存在的话,必等于极限值15.数列0,31,42,53,64,…是( )A .以0为极限B .以1为极限C .以n n 2-为极限 D .不存在在极限 16.=∞→xx x 1sin lim ( )A .∞B .不存在C .1D .017.=⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( )A .2-eB .∞C .0D .21 18.无穷小量是( )A .比零稍大一点的一个数B .一个很小很小的数C .以零为极限的一个变量D .数零19.设()⎪⎩⎪⎨⎧≤≤-<≤<≤-=31,110,201,2x x x x x f x 则()x f 的定义域为 ,()0f = ,()1f = 。
第一章函数、极限与连续习题答案.doc

第一章函数、极限与连续1 . 若」 t =t31,贝 U 「t 31 =( D )A. t 31 B. t62 C. t92 D. t 9 3t 6 3t322. 设函数 f x = In 3x ? 1 ? i 5 - 2x ? arcsin x 的定义域是 ( C )1 5C.-1,1 D. -1,13 ,233. 下列函数 f x 与 g x 相等的是 (A )— 2A. f x = x 2 , g x - x4B . fx=x ,gx= xC.fX gx「X 1x -14. 下列函数中为奇函数的是 (A )2x x八sin xf- c 2— 22 ?A. y2B .y - xe xCsin xD . y = x cosx xsin xx25 . 若函数 fxl=x , - 2:; x ::: 2,则 f x-1 的值域为 (B )A. 0,2B. 0,3C. 0,21D. 0,316 . 函数y =10x4 -2 的反函数是(D )xC .A . y =igB .log x 2x—2a X X 是有理数7.设函数 %是无理数°<a",则(B )1y =Iog 2_ D . y =1 lg x 2 x1A . 当 Xr J 时, f x 是无穷大B . 当 x- 工: 时, f x 是无穷小C. 当 Xr - ■时, f x 是无穷大 D . 当 x—. - ■时, f x 是无穷小8 . 设 f x 在R上有定义 ,f x 在点X。
连续的(A . 充分条件C.必要条件x2 a,cos x, 函数 f x 在点X。
左、右极限都存在且相等是函数B. 充分且必要条件D. 非充分也非必要条件x—1在 R 上连续,则 a 的值为(D)x::: 1C. -1D.-210.若函数 f x 在某点X。
极限存在,则(C )f x 在X o的函数值必存在且等于极限值B. f x 在X o函数值必存在,但不一定等于极限值C. f X 在X o的函数值可以不存在D. 如果f X o存在的话 ,11 . 数列0,3 ,2,4,是 (B )A.以0为极限B.以1为极限C . 以口为极限D . 不存在在极限n112 . lim xsin( CxB. 不存在C. 1D. 013.li=(A )C.0x2214?无穷小量是(C)A.比零稍大一点的一个数B. —个很小很小的数C. 以零为极限的一个变量 D . 数零[2X,-1 _ x :: 015. 设f(x)= 2, x ::: 1 则f x的定义域为[-1,3] , f 0 =x—1, 1 _x _32 __ , f 1 =0。
高等数学第1章课后习题答案(科学出版社)

第一章 函数、极限、连续习题1-11.求下列函数的自然定义域:(1)321x y x=+-(2) 1arctany x=+(3) 1arccosx y -=;(4) 313 , 1x y x ⎧≠⎪=⎨⎪=⎩. 解:(1)解不等式组23010x x +≥⎧⎨-≠⎩得函数定义域为[3,1)(1,1)(1,)---+∞U U ; (2)解不等式组230x x ⎧-≥⎨≠⎩得函数定义域为[U ;(3)解不等式组2111560x x x -⎧-≤≤⎪⎨⎪-->⎩得函数定义域为[4,2)(3,6]--U ; (4)函数定义域为(,1]-∞.2.已知函数()f x 定义域为[0,1],求(cos ),()() (0)f f x f x c f x c c ++->的定义域.解:函数f要有意义,必须01≤≤,因此f 的定义域为[0,1];同理得函数(cos )f x 定义域为[2π-,2π]22k k ππ+;函数()()f x c f x c ++-要有意义,必须0101x c x c ≤+≤⎧⎨≤-≤⎩,因此,(1)若12c <,定义域为:[],1c c -;(2)若12c =,定义域为:1{}2;(3)若12c >,定义域为:∅. 3.设21()1,||x a f x x x a ⎛⎫-=- ⎪-⎝⎭0,a >求函数值(2),(1)f a f .解:因为21()1||x a f x x x a ⎛⎫-=- ⎪-⎝⎭,所以 21(2)104a f a a a ⎛⎫=-= ⎪⎝⎭,22 ,>1,11(1)10 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭. 4. 证明下列不等式:(1) 对任何x R ∈有 |1||2|1x x -+-≥; (2) 对任何n Z +∈有 111(1)(1)1n n n n++>++;(3) 对任何n Z +∈及实数1a >有 111na a n--≤.