玻璃纤维增强PA

合集下载

尼龙增韧改性途径及其进展

尼龙增韧改性途径及其进展

尼龙增韧改性途径及其进展聚酰胺(PA)又称尼龙,具有力学强度高、韧性好、耐磨、耐油等优良性能,特别是在吸湿状态下,抗冲击强度极高;但是在干态和低温下的抗冲击强度偏低,吸水率大,影响其制品尺寸的稳定性和电性能。

我国现有PA改性生产企业主要集中在广东和江苏两省,总生产能力3.5万t/a左右,改性产品主要是玻纤增强产品,其次是增强阻燃、增韧等产品。

规模较大的尼龙改性企业有广东金发科技股份公司(1万t/a)、晋伦科技股份公司(5000t/a)、毅兴工程塑料有限公司(5000t/a)、广东利鑫(5000t/a)等。

由于PA的韧性和耐冲击性与温度和吸湿有很大的依赖关系,所以低温及含湿量低时抗冲击强度较低,使其用途受到很大限制。

随着市场经济的发展和竞争日趋激烈,在对材料性能、价格要求越来越高的状况下,与单一聚合物相比,聚合物合金、复合材料更能适应高性能的要求。

近年来,国内外PA发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方法,改进PA塑料的冲击性、热变形性、力学性能、阻燃性及成型加工性能。

填充增强改性PA改性中最常用的方法是填充增强,PA主要的增强剂包括玻纤、玻璃微珠、碳纤维和石墨纤维、金属粉末(铝、铁、青铜、锌、铜)、二氧化硅、硅酸盐和液晶聚合物(LCP)等。

其中最常用的增强剂是玻纤,这是因为PA熔体粘度较低,且玻纤与PA亲合性好,当填加较多的玻纤时,仍能保持在良好的加工粘度范围内,且增强效果显著。

在PA6树脂中加入相应的增强剂,不仅可以保持PA6树脂的耐化学性、加工性等固有优点,而且力学性能、耐热性会有大幅度提高,尺寸稳定性等也有明显改善。

PA6中添加芳纶纤维后,具有高强度、高韧性和高耐磨性(低摩擦系数、低磨耗率),耐冲击性能比玻纤和碳纤增强PA6有显著提高。

其主要性能如表1所示。

Allied Signal塑料公司研制开发出CapRonD8272和D8274两个玻璃纤维增强PA6新品级,该两个品级分别含有12%和30%的玻璃纤维,可在160℃高温下使用,用于制作空气管道、支管、油箱等汽车盖下零部件。

试析POE-g-MAH对玻纤增强高温尼龙复合材料力学性能的影响

试析POE-g-MAH对玻纤增强高温尼龙复合材料力学性能的影响

试析POE-g-MAH对玻纤增强高温尼龙复合材料力学性能的影响发布时间:2023-02-03T03:16:52.014Z 来源:《科学与技术》2022年第18期作者:韩丽燕[导读] 尼龙(PA)树脂增强之后,可明显提高强度,韩丽燕广东美塑塑料科技有限公司广东东莞 523000 [摘要]尼龙(PA)树脂增强之后,可明显提高强度,替代金属材料被应用至各种不同的结构部件当中。

而POE-g-MAH加入后,玻纤增强高温尼龙复合材料自身力学性是否会有变化产生,是广大研究者所需重点研究的一方面问题。

故本文主要探讨POE-g-MAH对于玻纤增强高温尼龙复合材料自身力学性能所产生影响情况,仅供参考。

[关键词]复合材料;玻纤;尼龙;增强高温;POE-g-MAH;力学性能;影响前言:因PA材料冲击性能对缺口比较敏感,故低温环境当中使用,往往需对PA材料实施增韧改性。

因而,对POE-g-MAH对于玻纤增强高温尼龙复合材料自身力学性能所产生影响情况开展综合分析较为必要。

1、关于玻纤增强高温尼龙复合材料概述所谓尼龙(PA)增强改性,即加入纤维状、粒状、片状等有一定增强作用的材料,以原耐化学性及加工性不变为基础,促使其实际弯曲强度和拉伸强度得到提升,对尺寸的稳定性及其耐热性起到改善作用。

