初中数学中考模拟试卷

合集下载

2023年贵州省贵阳市 中考数学模拟试卷

2023年贵州省贵阳市 中考数学模拟试卷

贵阳市2023年中考数学模拟试卷一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,每小题3分,共36分.1.5的相反数是( )A .5B .﹣5C .15D .﹣15 2.下列运算正确的是( )A .a 6÷a 2=a 3B .a 2+a 3=a 5C .﹣2(a +b )=﹣2a +bD .(﹣2a 2)2=4a 43.据报道,电信5G 技术赋能千行百业,打造数字经济底座.5G 牌照发放三年来,三大电信运营商共投资4772亿元.把数字4772亿用科学记数法表示为( )A .4.772×109B .4.772×1010C .4.772×1011D .4.772×10124.在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )A .红球B .黄球C .白球D .蓝球5.估计√21的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间6.如图,将三角形纸片剪掉一角得四边形,设ΔABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是( )(第6题图) (第7题图)A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小7.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为( )A .5分B .4分C .3分D .45% 8.分式方程2x−1﹣1=0的解是( )A .x =1B .x =﹣2C .x =3D .x =﹣39.如图,已知∠ABC =60°,点D 为BA 边上一点,BD =10,点O 为线段BD 的中点,以点O 为圆心,线段OB 长为半径作弧,交BC 于点E ,连接DE ,则BE 的长是( )(第9题图)(第10题图)A.5B.5√2C.5√3D.5√510.如图,某地修建的一座建筑物的截面图的高BC=5m,坡面AB的坡度为1:√3,则AB 的长度为()A.10m B.10√3m C.5m D.5√3m11.在解决数学实际问题时,常常用到数形结合思想,比如:|x+1|的几何意义是数轴上表示数x的点与表示数﹣1的点的距离,|x﹣2|的几何意义是数轴上表示数x的点与表示数2的点的距离.当|x+1|+|x﹣2|取得最小值时,x的取值范围是()A.x≤﹣1B.x≤﹣1或x≥2C.﹣1≤x≤2D.x≥212.遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是()A B C D二、填空题:每小题4分,共16分.13.因式分解:a2+3a=.14.若一元二次方程x2+3x+k=0有两个相等的实数根,则k的值为.15.为开展“水情教育”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.16.如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,∠EAF=30°,则∠AEB=°;若△AEF的面积等于1,则AB的值是.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a b,ab0;(2)在初中阶段我们已经学习了一元二次方程的三种解法;他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+3x﹣1=0;②x2﹣2x=0;③x2﹣4x=4;④x2﹣9=0.18.某县教育局印发了上级主管部门的“法治和安全等知识”学习材料,某中学经过一段时间的学习,同学们都表示有了提高,为了解具体情况,综治办开展了一次全校性竞赛活动,王老师抽取了这次竞赛中部分同学的成绩,并绘制了下面不完整的统计图、表.参赛成绩60≤x<7070≤x<8080≤x<9090≤x≤100人数8m n32级别及格中等良好优秀请根据所给的信息解答下列问题:(1)王老师抽取了名学生的参赛成绩;抽取的学生的平均成绩是分;(2)将条形统计图补充完整;(3)若该校有1600名学生,请估计竞赛成绩在良好以上(x≥80)的学生有多少人?(4)在本次竞赛中,综治办发现七(1)班、八(4)班的成绩不理想,学校要求这两个班加强学习一段时间后,再由电脑随机从A、B、C、D四套试卷中给每班派发一套试卷进行测试,请用列表或画树状图的方法求出两个班同时选中同一套试卷的概率.19.已知:点A(1,3)是反比例函数y1=k(k≠0)的图象与直线y2=mx(m≠0)的一个x交点.(1)求k、m的值;(2)在第一象限内,当y2>y1时,请直接写出x的取值范围.20.今年,某市举办了一届主题为“强国复兴有我”的中小学课本剧比赛.某队伍为参赛需租用一批服装,经了解,在甲商店租用服装比在乙商店租用服装每套多10元,用500元在甲商店租用服装的数量与用400元在乙商店租用服装的数量相等.(1)求在甲,乙两个商店租用的服装每套各多少元?(2)若租用10套以上服装,甲商店给以每套九折优惠.该参赛队伍准备租用20套服装,请问在哪家商店租用服装的费用较少,并说明理由.21.如图,小敏在数学实践活动中,利用所学知识对他所在小区居民楼AB的高度进行测量,从小敏家阳台C测得点A的仰角为33°,测得点B的俯角为45°,已知观测点到地面的高度CD=36m,求居民楼AB的高度(结果保留整数.参考数据:sin33°≈0.55,cos33°≈0.84,tan33°≈0.65).22.如图,在平行四边形ABCD中,点E和点F是对角线BD上的两点,且BF DE=.(1)求证:BE DF=;(2)求证:ABE CDF∆≅∆.23.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.24.已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接PA,PC,设点P的纵坐标为m,当PA=PC时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.25.如图,在正方形ABCD中,E,F分别是BC,CD边上的点(点E不与点B,C重合),且∠EAF=45°.(1)当BE=DF时,求证:AE=AF;(2)猜想BE,EF,DF三条线段之间存在的数量关系,并证明你的结论;(3)连接AC,G是CB延长线上一点,GH⊥AE,垂足为K,交AC于点H且GH=AE.若DF=a,CH=b,请用含a,b的代数式表示EF的长.。

初中中考数学试卷

初中中考数学试卷

初中中考数学模拟试卷总分:120分时间:120分钟第一部分选择题(共30分,每题3分)14.下列计算中正确的是()A. 2^4 - 2 = 2B. (-3x4C. a + a = a^2D. (π - 3)^0 = 115.若分式 (x - 2)/(x + 1) 的值为0,则 x 的值是()A. 2B. -1C. 0D. ±116.下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆17.下列说法中正确的是()A. “打开电视,正在播放新闻联播”是必然事件B. “x是实数”是随机事件C. 掷一枚质地均匀的硬币10次,可能有5次正面向上D. 为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查18.下列关于矩形的说法中正确的是()A. 对角线相等的四边形是矩形B. 矩形的对角线相等且互相平分C. 对角线互相平分的四边形是矩形D. 矩形的对角线互相垂直且平分19.若 a、b 是关于 x 的方程 x2 + 3a + b 的值为()A. 8B. 11C. 10D. 720.菱形的一条对角线长为6,边AB的长是方程 x^2 - 7x + 12 = 0 的一个根,则菱形ABCD 的面积是()A. 12B. 6√7C. 16D. 12√721.直线 y = kx + b 经过点 A(1, -6) 和点 B(-2, 0),则不等式 2x < kx + b 的解集为()A. x < -2B. -2 < x < -1C. -2 < x < 0D. -1 < x < 022.在直角坐标系中,以原点 O 为圆心,半径为 1 的圆与直线 y = x - √2 的位置关系是()A. 相离B. 相交C. 相切D. 无法确定23.某商店销售一种商品,进价为每件 120 元,可卖出 100 件,定价每降价 10 元,销售量将增加 20 件。

2024年广东省中考数学模拟卷答案

2024年广东省中考数学模拟卷答案

2024年广东省初中数学中考模拟卷(解析卷)(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.单项式-35ab³d²的系数是()A.-3 B.-5C.- 35D.35【答案】C2.已知点A(2,b)与点B(a,4)关于原点对称,则a﹣b=( )A.﹣2 B.2 C.-4 D.6【答案】B3.下列运算正确的是()A.2﹣=√3B.(a2)3=a5C.2a2•a=a3D.(a+1)2=a2+a+1【答案】A4.若点A(-1,a),B(1,b),C(2,c)在反比例函数y=-2xx的图象上,则a,b,c的大小关系是( ) A. a<b<c B. b<a<c C. b<c<a D. a<c<b【答案】C5.若关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9 B.94C.D.-94【答案】B6.如图所示,水平放置的几何体的俯视图是()A. B. C. D.【答案】C7.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是()A.60 B.60πC.120 D.120π【答案】B8.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是()A.29B.C.79D.59【答案】A9.如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=3,则S△ABC=.A.12 B.6 C.9 D.10【答案】A10.如图,在菱形ABCD中,AB =4,BD=7.若M、N分别是边ADBC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为()A.3 B.√10 C.9√15D.√152【答案】D【详解】二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2xy2﹣2x=.【答案】2x(y+1)(y-1)12.如图,OA ,OB 是⊙O 的两条半径,点C 在⊙O 上,若∠C =30°,则的∠AOB 度数为 .【答案】60°13.2023年第四季度,某中小企业实现营业收入1.48百万元,将“1.48百万”用科学计数法表示为 .【答案】1.48×10714.如图,直线//,130,240a b °°∠=∠=,且AD AC =,则3∠的度数是 .【答案】40°15.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB ∥x 轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2024次旋转结束时,点A 的坐标为 .【答案】(1,)三、解答题(本大题共9小题,满分75分.)16.(4分)计算:-|√3-5|+2sin60°-(π-6)0-4【答案】2√317.(5分)解不等式组�2(3xx −1)≤−2xx +7 ①3xx+52≥53+2xx ② 【答案】x ≤98【分析】先分别求出每个不等式得解集,然后根据夹逼原则求出不等式组的解集即可.【详解】解∶�2(3xx−1)≤−2xx+7①3xx+52≥53+2xx②解不等式①,得x≤98,解不等式②,得x≤53,∴不等式组的解集为x≤9818. (8分)先化简,再求值:(1+)÷,其中a=+1.解:原式=÷=•=,当a=+1时,原式==.19.(8分)2021年3月29日,卫建委发布了《新冠疫苗接种指南》,某中学为了解九年级学生对新冠疫苗知识的了解情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解:B类--比较了解;C类--一般了解;D类--不了解,现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;补全条形统计图;(2)D类所对应扇形的圆心角的大小为 ;若该校九年级学生共有1000名,根据以上抽样结果估计该校九年级学生对新冠疫苗知识非常了解的约有名.(3)已知调查的该班第一组学生中有2名男生1名女生,老师随机从该组中选取2名学生进一步了解其家庭成员接种情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率。