证明:(1)由三角不等式得|1||2||1(2)|1x x x x -+-≥---= (2)要证111(1)(1)1n n n n++>++,即要证111n +>+= 111(1)(1)(1)11111n n n n n +++++++<=+++L 得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数、极限与连续(一)1.区间[)+∞,a 表示不等式( B )A .+∞<<x aB .+∞<≤x aC .x a <D .x a ≥ 2.若()13+=t t ϕ,则()=+13t ϕ( D )A .13+tB .26+tC .29+tD .233369+++t t t 3.设函数()()x x x x f arcsin 2513ln +-++=的定义域是( C )A .⎪⎭⎫ ⎝⎛-25,31B .⎪⎭⎫ ⎝⎛-25,1C .⎪⎭⎫⎝⎛-1,31 D .()1,1-4.下列函数()x f 与()x g 相等的是( A )A .()2x x f =,()4x x g =B .()x x f =,()()2x x g =C .()11+-=x x x f ,()11+-=x x x g D . ()112--=x x x f ,()1+=x x g 5.下列函数中为奇函数的是( A )A .2sin xx y = B .xxe y 2-= C .x x x sin 222-- D .x x x x y sin cos 2+= 6.若函数()x x f =,22<<-x ,则()1-x f 的值域为( B ) A .[)2,0 B .[)3,0 C .[]2,0 D .[]3,0 7.设函数()x e x f =(0≠x ),那么()()21x f x f ⋅为( B )A .()()21x f x f +B .()21x x f +C .()21x x fD .⎪⎪⎭⎫⎝⎛21x x f8.已知()x f 在区间()+∞∞-,上单调递减,则()42+x f 的单调递减区间是( C ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在 9.函数()x f y =与其反函数()x fy 1-=的图形对称于直线( C )A .0=yB .0=xC .x y =D .x y -=10.函数2101-=-x y 的反函数是( D ) A .2lg-=x x y B .2log x y = C .xy 1log 2= D .()2lg 1++=x y 11.设函数()⎩⎨⎧=是无理数是有理数x x a x f x ,0,10<<a ,则( B )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 12.设()x f 在R 上有定义,函数()x f 在点0x 左、右极限都存在且相等是函数()x f 在点0x 连续的( C )A .充分条件B .充分且必要条件C .必要条件D .非充分也非必要条件13.若函数()⎩⎨⎧<≥+=1,cos 1,2x x x a x x f π在R 上连续,则a 的值为( D )A .0B .1C .-1D .-2 14.若函数()x f 在某点0x 极限存在,则( C ) A . ()x f 在0x 的函数值必存在且等于极限值 B .()x f 在0x 函数值必存在,但不一定等于极限值 C .()x f 在0x 的函数值可以不存在 D .如果()0x f 存在的话,必等于极限值15.数列0,31,42,53,64,…是( B )A .以0为极限B .以1为极限C .以n n 2-为极限 D .不存在在极限 16.=∞→xx x 1sin lim ( C )A .∞B .不存在C .1D .017.=⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( A )A .2-eB .∞C .0D .21 18.无穷小量是( C )A .比零稍大一点的一个数B .一个很小很小的数C .以零为极限的一个变量D .数零19.设()⎪⎩⎪⎨⎧≤≤-<≤<≤-=31,110,201,2x x x x x f x 则()x f 的定义域为[]3,1-,()0f = 2 ,()1f = 0 。
20.已知函数()x f y =的定义域是[]1,0,则()2x f 的定义域是[]1,1-。
21.若()xx f -=11,则()[]=x f f x x 1-,()[]{}=x f f f x 。
22.函数1+=x e y 的反函数为1ln -=x y 。
23.函数()x y πsin 5=的最小正周期=T 2 。
24.设211x x x f ++=⎪⎭⎫⎝⎛,则()=x f 2111x x ++。
25.()=--+∞→13limn nn x23。
26.=++++++++∞→nn n 31913112141211lim 34。
27.=+→x x x ln lim 00 。
28.()()()=++-∞→503020152332lim x x x x 503020532⋅。
29.函数()⎪⎩⎪⎨⎧≥-<≤-<=2,321,11,x x x x x x x f 的不连续点为 1 。