增强PA,其从属非金属类型结构材料,玻纤增强的PA材料属于增强PA当中性能最为优异,且价格最为适宜的一类材料[1]。

2、影响分析2.1材料设备此次选定材料包含着PA6T/66、PA10T、POE-g-MAH、氨基硅烷的偶联剂及短切式玻璃纤维;选定双螺杆挤出装置、注塑装置、毛细管的流变仪器、SEM等为主要设备。

2.2结果分析2.2.1在增韧剂层面一是,在增韧剂对于PA基不同复合材料自身力学性能所产生影响情况分析层面。

增韧剂,其对于PA材料缺口冲击可起到一定改善作用,特别是针对低温缺口的冲击性能,适当增加增韧剂实际含量,对材料自身弯曲模量、弯曲强度、拉伸强度等会有负面效果产生。

玻璃纤维增强塑料为什么不能用钛白粉

玻璃纤维增强塑料为什么不能用钛白粉

玻璃纤维增强塑料后做成白色不能用钛白粉的原因:
玻璃纤维增强塑料,能大大提高塑料的强度,刚性和模量,如果要将玻璃纤维增强塑料做成白色,
不能用钛白粉着色,因为钛白粉的硬度为6.5,与玻璃纤维增强塑料一起加工过程中会将玻璃纤
维绞碎,使玻璃纤维增强塑料失去高强度,高模量。

使用硬度为3的硫化锌(立德粉)可以避免以
上问题,同样可以作为白色颜料使用于玻璃纤维增强塑料中,而不会影响玻璃纤维增强塑料的高模量。

对玻璃纤维增强PA,染色步骤最好在加纤维时一起完成,或者用色母粒/色粉注塑加工,避免对玻璃
纤维增强PA进行再次拉粒,再次拉粒的PA颜色明显变黑。

塑料材料性能

塑料材料性能

塑料材料性能材料名称:聚氯乙烯(硬质)牌号:PVC●特性及适用范畴:机械强度较高,电性能优良,对酸、碱的抗击力强,化学稳固性好,耐油、耐老化,易熔接和粘接,价格低,产量大。

缺点是使用温度低(-15~+55℃),线膨胀系数较大。

常用作化工耐腐蚀的结构材料,也可用作电绝缘材料。

●力学性能:抗拉强度σb (MPa):34.5~49伸长率δ5 (%):20~40冲击韧性值αk (J/cm2):带缺口:2.16~10.7; 无缺口:≥118拉伸弹性模量(MPa):24~41硬度:14~17HB●热性能:热变形温度:1.86MPa:55~75℃; 0.46MPa:57~82℃马丁耐热温度:65℃连续使用温度:55~80℃燃烧性:自熄材料名称:聚氯乙烯(软质)牌号:PVC●特性及适用范畴:强度较硬质的低,而拉断时的伸长率较高;其质柔软、耐摩擦、耐挠曲、弹性好(类似橡胶),且吸水性低,耐油性好,易加工成形;电气性能和化学稳固性较硬质稍低。

缺点是使用温度低,且易老化。

常用作薄膜、电线电缆套管和包皮、密封件。

●力学性能:抗拉强度σb (MPa):10.3~24.1伸长率δ5 (%):200~450冲击韧性值αk (J/cm2):无缺口:3.9~11.8硬度:20~30D●热性能:马丁耐热温度:40~70℃连续使用温度:55~80℃燃烧性:缓慢至自熄材料名称:聚乙烯(低压)牌号:PE●特性及适用范畴:又称高密度聚乙烯,使用较广,无毒无味,使用温度可大于80~100 ℃;耐寒性好,在-70℃时仍有柔软性;化学稳固性高,耐磨性好,刚性、硬度较高,介电性能突出,吸水性极小。