数学中考全真模拟试题(附答案)

数学中考全真模拟试题(附答案)
12.函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为-8,最大值为1,则m的取值范围是()
A. 0≤m<2B. 0≤m≤5C.m>5D. 2≤m≤5
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分解因式:m2-6m+9=_______ .
14.在一个不透明 袋子中装有4个白球,a个红球,这些球除颜色外都相同.若从袋子中随机摸出1个球是红球的概率为 ,则a=___.
【详解】解:从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,
从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D.
综上所述,只有A选项符合条件,这个几何体是圆柱.
故选:A.
【点睛】本题考查由三视图判定几何体,掌握几何体的特征是正确选择的关键.
3.2020年7月23日,中国首次火星探测任务“天问一号”探测器顺利升空.在天问一号飞抵距离地球1200000公里的时候,还专门对地球和月球进行了合影“拍照”,具有里程碑式的意义.数字1200000用科学记数法表示为()
数学中考综合模拟检测试题
学校________班级________姓名________成绩________
(考试时间:120分钟 满分:120分)
一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.2021的倒数是()
A.2021B.-2021C. D.
A.5000(1+2x)=7500
B.5000(1+x)=7500
C.5000(1+x)2=7500
D.5000+5000(1+x)+5000(1+x)2=7500

2023年初中数学中考冲刺模拟卷一(含解析)

2023年初中数学中考冲刺模拟卷一(含解析)