30.=∞→n n n x3sin3lim x 。
31.函数()112-=x x f 的连续区间是()1,-∞-、()1,1-、()+∞-,1。
32.设()()⎩⎨⎧<++≥+=0,0,2x x x b a x b ax x f ()0≠+b a ,()x f 处处连续的充要条件是=b 0 。
33.若()⎩⎨⎧<-≥=0,10,1x x x f ,()x x g sin =,复合函数()[]x g f 的连续区间是()()ππ1,+k k ,2,1,0±=k 。
34.若01lim 2=⎪⎪⎭⎫⎝⎛+-+∞→b ax x x x ,a ,b 均为常数,则=a 1 ,=b 2 。
35.下列函数中哪些是偶函数,哪些是奇函数,哪既非奇函数又非偶函数?(1)()221x x y -= 偶函数(2)323x x y -= 非奇函数又非偶函数(3)2211xx y +-= 偶函数 (4)()()11+-=x x x y 奇函数(5)1cos sin ++=x x y 非奇函数又非偶函数(6)2xx a a y -+= 偶函数36.若()t t t t t f 552222+++=,证明()⎪⎭⎫⎝⎛=t f t f 1。
证:t t t t t f 155212122+++=⎪⎭⎫⎝⎛()t f = 37.求下列函数的反函数(1)122+=x xy解:⎪⎭⎫⎝⎛-=-x x y 1ln 1(2)11sin21+-+=x x y 21arcsin121arcsin1---+=x x y 38.写出图1-1和图1-2所示函数的解析表达式解:(1)⎩⎨⎧≠==0,10,2x x y (2)⎩⎨⎧<->+=0,10,1x x x x y39.设()()⎪⎩⎪⎨⎧+∞<≤-<<∞-=x x x x xx f 0,10,sin 2,求()x f x 0lim →。
解:()1sin lim lim 0==--→→xxx f x x ()()11l i m l i m 2=-=++→→x x f x x 故()1lim 0=→x f x 。
40.设3212222nnn x n -+++= ,求n n x ∞→lim 。
解:()()⎪⎪⎪⎪⎭⎫⎝⎛-++=⎪⎪⎭⎫ ⎝⎛-+++∞→∞→36121lim 321lim 22222n n n n n n n n n n ()216112lim 621211lim =++=⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=∞→∞→n n n n n n41.若()21x x f =,求()()x x f x x f x ∆-∆+→∆0lim 。
解:()xx x x x ∆-∆+→∆2211limxxx x x x x ∆∆-∆⋅--=→∆22202l i m()322022limxx x x x x x -=∆+∆--=→∆ 42.利用极限存在准则证明:11211lim 222=⎪⎭⎫⎝⎛++++++∞→πππn n n n n n 。
证:∵πππππ+≤⎪⎭⎫⎝⎛++++++≤+2222222111n n n n n n n n n n 且1lim 22=+∞→πn n n n ,1lim 22=+∞→πn n n ,由夹逼定理知 11211lim 222=⎪⎭⎫ ⎝⎛++++++∞→πππn n n n n n 43.求下列函数的间断点,并判别间断点的类型 (1)()21x xy +=,(2)221xxy -+=,(3)x x y =,(4)[]x y = 解:(1)当1-=x 为第二类间断点;(2)2±=x 均为第二类间断点; (3)0=x ,为第一类断点;(4) ,2,1,0±±=x ,均为第一类间断点。
44.设()⎪⎪⎩⎪⎪⎨⎧<<=<<=21,11,2110,x x x x x f ,问:(1) ()x f x 1lim →存在吗?解:()x f x 1lim →存在,事实上()1lim 1=+→x f x ,()1lim 11=-→x f x ,故()1lim 1=→x f x 。
(2) ()x f 在1=x 处连续吗?若不连续,说明是哪类间断?若可去,则补充定义,使其在该点连续。
解:不连续,1=x 为可去间断点,定义:()⎪⎩⎪⎨⎧<<=<<=21,11,110,*x x x x x f ,则()x f*在1=x 处连续。
45.设()⎩⎨⎧>+≤≤-=1,310,12x x x x x f ,(1)求出()x f 的定义域并作出图形。
解:定义域为[)+∞,0(2)当21=x ,1,2时,()x f 连续吗? 解:21=x ,2=x 时,()x f 连续,而1=x 时,()x f 不连续。
(3)写出()x f 的连续区间。
解:()x f 的连续区间[]1,0、()+∞,1。
46.设()⎪⎩⎪⎨⎧><<-±===2 ,4 20,42,0 ,2 2x x x x x x f ,求出()x f 的间断点,并指出是哪一类间断点,若可去,则补充定义,使其在该点连续。
解:(1)由()4lim 0=→x f x ,()20=f ,故0=x 为可去间断点,改变()x f 在0=x 的定义为()40=f ,即可使()x f 在0=x 连续。
(2)由()4lim 2=+→x f x ,()0lim 2=-→x f x ,故2=x 为第一类间断点。
(3)类似地易得2-=x 为第一类间断点。