缺点是机械强度不高,质较软,不能承担高的载荷。

常用作高频、水底及一样电缆的包皮、耐腐蚀件、耐磨、耐腐蚀涂层、一样机械结构零件。

●力学性能:抗拉强度σb (MPa):6.9~23.5伸长率δ5 (%):60~650冲击韧性值αk (J/cm2):带缺口:≈27; 无缺口:不断拉伸弹性模量(MPa):1.18~9.32硬度:35~40R●热性能:热变形温度:1.86MPa:30~55℃; 0.46MPa:60~82℃维卡耐热温度:121~127℃连续使用温度:121℃燃烧性:慢材料名称:聚乙烯(超高分子量)牌号:PE●力学性能:抗拉强度σb (MPa):29.4~33.3伸长率δ5 (%):400~480冲击韧性值αk (J/cm2):带缺口:>80; 无缺口:186~216(未断)拉伸弹性模量(MPa):6.67~9.32硬度:≤38●热性能:热变形温度:1.86MPa:40~50℃燃烧性:慢材料名称:聚乙烯(玻璃纤维增强)牌号:PE●力学性能:抗拉强度σb (MPa):≥75.5伸长率δ5 (%):3.5冲击韧性值αk (J/cm2):无缺口:≥23.6拉伸弹性模量(MPa):≥61.8●热性能:热变形温度:1.86MPa:126℃材料名称:聚丙烯(纯料)牌号:PP●特性及适用范畴:密度小,是常用塑料中材质最轻的。

PA材料常见改性方法及应用

PA材料常见改性方法及应用

PA材料常见改性⽅法及应⽤增强PA,MC尼龙,芳⾹族PA塑料在⽣活中应⽤⼴泛,改性的品种也种类繁多,常见的有增强PA,透明PA,⾼抗冲(超韧)PA,电镀PA,导电PA,阻燃PA,PA与其它聚合物共混物和合⾦等,满⾜不同的特殊要求,作为各种结构材料,⼴泛⽤作⾦属、⽊材等传统材料的替代合⾦等,品。

PA材料改性⽅法玻纤增强PA:玻璃纤维增强PA的成型⼯艺与未增强时⼤致相同,但因流动较增强前差,所以注射压⼒和注射速度要适当提⾼,机筒温度提⾼10-40℃。

耐候PA:在PA中加⼊了碳⿊等吸收紫外线的助剂,这些对PA的⾃润滑性和对⾦属的磨损⼤⼤增强,成型加⼯时会影响下料和磨损机件。

因此,需要采⽤进料能⼒强及耐磨性⾼的螺杆、机筒、过胶头、过胶圈、过胶垫圈组合。

透明PA:具有良好的拉伸强度、耐冲击强度、刚性、耐磨性、耐化学性、表⾯硬度等性能,透光率⾼,与光学玻璃相近,加⼯温度为300--315℃,成型加⼯时,需严格控制机筒温度,熔体温度太⾼会因降解⽽导致制品变⾊,温度太低会因塑化不良⽽影响制品的透明度。

模具温度尽量取低些,模具温度⾼会因结晶⽽使制品的透明度降低。

阻燃PA:⼤部分阻燃剂在⾼温下易分解,释放出酸性物质,对⾦属具有腐蚀作⽤,因此,塑化元件(螺杆、过胶头、过胶圈、过胶垫圈、法兰等)需镀硬鉻处理。

⼯艺⽅⾯,尽量控制机筒温度不能过⾼,注射速度不能太快,以避免因胶料温度过⾼⽽分解引起制品变⾊和⼒学性能下降。

尼龙的⼒学性能、耐磨性、⾃润滑性优良,成型加⼯较好,然⽽在吸⽔率、尺⼨稳定性和电性能上存在缺陷,耐⾼低温⽅⾯的性能也需要提升。

有需求就会有制造,改性尼龙专⽤材料通过填充增强、共混等⽅法得到了很多⽅⾯的提升,就是这样,改性尼龙材料的使⽤范围才不断地扩⼤,愈⽤愈⼴。

改性PA材料的下游应⽤改性尼龙PA以其优异的机械性能、耐热、耐油、耐化学腐蚀、耐⽼化、耐低温等性能,⼴泛⽤于汽车、机车、通讯、电⼦电⽓、机械、兵器、航空航天、办公机器、家电、建筑、体育⽤品等⾏业。