2023年初中数学中考冲刺模拟卷(含解析)一、单选题1.下列四个数中,最大的数是().A .0B .2C .3-D .42.技术融合打破时空限制,2020服贸会全面上“云”,据悉本届服贸会共有境内外5372家企业搭建了线上电子展台,共举办32场纯线上会议和173场线上直播会议,线上发布项目1870个,发起在线洽谈550000次,将550000用科学记数法表示为()A .45510⨯B .55.510⨯C .65.510⨯D .60.5510⨯3.如图,在O 中,弦,AB CD 相交于点P ,若48,80A APD ∠=︒∠=︒,则B ∠的大小为()A .32︒B .42︒C .52︒D .62︒4.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同.从中任意摸出一个球,是红球的概率为()A .B .C .D .5.在平面直角坐标系中,若抛物线2211y x =-+()先向右平移3个单位长度,再向上平移2个单位长度,则所得到的抛物线的解析式为()A .2243y x =+(-)B .2242y x =++()C .2242y x =+(-)D .2241y x =+()-6.如图,正方形ABCDAC 和BD 交于点E ,点F 是BC 边上一动点(不与点B ,C 重合),过点E 作EF 的垂线交CD 于点G ,连接FG 交EC 于点H .设BF =x ,CH =y ,则y 与x 的函数关系的图象大致是()A.B.C.D.7.如图,在直角坐标系中,点A,B分别在x轴和y轴上,点A的坐标为(﹣2,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果3P点运动一周时,点Q运动的总路程是()A.3B.6C.3D.88.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如右图所示,则该封闭图形可能是()A.B.C.D.二、填空题9.因式分解:22ab ac -=_______________10.小华家客厅有一张直径为1.2,m 高为0.8m 的圆桌,AB 有一盏灯E 到地面垂直距离EF 为2,m 圆桌的影子为,2CD FC =,则点D 到点F 的距离为_______.11.不等式组240431x x -<⎧⎨-≤⎩的解集是______.12.把多项式2x 3﹣8x 分解因式的结果是_____.13.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F 是DE 延长线上的一点,若∠AFC =90°,AC =6,BC =10,则DF 的长为________.14.在平面直角坐标系中,ABC 和111A B C △的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为()2,4,则其对应点1A 的坐标是________.15.如图,在△ABC 中,∠A =45°,∠B =60°,AB =4,P 是BC 边上的动点(不与B ,C 重合),点P 关于直线AB ,AC 的对称点分别为M ,N ,则线段MN 长的取值范围是_____.16.如图,Rt ABC 中,90ACB ∠=︒,2AB AC =,3BC =,点E 是AB 上的点,将ACE △沿CE 翻折,得到'A CE ,过点B 作BF AC ∥交BAC ∠的平分线于点F ,连接'A F ,则'A F 长度的最小值为______.三、解答题17.化简或化简求值:212(1)211a a a a +÷+-+-,其中3a =18.如图,△ABC 是等腰三角形,AB =BC ,点D 为BC 的中点.(1)用圆规和没有刻度的直尺作图,并保留作图痕迹:①过点B 作AC 的平行线BP ;②过点D 作BP 的垂线,分别交AC ,BP ,BQ 于点E ,F ,G .(2)在(1)所作的图中,连接BE ,CF .求证:四边形BFCE 是平行四边形.19.为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业.张大爷计划明年承租村民部分土地种植某种经济作物,考虑各种因素,预计明年种植该作物的总成本y (元)与种植面积x (亩)之间满足一次函数关系,且部分数据如下:种植面积x (亩)4060种植该作物的总成本y (元)880012800(1)求y 与x 之间的函数关系式;(2)如果张大爷计划种植该作物120亩,请你帮张大爷计算一下种植该作物的总成本是多少?20.计算:()()3425284+-⨯--÷.21.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P的坐标.22.(1)化简求值:222442111x x x x x x++++÷+--,其中x 是一元二次方程x (x ﹣1)=2x ﹣2的解.(2)解不等式组:23(3)9212135x x x x --≥⎧⎪⎨+-->-⎪⎩①②,并求其整数解的和.23.先化简,再求值:23193m m m ⎛⎫÷+ ⎪--⎝⎭,其中4m =-.24.如图,拋物线2y x bx c =-++交y 轴于点(02)A ,,交x 轴于点(40)B ,、C 两点,点D为线段OB 上的一个动点(不与O B 、重合),过点D 作DM x ⊥轴,交AB 于点M ,交抛物线于点N.(1)求抛物线的解析式;(2)连接AN 和BN ,当ABN 的面积最大时,求出点D 的坐标及ABN 的最大面积;(3)在平面内是否存在一点P ,使得以点A ,M ,N ,P 为顶点,以AM 为边的四边形是菱形?若存在,请求出点P 的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系xOy 中,二次函数2223y x bx =+-的图像与x 轴交于点()3,0A ,B (点B 在点A 左侧),与y 轴交于点C ,点D 与点C 关于x 轴对称,作直线AD .(1)填空:b =______;(2)将AOC 平移到EFG (点E ,F ,G 依次与A ,O ,C 对应),若点E 落在抛物线上且点G 落在直线AD 上,求点E 的坐标;(3)设点P 是第四象限抛物线上一点,过点P 作x 轴的垂线,垂足为H ,交AC 于点T .若180CPT DAC ∠+∠=︒,求AHT △与CPT △的面积之比.参考答案与解析1.D【详解】试题分析:根据正数大于0,0大于负数,正数大于一切负数,给出的数中,最大的数是4,故选D.考点:有理数比较大小.2.B【分析】将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,写成10n a ⨯即可【详解】∵550000=55.510⨯,故选:B .【点睛】本题考查了绝对值大于10的大数的科学记数法,将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,是解题的关键.3.A【分析】根据三角形的外角的性质可得C A APD ∠+∠=∠,求得32C ∠=︒,再根据同弧所对的圆周角相等,即可得到答案.【详解】C A APD ∠+∠=∠ ,48,80A APD ∠=︒∠=︒,32C ∴∠=︒32B C ∴∠=∠=︒故选:A .【点睛】本题考查了圆周角定理及三角形的外角的性质,熟练掌握知识点是解题的关键.4.C【详解】试题分析:根据概率公式可得,摸到红球的概率为,故答案选C.考点:概率公式.5.A【分析】先根据二次函数的性质得到抛物线2211y x =-+()的顶点坐标为(1,1),再利用点平移的规律得到点(1,1)平移后所得对应点的坐标为43(,),然后利用顶点式写出平移后抛物线的解析式.【详解】解:∵抛物线2211y x =-+()的顶点坐标为(1,1),∴把点(1,1)先向右平移3个单位长度,再向上平移2个单位长度所得对应点的坐标为43(,),∴所得到的抛物线的解析式为2243y x =+(-);故选:A .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.A【分析】证明△BEF ∽△CFH ,可得BF BECH CF=,由此构建函数关系式即可解决问题.【详解】∵四边形ABCD 是正方形,∴∠EBF =∠ECG =45°,AC ⊥BD ,EB =EC ,∵EF ⊥EG ,∴∠BEC =∠FEG =90°,∴∠BEF =∠CEG ,∴△BEF ≌△CEG (ASA ),∴EF =EG ,∴∠EFG =45°,∵∠EFC =45°+∠CFH =45°+∠BEF ,∴∠CFH =∠BEF ,∴△BEF ∽△CFH ,∴BF BECH CF =,∴x y=∴y =2(0x x -+<<,故选A .【点睛】本题考查动点问题的函数图象,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.7.D【详解】在Rt △AOB 中,∵∠ABO=30°,AO=2,∴AB=4,BO=①当点P 从O→B 时,点Q 刚好从原位置移动到点O 处,如图2所示,此时点Q 运动的路程为PQ=②如图3所示,作QC ⊥AB ,则∠ACQ=90°,即PQ 运动到与AB 垂直时,垂足为P ,当点P 从B→C 运动到P 与C 重合时,∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°,∴cos30°=CQAQ,∴AQ=4cos 30CQ,∴OQ=4﹣2=2,∴此时点Q 运动的路程为QO=2,③当点P 从C→A 运动到点P 与点A 重合时,如图3所示,点Q 运动的路程为QQ′=4﹣④当点P 从A→O 运动到P 与点O 重合时,点Q 运动的路程为AO=2,∴点Q 运动的总路程为:﹣.故选D .8.A【详解】解:分析题中所给函数图像,O E -段,AP 随x 的增大而增大,长度与点P 的运动时间成正比.E F -段,AP 逐渐减小,到达最小值时又逐渐增大,排除C 、D 选项,F G -段,AP 逐渐减小直至为0,排除B 选项.故选A .【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.9.()()a b c b c +-##()()a b c b c -+【分析】先提取公因式,再用平方差公式进行因式分解.【详解】解:22ab ac -=22()a b c -=()()a b c b c +-,故答案为:()()a b c b c +-.【点睛】本题主要考查因式分解——提公因式法与公式法的综合运用,找准公因式是解题的关键.10.4【分析】根据相似三角形的判定和性质即可得到结论.【详解】解:∵AB ∥CD ,∴△ABE ∽△CDE ,∴AB CD =20.82-.∵AB=1.2,∴CD=2.又∵FC=2,∴DF=CD+FC=2+2=4.故答案为:4.【点睛】本题考查了中心投影,相似三角形的判定和性质,正确的识别图形是解题的关键.11.12x ≤<【分析】分别求出各个不等式的解,再取各个解的公共部分,即可求解.【详解】解:240431x x -<⎧⎨-≤⎩①②,由①得:x <2,由②得:x≥1,∴不等式组的解:12x ≤<.故答案是:12x ≤<.【点睛】本题主要考查解一元一次不等式组,掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.12.2x (x +2)(x ﹣2)【分析】先提取公因式2x ,再运用平方差公式分解因式即可.【详解】解:原式=2x (x 2﹣4)=2x (x +2)(x ﹣2),故答案为:2x (x +2)(x ﹣2).【点睛】本题考查分解因式,能够熟练应用乘法公式进行分解因式是解决本题的关键.13.8【分析】根据直角三角形斜边上的中线等于斜边的一半求出EF ,根据三角形中位线定理求得DE ,则DF =DE +EF .【详解】解:在直角△AEC 中,EF 是斜边AC 上的中线,AC =6,则EF =12AC =3.在△ABC 中,DE 是中位线,BC =10,则DE =12BC =5.则DF =DE +EF =3+5=8.故答案是:8.【点睛】本题考查的是三角形中位线定理、三角形的三边关系,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.(4,8)或(﹣4,﹣8)【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k ,即可求得答案.【详解】解:在同一象限内,∵ ABC 与111A B C △是以原点O 为位似中心的位似图形,其中相似比等于12,A 坐标为(2,4),∴则点1A 的坐标为:(4,8),不在同一象限内,∵ ABC 与111A B C △是以原点O 为位似中心的位似图形,其中相似比等于12,A 坐标为(2,4),∴则点1A 的坐标为:(﹣4,﹣8),故答案为:(4,8)或(﹣4,﹣8).【点睛】此题考查了位似图形的性质,此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .15.≤MN <【详解】连接AM 、AN 、AP ,过点A 作AD ⊥MN 于点D ,如图所示.∵点P 关于直线AB ,AC 的对称点分别为M ,N ,∴AM=AP=AN ,∠MAB=∠PAB ,∠NAC=∠PAC ,∴△MAN 等腰直角三角形,∴∠AMD=45°,∴AD=MD=2AM ,AM .∵AB=4,∠B=60°,∴,∵AM=AP ,∴故答案为≤MN <.【点睛】连接AM 、AN 、AP ,过点A 作AD ⊥MN 于点D ,由对称性可知AM=AP=AN 、△MAN 等腰直角三角形,进而即可得出AP ,再根据AP 的取值范围即可得出线段MN 长的取值范围.16【分析】先求出ACAB =AB =BF =由勾股定理可求CF 的长,由点A '在以点C 为圆心,AC 为半径的圆上,则当点A '在FC 上时,A 'F 有最小值,即可求解.【详解】解:如图,90ACB ∠=︒ ,2AB AC =,1cos 2AC CAB AB ∴∠==,60CAB ∴∠=︒,tan BC CAB AC∴∠==AC ∴=AB ∴=,AF 平分BAC ∠,30BAF CAF ∴∠=∠=︒,//BF AC ,30BFA FAC ∴∠=∠=︒,90FBC BCA ∠=∠=︒,AB BF ∴==FC ∴===将ACE △沿CE 翻折,得到'A CE ,'AC A C ∴==∴点'A 在以点C 为圆心,AC 为半径的圆上,则当点'A 在FC 上时,'A F 有最小值,'A F ∴,.【点睛】本题考查了翻折变换,锐角三角函数,直角三角形的性质等知识,求出CF 的长是本题的关键.17.11a -,12.【分析】根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】解:原式=()21111a a a a ++÷--=()21111a a a a +-⋅+-=11a -,当a=3时,原式=131-=12.【点睛】本题考查分式的化简求值,熟知分式混合运算的法则是解题的关键.18.(1)作图见解析;(2)证明见解析.【详解】试题分析:(1)①作∠CBQ 的平分线BP ;②过点D 作BP 的垂线;由BP//CE ,可得∠ECD=∠FBD ,∠CED=∠BFD ,又CD=BD ,从而△CDE ≌△BDF ,可得CE=BF ,从而可得BF//CE ,BF=CE ,判定出四边形BFCE 是平行四边形.试题解析:(1)①作∠CBQ 的平分线BP ;②过点D 作BP 的垂线;(2)∵BP//CE ,∴∠ECD=∠FBD ,∠CED=∠BFD ,∵点D 是BC 的中点,∴CD=BD ,∴△CDE ≌△BDF ,∴CE=BF ,∵BF//CE ,BF=CE ,∴四边形BFCE 是平行四边形.考点:1.尺规作图;2.平行四边形的判定.19.(1)200800y x =+(2)张大爷种植该作物的总成本是24800元【分析】(1)根据题意设y 与x 之间的函数关系式()0y kx b k =+≠,利用待定系数法即可求得函数关系式.(2)将120x =代入函数关系式即可解出.(1)设y 与x 之间的函数关系式()0y kx b k =+≠,依题意得:880040,1280060,k b k b =+⎧⎨=+⎩解得200,800.k b =⎧⎨=⎩∴y 与x 之间的函数关系式为200800y x =+.(2)当120x =时,20080020012080024800y x =+=⨯+=,∴张大爷种植该作物的总成本是24800元.【点睛】本题考查了一次函数的应用,掌握待定系数法求函数关系式是解答本题的关键.20.29-【分析】根据有理数的运算法则计算即可,注意运算顺序.【详解】()()3425284+-⨯--÷485(7)=-⨯--1140=-29=-【点睛】本题考查了含乘方的有理数的混合运算,掌握运算法则是解题的关键.21.(1)a=﹣1,b=2;(2)P 的坐标为(1,0)或(﹣1,0).【分析】(1)直接利用待定系数法把A (a ,3)代入反比例函数3y x=-中即可求出a 的值,然后把A 的坐标代入y=-x+b 即可求得b 的值;(2)根据直线解析式求得B 的坐标,然后根据题意即可求得P 的坐标.【详解】(1)∵直线y=-x+b 与反比例函数3y x =-的图象相交于点A (a ,3),∴3=-3a ,∴a=-1.∴A (-1,3).把A 的坐标代入y=-x+b 得,3=1+b ,∴b=2;(2)直线y=-x+2与x 轴相交于点B .∴B (2,0),∵点P 在x 轴上,△AOP 的面积是△AOB 的面积的12,∴OB=2PO ,∴P 的坐标为(1,0)或(-1,0).22.(1)﹣23;(2)﹣6.【分析】(1)原式利用除法法则变形,计算得到最简结果,求出方程的解得到x 的值,代入计算即可求出值;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出解集,即可求出整数和.【详解】(1)原式=()()()2221•1112x x x x x x +--++-+=2211x x x +-++=1x x -+,已知方程整理得:(x-2)(x-1)=0,解得:x=2或x=1(舍去),当x=2时,原式=-23;(2)由①得:x≤0,由②得:x >-267,∴不等式组的解集为-267<x≤0,即整数解为-3,-2,-1,0,之和为-6.【点睛】此题考查了分式的化简求值,一元二次方程的解,解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.23.13m +,1-【分析】先算括号内的加法,把除法变成乘法,算乘法,最后代入4m =-求出答案即可.【详解】解:23193m m m ⎛⎫÷+ ⎪--⎝⎭233933m m m m m -⎛⎫=÷+ ⎪---⎝⎭293m m m m =÷--()()333m m m m m -=⋅+-13m =+当4m =-时代入得,原式1143==--+.【点睛】本题考查分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.24.(1)2722y x x =-++;(2)当2t =时,ABN 有最大值,最大值为8,此时D (2)0,;(3)P 3(0)4+,或(6)2,.【分析】(1)将A ,B 的坐标代入抛物线的解析式组成二元一次方程组,求解即可;(2)设D (0)(04)t t <<,,根据坐标的特点,可得出点M ,N 的坐标,再根据三角形的面积公式可表达ABN 的面积,根据二次函数的性质可得出结论;(3)根据题意,易证AEM AOB ∽,由此得出AE 和AM 的长,再根据题意需要分两种情况讨论:①当AM MN =时,②当AM AN =时,分别求解即可.【详解】(1)解:将点(02)A ,,点(40)B ,代入抛物线2y x bx c =-++,∴21640c b c =⎧⎨-++=⎩,∴722b c ⎧=⎪⎨⎪=⎩.∴抛物线的解析式为:2722y x x =-++;(2)解:∵点(02)A ,,点(40)B ,,∴直线AB 的解析式为:122y x =-+;设D (0)(04)t t <<,,∵DM x ⊥轴,点M 在直线AB 上,点N 在抛物线上,∴217(t,t 2),N(t,t 2)22M t -+-++,∴2271t 2(t 2)t 422MN t t =-++--+=-+,∴ABN 的面积2211()(4)42(2)822B A MN x x t t t =⋅⋅-=⋅-+⋅=--+,∵2004t -<<<,,∴当2t =时,ABN 有最大值,最大值为8,此时D (2)0,;(3)解:存在,如图,过点M 作ME y ⊥轴于点E ,∴ME OB ∥,∴90AEM AOB AME ABO ∠=∠=︒∠=∠,,∴AEM AOB ∽,∴:::AE AO AM AB ME OB ==,Rt AOB ∆中,24OA OB ==,,∴AB =∴24AE t ==,∴12AE t AM ==,.根据题意,需要分两种情况讨论:①AM MN =时,如图,24(04)t t t =-+<<,解得82t =或t =0(舍),∴54AM =,∴54AP AM ==,∵AP MN ∥,∴点P 在y 轴上,∴53244OP =+=,∴P (0;②当AM AN =时,如图,此时AP 与MN 互相垂直平分,设AP 与MN 交于点F ,∴211(4)22MF MN t t ==-+,∵12MF AE t ==,∴211(4)22t t t -+=,解得3t =或0=t (舍),∴26AP t ==,∴P (6)2,.综上,存在点P ,使得以点A ,M ,N ,P 为顶点,以AM 为边的四边形是菱形,此时P 3(0)4,或(6)2,.【点睛】此题主要考查了二次函数解析式的确定、菱形的判定和性质、分类讨论的思想等知识,能力要求较高,难度较大,关键是掌握菱形的对称性和进行正确的分类讨论.25.(1)43b =-(2)()3,8E -,104,3E ⎛⎫ ⎪⎝⎭(3)8147【分析】(1)由题意,将点(3,0)A 代入2223y x bx =+-中,即可解得b 的值;(2)令0x =,可求得点C 的坐标,再由点D 与点C 关于x 轴对称可求得D 的坐标,求出直线AD 的表达式,由于EFG 是由AOC 平移得到,若设224(,2)33E m m m --,则224(3,4)33G m m m ---,将点G 代入直线AD 的表达式中,即可求得m ,从而得E 的坐标;(3)过C 作CK AD ⊥于K ,作CQ PH ⊥于Q ,先由勾股定理求出AD 的长,再利用等面积法求出CK 的长,再用勾股定理求AK 的长,由180CPT DAC ∠+∠=︒可得CPQ DAC ∠=∠,故tan CK CQ DAC AK PQ ∠==,设出点224(,2)33P n n n --,则可利用上式求出n 的值,由此可进一步计算出PT 与HT 的值,求出两个三角形的面积之比.(1)解: 二次函数2223y x bx =+-的图像经过点(3,0)A ,∴2203323b =⨯+-,解得43b =-.故答案是:43-;(2)解:如图1,对于二次函数224233y x x =--,当0x =时,=2y -.∴()0,2C -.点D 与点C 关于x 轴对称,∴()0,2D .设直线AD 的函数表达式是2y kx =+.()3,0A ,∴320k +=.解得23k =-.∴直线AD 的函数表达式为223y x =-+.设点224(,2)33E m m m --,则点224(3,4)33G m m m ---.点G 在直线223y x =-+上,∴22424(3)2333m m m --=--+,整理得2120m m --=,解得13m =-,24m =.∴()3,8E -,10(4,3E .(3)解:如图2,过点C 作CK AD ⊥,垂足为K .2OD =,3OA =,∴AD =AO CD AD CK ⋅=⋅,∴13CK =.∴13DK =.∴13AK AD DK =-=.∴12tan 5CK CAK AK ∠==.过点C 作CQ PH ⊥,垂足为Q .180CPT DAC ∠+∠=︒,∴CPQ CAK ∠=∠.∴125CQ PQ =.设点224(,2)33P n n n --,则22433PQ n n =-,CQ n =.∴25241233n n n =-.解得218n =,∴2129(,)832P -.∴218CQ =,213388AH =-=. 2tan 3TH OC OAC AH OA ∠===,∴22313384TH AH ==⨯=,∴2912132432TP PH TH =-=-=.∴13118284211212114722328AHT CPT AH TH S S TP CQ ⨯⨯⨯⨯===⨯⨯⨯⨯△△.【点睛】本题考查了二次函数的综合应用、一次函数表达式的求法、三角函数的性质与应用、相似三角形的性质与判定(本题答案中应用三角函数的步骤也可以改用相似三角形的知识解答)、勾股定理的应用,解决本题的关键在于将各模块知识点融会贯通,并作出正确的辅助线.。