玻璃纤维增强PA

玻璃纤维增强PA

玻璃纤维增强PA在PA 加入30% 的玻璃纤维,PA 的力学性能、尺寸稳定性、耐热性、耐老化性能有明显提高,耐疲劳尼龙强度是未增强的2.5 倍。

玻璃纤维增强PA 的成型工艺与未增强时大致相同,但因流动较增强前差,所以注射压力和注射速度要适当提高,机筒温度提高10-40℃。

由于玻纤在注塑过程中会沿流动方向取向,引起力学性能和收缩率在取向方向上增强,导致制品变形翘曲,因此,模具设计时,浇口的位置、形状要合理,工艺上可以提高模具的温度,制品取出后放入热水中让其缓慢冷却。

另外,加入玻纤的比例越大,其对注塑机的塑化元件的磨损越大,最好是采用双金属螺杆、机筒。

阻燃PA由于在PA中加入了阻燃剂,大部分阻燃剂在高温下易分解,释放出酸性物质,对金属具有腐蚀作用,因此,塑化元件(螺杆、过胶头、过胶圈、过胶垫圈、法兰等)需镀硬铬处理。

工艺方面,尽量控制机筒温度不能过高,注射速度不能太快,以避免因胶料温度过高而分解引起制品变色和力学性能下降。

透明PA具有良好的拉伸强度、耐冲击强度、刚性、耐磨性、耐化学性、表面硬度等性能,透光率高,与光学玻璃相近,加工温度为300--315 ℃,成型加工时,需严格控制机筒温度,熔体温度太高会因降解而导致制品变色,温度太低会因塑化不良而影响制品的透明度。

模具温度尽量取低些,模具温度高会因结晶而使制品的透明度降低。

耐候PA在PA 中加入了碳黑等吸收紫外线的助剂,这些对PA的自润滑性和对金属的磨损大大增强,成型加工时会影响下料和磨损机件。

因此,需要采用进料能力强及耐磨性高的螺杆、机筒、过胶头、过胶圈、过胶垫圈组合。

聚酰胺分子链上的重复结构单无是酰胺基的一类聚合物。

概括起来,主要在以下几方面进行改性。

①改善尼龙的吸水性,提高制品的尺寸稳定性。

②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。

③提高尼龙的机械强度,以达到金属材料的强度,取代金属④提高尼龙的抗低温性能,增强其对耐环境应变的能力。

聚酰胺改性知识(纯手工制作)

聚酰胺改性知识(纯手工制作)
合金化:是PA与其它聚合物共混,以PA作连续相,其它聚合物为分散 相的共混体。
功能化:在PA基体中加入一些功能材料,使PA具有某些功能,使PA 高性能化的改性方法。
1、改善PA的吸收性,提高制品的尺寸稳定性; 2、提高PA的阻燃性; 3、提高PA的机械强度; 4、提高PA的抗低温脆性,改善其耐候性; 5、提高PA的耐磨性,延长制品使用寿命; 6、提高PA的抗静电性能,适应矿山使用要求; 7、降低PA的成本,提高产品竞争力; 8、提高PA的耐热性。
1、玻纤的直径:一般使用直径在10-20um范围内,太粗与PA的粘结性 差,引起性能下降,太细易被螺杆剪切成细微粉末,失去纤维作用。
2、玻纤长度:一般控制在2-3mm,理论上讲,玻纤长度越长其增强效 果越好,但会带来制品表面粗燥及翘曲问题。玻纤的长度与其原始长度 无关,而与螺杆组合结构及转速相关。
聚酰胺改性知பைடு நூலகம்培训
共混改性按其化学结构变化分为:化学改性和物理共混改性。 化学改性:使PA大分子链结构发生较大变化,由于结构的变化而
引起PA的变化。 物理改性:在PA树脂中加入适量添加剂、填料或其它聚合物,经
混合混炼挤出,得到分散均匀的尼龙共混物。 物理改性又分为:增强、阻燃、填充、增韧、合金化、功能化等
六大类别。
增强改性:在PA中加入玻璃纤维、碳纤维等具有增强作用的材料,使 PA的弯曲强度、拉伸强度等性能大幅度提高。
填充改性:在加工过程中加入无机填料或有机填料提高材料的某些性能。
阻燃改性:在PA中加入阻燃剂进行共混,使其具有难燃性。
增韧改性:在PA中添加一定量的弹性体进行共混,使PA的抗冲击性能 和耐低温性能大幅度提高。
温降解;
5、制造高玻纤含量增强PA6 PA66,应选择适宜的防玻纤外露剂 和高分散润滑剂,耐热性偶联剂。