2024年贵州省贵阳市白云区中考数学模拟试卷及答案解析

2024年贵州省贵阳市白云区中考数学模拟试卷及答案解析

2024年贵州省贵阳市白云区中考数学模拟试卷一、选择题(以下每题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每题3分,共36分)1.(3分)下列四个数中,属于负整数的是()A .﹣2.5B .﹣3C .0D .62.(3分)下列图案是轴对称图形的是()A .B .C .D .3.(3分)2024年贵州省政府工作报告重点民生事业取得突破.新增高等教育学位63500个,省属高校“一校一址”布局调整基本完成,民生福祉持续提升.数63500用科学记数法表示为()A .6.35×103B .6.35×104C .6.35×105D .0.635×1054.(3分)若一个几何体的表面展开图如图所示,则这个几何体是()A .三棱柱B .四棱柱C .三棱锥D .四棱锥5.(3分)若二次根式有意义,则实数x 的值可能是()A .﹣2B .0C .1D .36.(3分)下列图形中,∠2大于∠1的是()A .B .C .D .7.(3分)甲、乙、丙、丁四位男同学在中考体育前进行10次立定跳远测试,平均成绩都是2.3米,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则成绩最稳定的是()A .甲B .乙C .丙D .丁8.(3分)若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为()A.﹣1B.0C.1或﹣1D.2或09.(3分)如图,AB∥DE,AE与BD相交于点C,若AB=2,,则CE:AC等于()A.1:1B.1:2C.D.10.(3分)若分式的值为0,则a的值为()A.﹣3B.0C.2D.511.(3分)如图,尺规作∠HFG=∠ABC,作图痕迹中弧MN是()A.以点F为圆心,以BE长为半径的弧B.以点F为圆心,以DE长为半径的弧C.以点G为圆心,以BE长为半径的弧D.以点G为圆心,以DE长为半径的弧12.(3分)已知二次函数y=﹣x2﹣2x+3,当时,函数值y的最小值为1,则a的值为()A.B.C.或D.或二、填空题(每题4分,共16分)13.(4分)一次函数y=kx+3的图象经过点M(2,5),则k的值是.14.(4分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a =6,弦c=10,则小正方形ABCD的面积是.15.(4分)某数学兴趣小组编制了一道游戏试题:将“知必言,言必尽”6个字写在六张完全相同的卡片上,卡片的背面完全相同,将卡片洗匀后,背面朝上,甲随机抽出一张(不放回),乙再随机抽出一张,若甲、乙两人抽出的字相同,便称为“好朋友”.则一次试验中,甲、乙被称为“好朋友”的概率是.16.(4分)如图,△ABC是边长为2的等边三角形,将△ABC沿直线AC翻折,得到△ACD,再将△ACD 在直线AC上平移,得到△A′C′D′.连接A′B,D′B,则△A′D′B的周长的最小值是.三、解答题(本大题共9题,共计98分.解答应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:tan45°+|﹣5+2|﹣(π﹣3)0;(2)化简:(a+1)2﹣a(a+2).18.(10分)为了解中学生的视力情况,某市卫健局决定随机抽取本市部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.【整理数据】初中学生视力情况统计表视力人数百分比0.6及以下84%0.7168%0.82814%0.93417%1.0m34%1.1及以上46n合计200100%【分析数据】(1)在初中学生视力情况统计表中,m=,n=;(2)根据表格信息,初中学生视力的中位数为,根据统计图信息,高中学生视力的众数为;【作出决策】(3)小红说:“初中学生的视力水平比高中学生的好.”请你选择统计知识说明理由;(4)保护眼睛,明天更美好,请对视力保护提出一条合理化建议.19.(10分)如图,在矩形纸片ABCD中,AB=3cm,BC=4cm,连接对角线AC,直线MN垂直平分AC,分别交AD,BC于点E,F,垂足为点G.(1)求证:△AGE≌△CGF;(2)求线段EF的长.实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.乙同学所列的方程为=1.5×(1)甲同学所列方程中的x表示.乙同学所列方程中的y表示.(2)任选甲、乙两同学的其中一个方法解答这个题目.21.(10分)如图,为推进市中心城区污水系统综合治理项目,需要从A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°方向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,参考数据)22.(10分)如图,直线y=﹣2x+4与x轴、y轴分别相交于点A、点B,以线段AB为边在第一象限作正方形ABCD.反比例函数y=(k>0)在第一象限内的图象经过点D.(1)求反比例函数的解析式;(2)将正方形ABCD沿y轴向上平移几个单位能使点A落在(1)中所得的双曲线上?23.(12分)如图,△ABC内接于⊙O,过点B作⊙O的切线,交直径DA的延长线于点E.(1)若∠ACB=26°,则∠BAD=°;(2)求证:∠ABE=∠ACB;(3)若AE=2cm,BE=4cm,求⊙O的半径.24.(12分)“樱花红陌上,邂逅在咸安”,为迎接我区首届樱花文化旅游节,某工厂接到一批纪念品生产订单,要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(0<x≤15)每件产品的成本价是y元,y与x之间关系为:y=0.5x+7,任务完成后,统计发现工人小王第x天生产产品P(件)与x(天)之间的关系如图所示,设小王第x天创造的产品利润为W元.(1)直接写出P与x之间的函数关系;(2)求W与x之间的函数关系式,并求小王第几天创造的利润最大?最大利润是多少?(3)最后,统计还发现,平均每个工人每天创造的利润为288元,于是,工厂制定如下奖励方案:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金,请计算,在生产该批纪念过程中,小王能获得多少元的奖金?25.(12分)在Rt△ABC中,∠ACB=90°,AB=10,AC=8,将△ABC绕点B逆时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.【教材呈现】(1)如图①,将△ABC绕点B旋转180°得到△A′BC′,则线段CC'的长为;【问题解决】(2)如图②,在△ABC旋转过程中,连接CC′,交AB于点D,当CC′∥A′B时,求证:CD=AB;【拓展延伸】(3)如图③,连接AA′,延长CC′交AA′于点F,点E为AC边的中点,连接EF.在△ABC旋转过程中,EF是否存在最大值?若存在,求出EF的最大值;若不存在,请说明理由.2024年贵州省贵阳市白云区中考数学模拟试卷参考答案与试题解析一、选择题(以下每题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分)1.【分析】根据负整数的定义进行判断即可.【解答】解:﹣2.5是负分数,﹣3是负整数,0既不是正数也不是负数,6是正整数,故选:B.【点评】本题考查有理数,熟练掌握相关定义是解题的关键.2.【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,据此作答.【解答】解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:B.【点评】此题考查了利用轴对称图形的定义判断轴对称图形,要熟练掌握.3.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:63500=6.35×104.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:三个长方形和两个三角形折叠后可以围成三棱柱.故选:A.【点评】考查了几何体的展开图,熟记常见几何体的表面展开图特征,是解决此类问题的关键.5.【分析】根据二次根式的被开方数是非负数求出x的取值范围即可得出答案.【解答】解:∵x﹣2≥0,∴x≥2,∴x的取值可能是3.故选:D.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.6.【分析】利用垂直的定义,对顶角的定义,等弧对等角,三角形的外角的性质对各选项进行分析即可.【解答】解:A、由垂直可知:∠1=∠2=90°,故A不符合题意;B、由∠1与∠2属于对顶角,则∠1=∠2,故B不符合题意;C、由等弧对等角可得∠1=∠2,故C不符合题意;D、由三角形的外角性质可得∠2>∠1,故D符合题意.故选:D.【点评】本题主要考查三角形的外角性质,解答的关键是明确三角形的外角等于与其不相邻的两个内角之和.7.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵平均成绩都是2.3米,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S甲2>S乙2>S丙2>S丁2,∴射击成绩最稳定的是丁.故选:D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.【分析】把x=﹣1代入方程计算即可求出k的值.【解答】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【分析】利用相似三角形的判定与性质解答即可.【解答】解:∵AB∥DE,∴∠A=∠E,∠B=∠D,∴△CDE∽△CBA,∴.∵AB=2,,∴CE:AC=:2.故选:C.【点评】本题主要考查了相似三角形的判定与性质,平行线的性质,熟练掌握适时进行的判定与性质定理是解题的关键.10.【分析】根据分母不为零且分子为零的条件进行解题即可.【解答】解:由题可知,a﹣2=0且a+3≠0,解答a=2.故选:C.【点评】本题考查分式的值为零的条件,熟练掌握分母不为零且分子为零的条件是解题的关键.11.【分析】根据作一个角等于已知角的作图方法判断即可.【解答】解:由作图可知,弧MN是以点G为圆心,以DE长为半径的弧.故选:D.【点评】本题考查作图﹣基本作图,尺规作图,熟知作一个角等于已知角的基本作图步骤是解答本题的关键.12.【分析】根据二次函数的解析式求出顶点坐标,再根据二次函数的性质求出a的值即可.【解答】解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴二次函数的顶点坐标为(﹣1,4),且二次函数的图象开口向下,∵当x=时,y=>1,∴a<﹣1,当y=1时,﹣a2﹣2a+3=1,解得a=﹣1﹣或﹣1(舍去),故选:A.【点评】本题主要考查二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.二、填空题(每题4分,共16分)13.【分析】根据一次函数图象上点的坐标特征解答即可.【解答】解:∵一次函数y=kx+3的图象经过点M(2,5),∴2k+3=5,解得k=1,故答案为:1.【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握图象上点的坐标满足函数解析式是关键.14.【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案为:4【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.15.【分析】列表可得出所有等可能的结果数以及甲、乙两人抽出的字相同的结果数,再利用概率公式可得出答案.【解答】解:列表如下:知必言言必尽知(知,必)(知,言)(知,言)(知,必)(知,尽)必(必,知)(必,言)(必,言)(必,必)(必,尽)言(言,知)(言,必)(言,言)(言,必)(言,尽)言(言,知)(言,必)(言,言)(言,必)(言,尽)必(必,知)(必,必)(必,言)(必,言)(必,尽)尽(尽,知)(尽,必)(尽,言)(尽,言)(尽,必)共有30种等可能的结果,其中甲、乙两人抽出的字相同的结果有4种,∴甲、乙被称为“好朋友”的概率是=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.16.【分析】连接CD'.证明四边形A'BCD'是平行四边形,推出CD'=BA′,推出A′D′B的周长=BA'+BD'+A'D'=CD'+BD'+2,可知CD'+BD'最小时,△A′D′B的周长最小,作点C关于直线DD'的对称点E,连接BE,CD'+BD'最小值为BE,求出BE的长即可解决问题.【解答】解:连接CD',由平移的性质,可知A'B=D'C,A'B∥D'C,∴四边形A'BCD'是平行四边形,∴A'B=D'C,∴△A′D′B的周长=BA'+BD'+A'D'=CD'+BD'+2,∴CD'+BD'最小时,△A′D′B的周长最小,作点C关于直线DD'的对称点E,CE交DD'于点P,D'E,BE,过点E作EF⊥BC交BC的延长线于点F,则∠A'CE=∠DPE=90°,∠ECF=180°﹣60°﹣90°=30°,∵CD'+BD'=ED'+BD'≥BE,∴CD'+BD'最小值为BE,∴△A′D′B的周长的最小值=BE+2,∵CE=2CP=2,∴CF=CE•cos30°=3,EF=CE=,∴BF=BC+CF=2+3=5,∴△A′D′B的周长的最小值为2+2,故答案为:2+2.【点评】本题主要考查等边三角形的性质,折叠性质,平移的性质,关键是求出CD'+BD'的最小值三、解答题(本大题共9题,共计98分.解答应写出必要的文字说明、证明过程或演算步骤)17.【分析】(1)先算特殊角的三角函数值,绝对值,零指数幂,再算加减即可;(2)先算完全平方,单项式乘多项式,再合并同类项即可.【解答】解:(1)tan45°+|﹣5+2|﹣(π﹣3)0=1+3﹣1=3;(2)(a+1)2﹣a(a+2)=a2+2a+1﹣a2﹣2a=1.【点评】本题主要考查完全平方公式,实数的运算,解答的关键是对相应的运算法则的掌握.18.【分析】(1)根据初中各视力的总人数=人数÷百分比求解可得m、n的值;(2)根据中位数和众数的定义解答即可;(3)选择合适的统计量,比较即可得出答案;(4)根据保护眼睛的方法提出即可.【解答】解:(1)m=200×34%=68,n=46÷200×100%=23%,故答案为:68,23%;(2)被调查的初中学生视力情况的样本容量为200,∵第100个和第101个数据为1.0和1.0,∴中位数为=1.0,∵被调查的高中学生视力情况中,0.9出现的次数最多,∴众数为0.9.故答案为:1.0,0.9;(3)初中学生的视力水平比高中学生的好,被调查的高中学生视力情况的样本容量为14+44+60+82+65+55=320,∵第160个和第161个数据为0.9和0.9,∴中位数为0.9,∵初中视力水平的中位数为1.0,高中视力水平的中位数为0.9,所以初中学生的视力水平比高中学生的好;(4)建议该区中学生坚持每天做眼保健操,养成良好的用眼习惯.【点评】本题考查频数(率)分布表、条形图统计图,从统计图表中得出解题所需数据是解答本题的关键.19.【分析】(1)利用AAS即可证得△AGE≌△CGF;(2)先根据勾股定理求出AC的长,继而求出AG的长,再证得△AGE∽△ADC,即可求出EG的长,再由(1)中的结论即可求出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEG=∠CFG,∵直线MN垂直平分AC,∴∠AGE=∠CGF=90°,AG=CG,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS);(2)解:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,∵AB=3cm,BC=4cm,∴由勾股定理得cm,∵直线MN垂直平分AC,∴∠AGE=90°,AG=CG cm,∴∠AGE=∠D,又∵∠GAE=∠DAC,∴△AGE∽△ADC,∴,∴,∴EG=,由(1)知△AGE≌△CGF,∴FG=EG=,∴EF=.【点评】本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,熟练掌握这些知识点是解题的关键.20.【分析】(1)根据题意和题目中的式子,可知x和y表示的实际意义;(2)根据题意,选择甲同学的方法进行解答,注意分式方程要检验,也可选择乙同学的作法,注意乙中求得y的值后,还要继续计算,知道计算出原计划平均每月的绿化面积结束.【解答】解:(1)由题意可得,甲同学所列方程中的x表示原计划平均每月的绿化面积,乙同学所列方程中的y表示实际完成这项工程需要的月数,故答案为:原计划平均每月的绿化面积;实际完成这项工程需要的月数;(2)按甲同学的作法解答,﹣=2,方程两边同乘以1.5x,得90﹣60=3x,解得,x=10,经检验,x=10是原分式方程的解,答:原计划平均每月的绿化面积是10km2.【点评】本题考查由实际问题抽象出分式方程,解分式方程,解答本题的关键是明确题意,会解答分式方程,注意分式方程要检验.21.【分析】作CD⊥AB于点D,然后根据锐角三角函数,即可求得AC+BC的长,本题得以解决.【解答】解:作CD⊥AB于点D,由题意可得,∠CAD=45°,∠CBD=90°﹣68°=22°,设CD=x,则AD=CD=x,BD=AB﹣AD=7﹣x,∵,tan22°≈0.40,∴,解得x=2,∵,,∴,答:新建管道的总长度是8.2km.【点评】本题考查解直角三角形的应用﹣方向角问题,解答本题的关键是明确题意,利用数形结合的思想解答.22.【分析】(1)先由y=﹣2x+4得出A,B坐标,作DF⊥x轴证明Rt△ABO≌Rt△DAF,求出点D坐标即可求解.(2)把点A横坐标代入函数解析式求解.【解答】解:(1)作DF垂直x轴于点F,把x=0代入y=﹣2x+4得y=4,把y=0代入y=﹣2x+4得x=2,∴点B,A坐标分别为(0,4),(2,0),∴OB=4,OA=2.∵∠BAD=90°,∠AOB=90°,∴∠ABO+∠BAO=∠DAF+∠BAO=90°,∴∠ABO=∠DAF,在Rt△ABO和Rt△DAF中,,∴Rt△ABO≌Rt△DAF,∴AF=OB=4,DF=AO=2,∴OF=OA+AF=6,∴点D坐标为(6,2),∵反比例函数y=图象经过点D,∴k=6×2=12,∴y=.(2)把x=2代入y=得y=6,∴向上平移6个单位能使点A落在双曲线上.【点评】本题考查反比例函数的综合应用,解题关键是熟练掌握正方形的性质与一线三垂直的全等三角形模型.23.【分析】(1)连接BD,根据圆周角定理可得∠ADB=∠ACB=26°,∠ABD=90°,再利用直角三角形的性质即可解决问题;(2)连接OB,证明∠ABE=90°﹣∠OBA=90°﹣∠OAB=∠ADB,进而可以解决问题;(3)根据切线的性质和勾股定理即可解决问题.【解答】(1)解:如图,连接BD,∴∠ADB=∠ACB=26°,∵AD是⊙O的直径,∴∠ABD=90°,∴∠BAD=90°﹣26°=64°,故答案为:64;(2)证明:如图,连接OB,∴OA=OB,∴∠OAB=∠OBA,∵EB是⊙O的切线,∴∠OBE=90°,∴∠ABD=∠OBE=90°,∴∠ABE=90°﹣∠OBA=90°﹣∠OAB=∠ADB,∵∠ADB=∠ACB,∴∠ABE=∠ACB;(3)解:∵EB是⊙O的切线,∴∠OBE=90°,在Rt△OBE中,AE=2cm,BE=4cm,根据勾股定理得:OE2=OB2+BE2,∴(OA+2)2=OA2+42,∴OA=3,∴⊙O的半径为3cm.【点评】本题考查了切线的性质,圆周角定理,三角形外接圆与外心,解决本题的关键是掌握切线的性质.24.【分析】(1)结合图象,分段计算,当10≤x≤15时,P=40,当0<x≤10时,利用待定系数法即可求解;(2)根据题意有:W=P×(20﹣y),结合(1)的结果和y=0.5x+7,即可求解,再分别求出当0<x ≤10时和当10≤x≤15时,W的最大值,二者比较即可作答;(3)根据题意可知:当W>288时,即可获得奖励,当0<x≤10时,令W=288,即有﹣x2+16x+260=288,解得x=2或者x=14,可得当2<x≤10时可以获得奖励;当10≤x≤15时,W>288,即有:W=﹣20x+520>288,解得:10≤x<11.6,去除第10天重复计算的奖励,问题得解.【解答】解:(1)结合图象,分段计算,当10≤x≤15时,P=40,当0<x≤10时,设P与x之间的函数关系为:P=kx+b,∵(10,40),(0,20),∴,解得,即此时P=2x+20,综上:;(2)根据题意有:W=P×(20﹣y),∵,y=0.5x+7,∴,整理得:,当0<x≤10时,W=﹣x2+16x+260=﹣(x﹣8)2+324,即当x=8时,W有最大值,最大值为W=324,当10≤x≤15时,W=﹣20x+520,即W随着x的增大而减小,∴当x=10时,W有最大值,最大值为W=320,∵320<324,∴当x=8时,W有最大值,最大值为W=324,∴小王第8天创造的利润最大,最大利润是324元;(3)根据题意可知:当W>288时,即可获得奖励,当0<x≤10时,令W=288,即有﹣x2+16x+260=288,解得x=2或者x=14,∵0<x≤10,函数W=﹣x2+16x+260开口朝下,∴当W>288时,有2<x≤10,即此时可以获得奖励为:20×(10﹣2)=160(元),当10≤x≤15时,W>288,即有:W=﹣20x+520>288,解得:10≤x<11.6,即此时可以获得奖励为:20×2=40(元),∵第10天重复计算,∴总计获得的奖励为:160+40﹣20=180(元).【点评】本题考查了二次函数的应用,一次函数的应用,二次函数的图象与性质,利用待定系数法求解一次函数解析式等知识,明确题意,正确得出函数关系,是解答本题的关键.25.【分析】(1)先利用勾股定理求出BC=8,再利用旋转对称得到C′B=BC=6,进而可得CC'=12;(2)根据旋转的性质得出∠A′=∠A,∠A′C′B=∠ACB=90°,BC=BC′,则∠BCC′=∠BC′C,根据平行线的性质求出∠A′+∠BC′C=90°,则∠A+∠BCC′=90°,结合直角三角形的性质推出∠A=∠ACD,∠ABC=∠BCC′,根据等腰三角形的判定从而得解;(3)过A作AP∥A'C'交CC′的延长线于点P,连接A'C,证明△APF≌△A'C'F(AAS),由全等三角形的性质得出AF=A'F,由三角形中位线定理可得出EF=A'C.要使EF最大,只需A'C最大,此时C,B,A'三点共线,A′C的最大值为A′B+BC=AB+BC,进一步解答则可求出答案.【解答】(1)解:∵∠ACB=90°,AB=10,AC=8,∴BC===6,∵将△ABC绕点B逆时针旋转得到△A′BC′,∴C′B=BC=6,C′、B、C在一条直线上,∴CC′=BC+C′B=12,故答案为:12;(2)证明:∵将△ABC绕点B逆时针旋转得到△A′BC′,∴∠A′=∠A,∠A′C′B=∠ACB=90°,BC=BC′,∴∠BCC′=∠BC′C,∵CC′∥A′B,∴∠A′+∠A′C′C=∠A′+∠BC′C+∠A′C′B=180°,∴∠A′+∠BC′C=90°,∴∠A+∠BC′C=90°,∴∠A+∠BCC′=90°,∵∠ACB=∠BCC′+∠ACD=90°,∴∠A=∠ACD,∴AD=CD,∵∠ACB=90°,∴∠A+∠ABC=90°,∴∠ABC=∠BCC′,∴CD=BD,∵BD+AD=AB,∴CD=AB;(3)解:EF的最大值为8,理由如下:过A作AP∥A'C'交CC′的延长线于点P,连接A'C,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴BC=BC',∠ACB=∠A'C'B=90°,AC=A'C',∴∠BCC'=∠BC'C,∠BC′C+∠A′C′P=90°,∴∠BCC′+∠A′C′P=90°,∵∠ACB=∠BCC′+∠ACP=90°,∴∠ACP=∠A′C′P,∵AP∥A'C',∴∠APC=∠A′C′P,∴∠APC=∠ACP,∴AP=AC,∴AP=A'C',在△APF和△A'C'F中,,∴△APF≌△A'C'F(AAS),∴AF=A'F,即F是AA'中点,∵点E为AC的中点,∴EF是△AA'C的中位线,∴EF=A'C.当A'C的值最大时,EF的值最大,∵A'C≤BC+BA'=6+10=16,∴当C,B,A'三点共线时,EF存在最大值.∴EF=8,即EF的最大值为8.【点评】本题考查直角三角形的旋转变换,涉及旋转的性质、勾股定理、等腰三角形判定、全等三角形判定与性质、三角形中位线的判定与性质等知识,综合性较强,解题的关键是作辅助线,构造全等三角形。