PA12 PA11 PA66 PA6 区别

PA12 PA11 PA66 PA6 区别

统称为xxpa6和pa66为主要的其他比较少具体尼龙(Nylon,Polyamide,简称PA)是指由聚酰胺类树脂构成的塑料。

此类树脂可由二元胺与二元酸通过缩聚制得,也可由氨基酸脱水后形成的内酰胺通过开环聚合制得,与PS、PE、PP等不同,PA不随受热温度的升高而逐渐软化,而是在一个靠近熔点的窄的温度范围内软化,熔点很明显,熔点:215-225℃。

温度一旦达到就出现流动。

PA的品种很多,主要有PA6、PA66、PA610、PA11、PA12、PA10、PA612、PA46、PA6T、PA9T、MXD-6芳香醯胺等。

以PA6、PA66、PA610、PA11、PA12最为常用。

尼龙类工程塑料外观上都呈现为角质、韧性、表层光亮、白色(或乳白色)或微黄色、透明或半透明的结晶性树脂,它容易被著成任一种颜色。

作为工程塑料的尼龙分子量一般为1.5-3万。

它们的密度均稍大于1,密度:1.14-1.15g/cm3。

拉伸强度:>60.0Mpa。

伸长率:>30%。

弯曲强度:90.0Mpa。

缺口冲击强度:(KJ/m2)>5。

尼龙的收缩率为1%~2%。

需注意成型后吸湿的尺寸变化。

吸水率100%相对吸湿饱和时能吸8%.使用温度可-40~105℃之间。

熔点:215-225℃。

合适壁厚2-3.5mm。

PA的机械性能中如抗拉抗压强度随温度和吸湿量而改变,所以水相对是PA的增塑剂,加入玻纤后,其抗拉抗压强度可提高2倍左右,耐温能力也相应提高,PA本身的耐磨能力非常高,所以可在无润滑下不停操作,如想得到特别的润滑效果,可在PA中加入硫化物。

PA性能的主要优点有:1.机械强度高,韧性好,有较高的抗拉、抗压强度。

比拉伸强度高于金属,比压缩强度与金属不相上下,但它的刚性不及金属。

抗拉强度接近于屈服强度,比ABS高一倍多。

对冲击、应力振动的吸收能力强,冲击强度比一般塑料高了许多,并优于缩醛树脂。

2.耐疲劳性能突出,制件经多次反复屈折仍能保持原有机械强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

玻璃纤维增强PA在PA 加入30% 的玻璃纤维,PA 的力学性能、尺寸稳定性、耐热性、耐老化性能有明显提高,耐疲劳尼龙强度是未增强的 2.5 倍。

玻璃纤维增强PA 的成型工艺与未增强时大致相同,但因流动较增强前差,所以注射压力和注射速度要适当提高,机筒温度提高10-40Cc由于玻纤在注塑过程中会沿流动方向取向,引起力学性能和收缩率在取向方向上增强,导致制品变形翘曲,因此,模具设计时,浇口的位置、形状要合理,工艺上可以提高模具的温度,制品取出后放入热水中让其缓慢冷却。