2024年安徽省中考数学(模拟)试卷

2024年安徽省中考数学(模拟)试卷

2024年安徽省中考数学(模拟)试卷一.选择题(共10小题,满分40分,每小题4分)1.﹣2024的绝对值是()A.2024 B.﹣2024 C.D.2.下列运算正确的是()A.x3+x=x4 B. C.3x3y2÷3x2=xy2 D.(x﹣y)2=x2﹣y2 3.如图,该几何体的主视图是()A. B. C. D.4.据《安徽经济新闻网》2024年1月10日报道:2024年伊始,合肥高新区传来好消息,南岗科技成果加速器北区已经正式开工建设.总投资约16.9亿元,占地面积约179亩,总建筑面积约24.7万平方米.其中数据16.9亿用科学记数法表示为()A.1.69×10 B.1.69×108C.1.69×109D.1.69×10105.随着“二胎政策”出生的孩子越来越多,纷纷到了入学年龄,某校2021年学生数比2020年增长了8.5%,2022年新学期开学统计,该校学生数又比2021年增长了9.6%,设2021、2022这两年该校学生数平均增长率为x,则x满足的方程是()A.2x=8.5%+9.6% B.2(1+x)=(1+8.5%)(1+9.6%)C.2(1+x)2=(1+8.5%+9.6%) D.(1+x)2=(1+8.5%)(1+9.6%)6.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°第6题图第7题图第8题图7.如图,今年十一旅游黄金周期间,西溪景区规定A和B为入口,C,D,E为出口,小红随机选一个入口景区,游玩后任选一个出口离开,则她选择从A口进入,从D口离开的概率是()A.B.C.D.8.如图,菱形ABCD的对角线交于点O,AE⊥BC于点E,若,AB=10,则AC的长为()A.12 B.10 C.D.9.如图,在▱ABCD中,AB=4,AD=2,∠DAE=60°,DE为∠ADC的角平分线,点F为DE上一动点,点G为CF的中点,连接AG,则AG的最小值是()A.2 B.C.4 D.10.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,点D、F分别是边AB,BC上的动点,连接CD,过点A作AE⊥CD交BC于点E,垂足为G,连接GF,则GF+FB的最小值是()A.B.C.D.第9题图第10题图二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:2m3﹣8mn2=.12.如图所示,AB是⊙O的直径,弦CE⊥AB,垂足为M,过点C作⊙O的切线交BA的延长线于点D,若AM =1,BM=5,则AD=.第12题图第13题图第14题图13.如图,A、B是反比例函数y=(k<0)图象上的两点,A、B两点的横坐标分别是﹣3、﹣,直线AB 与y轴交于点C,若△AOB的面积为7,则k的值为.14.在平行四边形ABCD中,AB=4,BC=6,点E是BC边上的点,连接AE,将△ABE沿AE翻折至△AFE,连接CF.(1)如图1,连接BF,若点E为BC边中点,且CF=AB时,则∠ABF=°;(2)如图2,连接DF,当点D、F、E三点共线时,恰有∠DCF=∠ADF,则CF的长为.三、(本大题共2小题,每小题8分,满分16分)15.先化简再求值:,其a从﹣2,2,﹣3,3中选一个合适的数代入求值.16.如图,在由边长为1个单位的小正方形组成的网格中,点A,B,C均为格点(网格线的交点),A(2,3),B(3,2),C(1,0).(1)将△ABC向下平移3个单位,再向左平移4个单位,得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕点O逆时针旋转90°,得到△A2B2C2,请画出△A2B2C2.(3)在(2)的旋转过程中,点C1经过的路径长为.四、(本大题共2小题,每小题8分,满分16分)17.我国航天事业的飞速发展引发了航空航天纪念品的热销,某商店准备购进甲、乙两类关于航空航天的纪念品进行销售.已知甲类纪念品的进价为m元/件,乙类纪念品的进价比甲类的进价多5元/件.若每件甲类纪念品的售价是在其进价的基础上提高了60%,每件乙类纪念品的售价是在其进价的基础上提高了40%,根据上述条件,回答下面问题:(1)请用含有m的代数式填写表:进价/元售价/元甲类纪念品m乙类纪念品(2)该商店分别购进甲类纪念品100件,乙类纪念品80件.两类纪念品全部售出后所得的总利润为1080元,问每件甲、乙两类纪念品进价分别多少元?18.五一期间,某人民广场的一个公共区域用盆栽进行了美化,盆栽按如图的方式摆放,图中的盆栽被折线隔开分成若干层,第一层有1个盆栽,第二层有3个盆栽,第三层有5个盆栽,第四层有7个盆栽,…,以此类推.请观察图形规律,解答下列问题(1)第10层有个盆栽,第n层有个盆栽;(2)计算:1+3+5+…+49=;(3)拓展应用:求51+53+55+…+1949的值.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,小南家A位于一条东西走向的笔直马路上,超市B在A地的正东方.午休时间,小南从家A出发沿北偏东60°方向步行600米至菜鸟驿站C取快递.下午第一节网课是美术课,此时距离上课时间只有7分钟,他决定先沿西南方向步行至超市B购买素描画纸,再沿正西方向回到家上网课.(参考数据:,)(1)求菜鸟驿站C与超市B的距离(精确到个位);(2)若小南的步行速度为80米/分钟,那么他上美术网课会迟到吗?请说明理由.(忽略小南买素描画纸的时间)20.(10分)如图,已知AB为⊙O的直径,CD与⊙O相切,且∠DAC=∠BAC,AD与⊙O交于点E.(1)求证:AD⊥CD;(2)连接BE,若,AB=10,求DE的值.六、(本题满分12分)21.(12分)2023年10月1日是中华人民共和国成立74周年,学校开展了“迎国庆•弘扬中华传统文化”知识竞赛活动,学校从初中三个年级各随机抽取10人进行相关测试,获得了他们的成绩(单位:分),并对数据(成绩)进行整理、描述和分析,下面给出了相关信息:a.30名同学中华传统文化知识测试成绩的统计图如图1;b.30名同学中华传统文化知识测试成绩的频数分布直方图如图2(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100).c.测试成绩在70≤x<80这一组的是:70 72 72 74 74 74 75 77d.小明的中华传统文化知识测试成绩为77分.根据以上信息,回答下列问题:(1)测试成绩在70≤x<80这一组的同学成绩的众数为分;(2)小明的测试成绩在抽取的30名同学的成绩中从高到低排名第名;(3)抽取的30名同学的成绩的中位数为分;(4)序号(见图1横轴)为1﹣10的学生是七年级的,他们成绩的方差记为;序号为11﹣20的学生是八年级的,他们成绩的方差记为;序号为21﹣30的学生是九年级的,他们成绩的方差记为,直接写出,②,③中最小的是(填序号);(5)成绩80分及以上记为优秀,若该校初中三个年级1800名同学都参加测试,请估计成绩优秀的同学人数.七、(本题满分12分)22.(12分)如图1,△ABC是等边三角形,点D在CA的延长线上,点E在BC上,BD=DE,AB,DE交于点F.(1)①求证:∠ABD=∠CDE;②求证:AD=CE;(2)如图2,若点E是BC的中点,求的值.八、(本题满分14分)23.(14分)在平面直角坐标系xOy中,已知抛物线y=a(x+1)(x﹣4)与x轴交于A、B两点,与y轴交于点C(0,﹣2).(1)求a的值;(2)点D为第四象限抛物线上一点.①求△BCD的面积最大值;②连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求的最大值.。

5年中考3年模拟初中试卷数学

5年中考3年模拟初中试卷数学

5年中考3年模拟初中试卷数学一、选择题(每题3分,共30分)1. 下列实数中,是无理数的是()A. 0B. -3C. (1)/(3)D. √(3)2. 若一个数的相反数是3,则这个数是()A. -3B. 3C. -(1)/(3)D. (1)/(3)3. 计算(-2x^2)^3的结果是()A. -6x^{5}B. 6x^{5}C. -8x^{6}D. 8x^{6}4. 把不等式组x + 1>0 x - 1≤slant0的解集表示在数轴上,正确的是()A.-2 -1 0 1 2.o-> <-o.B.-2 -1 0 1 2.o-> o->.C.-2 -1 0 1 2.<-o <-o.D.-2 -1 0 1 2.<-o o->.5. 已知点A(x_1,y_1),B(x_2,y_2)在反比例函数y = (k)/(x)(k≠0)的图象上,如果x_1,且y_1,那么k的取值范围是()A. k>0B. k<0C. k≥slant0D. k≤slant06. 一个正多边形的每个内角都是135°,则这个正多边形是()A. 正六边形B. 正七边形C. 正八边形D. 正九边形。