另外,加入玻纤的比例越大,其对注塑机的塑化元件的磨损越大,最好是采用双金属螺杆、机筒。

阻燃PA由于在PA 中加入了阻燃剂,大部分阻燃剂在高温下易分解,释放出酸性物质,对金属具有腐蚀作用,因此,塑化元件(螺杆、过胶头、过胶圈、过胶垫圈、法兰等)需镀硬铬处理。

工艺方面,尽量控制机筒温度不能过高,注射速度不能太快,以避免因胶料温度过高而分解引起制品变色和力学性能下降。

透明PA 具有良好的拉伸强度、耐冲击强度、刚性、耐磨性、耐化学性、表面硬度等性能,透光率高,与光学玻璃相近,加工温度为300--315 C,成型加工时,需严格控制机筒温度,熔体温度太高会因降解而导致制品变色,温度太低会因塑化不良而影响制品的透明度。

模具温度尽量取低些,模具温度高会因结晶而使制品的透明度降低。

耐候PA在PA 中加入了碳黑等吸收紫外线的助剂,这些对PA 的自润滑性和对金属的磨损大大增强,成型加工时会影响下料和磨损机件。

因此,需要采用进料能力强及耐磨性高的螺杆、机筒、过胶头、过胶圈、过胶垫圈组合。

聚酰胺分子链上的重复结构单无是酰胺基的一类聚合物。

概括起来,主要在以下几方面进行改性。

①改善尼龙的吸水性,提高制品的尺寸稳定性。

②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。

③提高尼龙的机械强度,以达到金属材料的强度,取代金属④提高尼龙的抗低温性能,增强其对耐环境应变的能力。

⑤提高尼龙的耐磨性,以适应耐磨要求高的场合⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。

⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。

⑧降低尼龙的成本,提高产品竞争力。

总之,通过上述改进,实现尼龙复合材料的高性能化与功能化,进而促进相关行业产品向高性能、高尼龙聚酰胺(PA,俗称尼龙)是美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化。

20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。

聚酰胺主链上含有许多重复的酰胺基,用作塑料时称尼龙,用作合成纤维时我们称为锦纶,聚酰胺可由二元胺和二元酸制取,也可以用3 -氨基酸或环内酰胺来合成。

根据二元胺和二元酸或氨基酸中含有碳原子数的不同,可制得多种不同的聚酰胺,目前聚酰胺品种多达几十种,其中以聚酰胺-6、聚酰胺-66和聚酰胺-610的应用最广泛。

聚酰胺-6、聚酰胺-66和聚酰胺-610的链节结构分别为[NH(CH2)5CO] 、[NH(CH2)6NHCO(CH2)4CO]和[NH(CH2)6NHCO(CH2)8CO]。

聚酰胺-6 和聚酰胺- 66主要用于纺制合成纤维,称为锦纶-6和锦纶-66。

尼龙-610则是一种力学性能优良的热塑性工程塑料。

PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。

PA 的品种繁多,有PA6、PA66、PAll 、PAI2、PA46、PA610、PA612、PAI010等,以及近几年开发的半芳香族尼龙PA6T 和特种尼龙等很多新品种。

尼龙-6塑料制品可采用金属钠、氢氧化钠等为主催化剂,N-乙酰基己内酰胺为助催化剂,使S -己内酰胺直接在模型中通过负离子开环聚合而制得,称为浇注尼龙。

用这种方法便于制造大型塑料制件。

主要用于合成纤维聚酰胺主要用于合成纤维,其最突出的优点是耐磨性高于其他所有纤维,比棉花耐磨性高10倍,比羊毛高20倍,在混纺织物中稍加入一些聚酰胺纤维,可大大提高其耐磨性;当拉伸至3-6%时,弹性回复率可达100%;能经受上万次折挠而不断裂。

聚酰胺纤维的强度比棉花高1-2倍、比羊毛高4-5倍,是粘胶纤维的3倍。

但聚酰胺纤维的耐热性和耐光性较差,保持性也不佳,做成的衣服不如涤纶挺括。

另外,用于衣着的锦纶-66和锦纶-6都存在吸湿性和染色性差的缺点,为此开发了聚酰胺纤维的新品种——锦纶-3和锦纶-4的新型聚酰胺纤维,具有质轻、防皱性优良、透气性好以及良好的耐久性、染色性和热定型等特点,因此被认为是很有发展前途代替铜等金属由于聚酰胺具有无毒、质轻、优良的机械强度、耐磨性及较好的耐腐蚀性,因此广泛应用于代替铜等金属在机械、化工、仪表、汽车等工业中制造轴承、齿轮、泵叶及其他零件。

聚酰胺熔融纺成丝后有很高的强度,主要做合成纤维并可作为医用缝线。

用于各种医疗及针织品在民用上,可以混纺或纯纺成各种医疗及针织品。

锦纶长丝多用于针织及丝绸工业,如织单丝袜、弹力丝袜等各种耐磨解释的锦纶袜,锦纶纱巾,蚊帐,锦纶花边,弹力锦纶外衣,各种锦纶绸或交织的丝绸品。

锦纶短纤维大都用来与羊毛或其它化学纤维的毛型产品混纺,制成各种耐磨经穿的衣料。

在工业上锦纶大量用来制造帘子线、工业用布、缆绳、传送带、帐篷、渔网等。

在国防上主要用作降落伞及其他军用织物。

发展趋势改性PA 产品的最新发展前面提到,玻璃纤维增强PA 在20世纪50 年代就有研究,但形成产业化是20 世纪70 年代,自1976年美国杜邦公司开发出超韧PA66 后,各国大公司纷纷开发新的改性PA产品,美国、西欧、日本、荷兰、意大利等大力开发增强PA、阻燃PA、填充PA,大量的改性PA投放市场。

20世纪80年代,相容剂技术开发成功,推动了PA 合金的发展,世界各国相继开发出PA/PE、PA/PP、PA/ABS 、PA/PC、PA/PBT、PA/PET、PA/PPO、PA/PPS、PA/I . CP(液晶高分子)、PA/PA等上千种合金,广泛用于汽车、机车、电子、电气械、纺织、体育用品、办公用品、家电部件等行业。

20世纪90年代,改性尼龙新品种不断增加,这个时期改性尼龙走向商品化,形成了新的产业,并得到了迅速发展,20世纪90年代末,世界尼龙合金产量达110万吨/年。

在产品开发方面,主要以高性能尼龙PPO/PA6, PPS/PA66增韧尼龙、纳米尼龙、无卤阻燃尼龙为主导方向;在应用方面,汽车部件、电器部件开发取得了重大进展,如汽车进气歧管用高流动改性尼龙已经商品化,这种结构复杂的部件的塑料化,除在应用方面具有重大意义外,更重要的是延长了部件的寿命,促进了工程塑料加工技术的发展。

改性尼龙发展的趋势尼龙作为工程塑料中最大最重要的品种,具有很强的生命力,主要在于它改性后实现高性能化,其次是汽车、电器、通讯、电子、机械等产业自身对产品高性能的要求越来越强烈,相关产业的飞速发展,促进了工程塑料高性能化的进程,改性尼龙未来发展趋势如下。