7. 若关于x的一元二次方程x^2-2x + m = 0有两个不相等的实数根,则m的取值范围是()A. m<1B. m>- 1C. m = 1D. m< - 18. 如图,在ABC中,∠ ACB = 90^∘,AC = BC = 4,将ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE = 3,则sin∠ BFD的值为()A. (1)/(3)B. (√(2))/(4)C. (√(2))/(3)D. (3)/(5)9. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,下列结论:abc>0;2a + b = 0;b^2-4ac>0;④a - b + c<0,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学中考模拟试卷初中数学中考模拟试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)-8的相反数是()A.8B.-8 C.0 D.-12.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.(3分)XXX家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是44.(3分)计算6m^6÷(-2m^2)^3的结果为()A.-m B.-1 C.1 D.-1/4m^45.(3分)如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B'的坐标为()A.(-4,2)B.(-2,4)C.(4,-2)D.(2,-4)6.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O 上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=AC=2,BD=4,则AE的长为()A.2√3 B.2 C.√3 D.4/√38.(3分)一次函数y=kx+b(k≠0)的图象经过A(-1,-4),B(2,2)两点,P为反比例函数y=2/x图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为()A.2 B.4 C.6 D.8二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)近年来,国家重视精准扶贫,收效显著,据统计约xxxxxxxx人脱贫,xxxxxxxx用科学记数法可表示为6.5×10^7.10.(3分)计算:(√2+1)×(√2-1)=1.11.(3分)若抛物线y=x^2-6x+m与x轴没有交点,则m的取值范围是m<9.12.(3分)如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为4π-8.13.(3分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为32°。

14.(3分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为72.三、作图题(本题满分4分)15.(4分)已知:四边形ABCD。

求作:点P,使∠PCB=∠B,且点P到边AD和CD的距离相等。

作法:作AB的中垂线,与CD交于点E,连接BE,延长交AD于点F,作PF的平行线与BC交于点G,作GD的平行线与PF交于点H,连接CH,延长交CD于点P,连接BP,得到所求点P。

四、解答题(本题满分74分,共有9道小题)16.(8分)(1)解不等式组:x+2y≥4,x-y≤2.解:将第一个不等式改写为y≥(4-x)/2,第二个不等式改写为y≥x-2,两个不等式合并得到y≥max{(4-x)/2,x-2},即y≥x-2.因此不等式组的解为{(x,y)|y≥x-2}。

2)解方程组:2x-3y=7,x+2y=1.解:将第二个方程改写为x=1-2y,代入第一个方程得到2(1-2y)-3y=7,化简得到y=-3,代入x=1-2y得到x=7,因此方程组的解为{(x,y)|(7,-3)}。

17.(10分)已知函数f(x)=ax^2+bx+c,满足f(1)=1,f(2)=4,f(3)=9,求函数f(x)的解析式。

解:由已知条件得到以下三个方程:a+b+c=1,4a+2b+c=4,9a+3b+c=9.解这个方程组得到a=1,b=-3,c=3,因此函数f(x)=x^2-3x+3.18.(10分)如图,△ABC中,∠B=90°,D,E分别为AB,BC上的点,连接DE,交AC于点F。

已知AB=3,BC=4,DE=2,求AF的长度。

解:由相似三角形可得到AF/AC=DE/BC,即AF/7=2/4,因此AF=7/2.19.(10分)如图,在正方形ABCD中,点E,F分别在AB,BC上,且AE=BF。

连接AD,CF,交于点G。

已知AB=4,求证:DG=2.证明:由对称性可知DE=CF,EF=CD,因此三角形DEF与三角形GCF全等,由此可得到DG=GE=2.20.(10分)如图,在直角梯形ABCD中,AD∥BC,AD=2BC,AB=4,DE=3,连接BE,交AC于点F。

求证:∠BFD=∠BDE。

证明:由相似三角形可得到BE/BD=AF/AB,即BE/4=FD/BC,又由于AD=2BC,因此BE/4=FD/AD,即BE/BD=FD/AD,由此可得到三角形BDE与三角形AFD相似,因此∠BFD=∠BDE。

21.(10分)如图,在△ABC中,∠A=60°,D,E分别为BC,AB上的点,且DE∥AC。

已知AD=5,BD=3,求CE的长度。

解:由相似三角形可得到CE/AC=BD/AD,即CE/8=3/5,因此CE=24/5.22.(10分)如图,在正方形ABCD中,点E,F分别在AB,BC上,且AE=BF,连接AD,CF,交于点G,连接BE,交DG于点H。

已知AB=4,求证:EH=2.证明:由对称性可知DE=CF,EF=CD,因此三角形DEF与三角形GCF全等,由此可得到DG=GE=2,又由相似三角形可得到BE/BD=AF/AB,即BE/4=CF/4,因此BE=CF,又由相似三角形可得到BE/BD=DH/DG,即BE/4=DH/2,因此DH=2BE/4=BE/2,因此HE=BD-DH=2.23.(8分)如图,在平面直角坐标系中,点A(1,0),B(0,1),C(-1,0),D(0,-1)。

点P在第一象限内,且AP=BP=1.求证:四边形PCQD为正方形。

证明:设点P的坐标为(x,y),则由勾股定理可得到x^2+y^2=2,又由相似三角形可得到PC/PA=DQ/DB=x/y,因此PC=DQ,又由勾股定理可得到CQ^2=DQ^2+CD^2=(x-y)^2+1,因此PC^2+CQ^2=2(x^2+y^2)=4,即PCQD为正方形。

24.(8分)如图,在平面直角坐标系中,点A(0,0),B(1,0),C(1,1),D(0,1)。

点P在第一象限内,且AP=BP=1.求证:四边形PCQD为正方形。

证明:设点P的坐标为(x,y),则由勾股定理可得到x^2+y^2=2,又由相似三角形可得到PC/PA=DQ/DB=x/y,因此PC=DQ,又由勾股定理可得到CQ^2=DQ^2+CD^2=(y-x)^2+1,因此PC^2+CQ^2=2(x^2+y^2)=4,即PCQD为正方形。

17.XXX和小军玩摸球游戏。

A袋中有编号为1、2、3的三个小球,B袋中有编号为4、5、6的三个小球。

两袋中的所有小球除了编号不同以外都相同。

两个人分别从两个袋子中随机摸出一个小球,如果B袋中摸出的小球编号与A袋中摸出的小球编号之差为偶数,那么XXX获胜,否则小军获胜。

这个游戏对双方公平吗?请说明理由。

18.某中学开展了“手机伴我健康行”主题活动,随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成了如图①、②所示的统计图。

已知“查资料”的人数是40人。

请根据以上信息解答下列问题:1)在扇形统计图中,“玩游戏”对应的圆心角度数是多少度?2)补全条形统计图。

3)该校共有1200名学生,估计每周使用手机时间在2小时以上(不含2小时)的人数是多少?19.如图,C地在A地的正东方向。

因为有一座大山阻隔,所以从A地到C地需绕行B地。

已知B地位于A地北偏东67°方向,距离A地520km。

C地位于B地南偏东30°方向。

如果打通穿山隧道,建成两地直达高铁线路,求A地到C地之间高铁线路的长度。

(结果保留整数)参考数据:sin67°≈0.92,cos67°≈0.38,tan67°≈2.41,√3≈1.73)20.A、B两地相距60km,甲、乙两人从两地出发相向而行。

甲先出发,如图所示,l1、l2表示两人离A地的距离s (km)与时间t(h)的关系。

请结合图像回答以下问题:1)表示乙离A地的距离与时间关系的图像是l1还是l2?甲的速度是多少km/h?乙的速度是多少km/h?2)甲出发多少小时两人恰好相距5km?21.已知:如图,在菱形ABCD中,点E、O、F分别为AB、AC、AD的中点,连接CE、CF、OE、OF。

1)证明:△XXX≌△DCF。

2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由。

22.青岛市某大酒店的豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨。

下表是去年该酒店豪华间某两天的相关记录:未入住房间数日总收入(元)淡季10旺季40 000 (1)该酒店豪华间有多少间?旺季每间价格是多少元?今年旺季来临,该酒店豪华间的数量不变。

经市场调查发现,如果该酒店继续实行去年旺季的价格,每天都会客满。

如果价格继续上涨,每增加25元,每天未入住房间数增加1间。

不考虑其他因素,该酒店需要将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?数学中,数和形是两个主要的研究对象。

我们经常使用数形结合、数形转化的方法来解决数学问题。

下面我们将探究“由数思形,以形助数”的方法在解决代数问题中的应用。

探究一:求不等式|x-1|<2的解集1)探究|x-1|的几何意义如图①,在以O为原点的数轴上,设点A'对应的数是x-1.根据绝对值的定义可知,点A'与点O的距离为|x-1|,可以记为A'O=|x-1|。

将线段A'O向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=A'O,所以AB=|x-1|。

因此,|x-1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离AB。

2)求方程|x-1|=2的解因为数轴上3和-1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,-1.3)求不等式|x-1|<2的解集因为|x-1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围。

请在图②的数轴上表示|x-1|<2的解集,并写出这个解集。

探究二:探究|y|的几何意义1)探究|y|的几何意义如图③,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则P点坐标为(x,0),Q点坐标为(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,则MO=√(x^2+y^2),因此,|y|的几何意义可以理解为点M(x,y)与点O(0,0)之间的距离MO。

相关文档
最新文档