①高强度高刚性尼龙的市场需求量越来越大,新的增强材料如无机晶须增强、碳纤维增强PA 将成为重要的品种,主要是用于汽车发动机部件,机械部件以及航空设备部件。

②尼龙合金化将成为改性工程塑料发展的主流。

尼龙合金化是实现尼龙高性能的重要途径,也是制造尼龙尼龙专用料、提高尼龙性能的主要手段。

通过掺混其他高聚物,来改善尼龙的吸水性,提高制品的尺寸稳定性,以及低温脆性、耐热性和耐磨性。

从而,适用车种不同要求的用途。

③纳米尼龙的制造技术与应用将得到迅速发展。

纳米尼龙的优点在于其热性能、力学性能、阻燃性、阻隔性比纯尼龙高,而制造成本与普通尼龙相当。

因而,具有很大的竞争力。

④用于电子、电气、电器的阻燃尼龙与日俱增,绿色化阻燃尼龙越来越受到市场的重视。

⑤抗静电、导电尼龙以及磁性尼龙将成为电子设备、矿山机械、纺织机械的首选材料。

⑥加工助剂的研究与应用,将推动改性尼龙的功能化、高性能化的进程。

⑦综合技术的应用,产品的精细化是推动其产业发展的动力。

聚酰胺纤维是大分子链上具有C9-NH 基团一类纤维的总称。

常用的为脂肪族聚酯胺夕主要品种有聚酰胺6和'聚酰胺66,我国商品名称为锦纶6和锦纶66。

锦纶纤维以长丝为主,少量的短纤维主要用于和棉,毛或其它化纤混纺。

锦纶长丝大量用于变形加工制造弹力丝,作为机织或针织原料。

锦纶纤维一般采用熔体法纺丝。

锦纶6和锦纶66纤维的强度为4〜5.3cN/dtex,高强涤纶可达7.9cN/dtex以上,伸长率18%〜45%,在10%伸长时的弹性回复率在90%以上。

据测定,锦纶纤维的耐磨为棉纤维的20倍、羊毛的20倍、粘胶的50倍。

耐疲劳性能居各种纤维之首。

在民用上大量用于加工袜子和其他混纺制品,提高织物的耐磨牢度,但锦纶纤维模量低,抗摺皱性能不及涤纶,限制了锦纶在衣着领域的应用。

锦纶帘子线的寿命比粘胶大3倍,冲击吸收能大,因此轮胎能在坏的路面上行驶,但由于锦纶帘子线伸长大,汽车停止时,轮胎变形产生平点,起动初期汽车跳动厉害。

因此只能用于货车的轮胎,不宜作客车的轮胎帘子线之用。

锦纶纤维表面平整,不加油剂的纤维摩擦系数很高,锦纶油剂贮存日久易失效,纺织加工时还需要重新添加油剂。

锦纶纤维的吸湿比涤纶高,锦纶6与锦纶66 在标准条件下的回潮率为 4.5%,在合纤中仅次于维纶。

染色性能好,可用酸性染料,分散性染料及其他染料染色。

改性尼龙的概念和分类改性尼龙是工程塑料中的一类,是以尼龙原料为基料在加以改变其物理性质而形成的颗粒状产品。

此类产品产出是依据一些生产厂家所需求的不同而进行改性制作的。

改性尼龙大致包括:增强尼龙,增韧尼龙,耐磨尼龙,无卤阻燃尼龙,导电尼龙,阻燃尼龙等等。

1、热性质:玻璃转移温度(Tg)及熔点(Tm);热变形温度(HDT)高;长期使用温度高(UL-746B);使用温度范围大;热膨胀系数小。

2、机械性质:高强度、高机械模数、低潜变性、强耐磨损及耐疲劳性。

3、其它:耐化学药品性、抗电性、耐燃性、耐候性、尺寸安定性佳。

此类产品产出是依据一些生产厂家所需求的不同而进行改性制作的,改性尼龙大致包括:增强尼龙,增韧尼龙,耐磨尼龙,无卤阻燃尼龙,导电尼龙,阻燃尼龙等等。

改性尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。

尼龙历史美国杜邦公司人们对尼龙并不陌生,在日常生活中尼龙制品比比皆是,但是知道它历史的人就很少了。

尼龙是世界上首先研制出的一种合成纤维。

二十世纪初,企业界搞基础科学研究还被认为是一种不可思议的事情。

1926年美国最大的工业公司——。

相关文档
最新文档