平面上两点间的距离

合集下载

平面直角坐标系中两点间的距离公式

平面直角坐标系中两点间的距离公式

平面直角坐标系中两点间的距离公式在平面直角坐标系中,两点之间的距离可以使用勾股定理来计算。

勾股定理是数学中的一个基本定理,描述了直角三角形中直角边的平方和等于斜边平方的关系。

首先,假设平面直角坐标系中的两点分别是A(x1,y1)和B(x2,y2)。

我们可以根据勾股定理计算AB的距离。

勾股定理的公式如下:AB²=(x2-x1)²+(y2-y1)²根据该公式,我们可以计算两点之间的距离。

以下是一个示例,以便更好地理解:假设点A的坐标为A(3,4),点B的坐标为B(6,8)。

我们可以计算两点之间的距离。

先计算两点在x轴方向上的差值:x2-x1=6-3=3再计算两点在y轴方向上的差值:y2-y1=8-4=4根据勾股定理,计算AB的平方:AB²=(3)²+(4)²=9+16=25最后,计算AB的距离:AB=√25=5因此,点A和点B之间的距离为5从上述示例可以看出,由于平面直角坐标系中的两点可以移到任意位置,所以两点之间的距离计算公式是通用的。

除了直接使用勾股定理,我们还可以使用中点公式和距离公式来计算两点之间的距离。

中点公式:在平面直角坐标系中,中点公式可以用来计算两点连线的中点坐标。

中点公式如下:中点坐标=((x1+x2)/2,(y1+y2)/2)为了计算两点之间的距离,我们可以首先使用中点公式计算出连线的中点坐标,然后再使用中点和两个点之间的距离公式计算距离。

距离公式:中点公式和两点之间的距离公式之间的关系如下:两点之间的距离=√((x2-x1)²+(y2-y1)²)因此,使用中点公式计算出中点坐标后,我们可以再使用该距离公式来计算两点之间的距离。

总结起来,在平面直角坐标系中,计算两点之间的距离的步骤如下:1.根据给定的两点坐标,计算两点在x轴和y轴方向上的差值。

2.使用勾股定理计算出两点之间的平方距离。

3.对平方距离取平方根,得到最终的距离。

平面上两点间的距离公式

平面上两点间的距离公式

平面上两点间的距离公式在平面上,两点之间的距离可以通过使用勾股定理或坐标公式来计算。

一、勾股定理勾股定理适用于直角三角形,根据该定理,直角三角形斜边的长度可以通过其两条直角边的长度计算得出。

在平面上,两点之间的直线可以看做是直角三角形的斜边,因此我们可以使用勾股定理来计算两点之间的距离。

设两点的坐标分别为P(x1,y1)和Q(x2,y2),则PQ的距离为d。

根据勾股定理,d的计算公式为:d=√((x2-x1)^2+(y2-y1)^2)其中,^表示乘方运算,√表示开方运算。

这个公式代表了将两点之间的直线看作斜边,利用两条直角边的长度计算斜边的长度。

二、坐标公式坐标公式是通过计算两点间的水平和垂直距离,然后应用勾股定理来求得两点之间的距离。

这种方法适用于不确定两点坐标的直角坐标系。

假设P(x1,y1)和Q(x2,y2)是两点,横坐标之间的差为Δx,纵坐标之间的差为Δy,d是两点之间的距离,则d的计算公式如下:d=√(Δx^2+Δy^2)=√((x2-x1)^2+(y2-y1)^2)这个公式表示了通过计算两点之间的水平和垂直距离,然后应用勾股定理来求得两点之间的距离。

无论使用勾股定理还是坐标公式,最终的计算结果都是两点之间的距离。

这个距离表示了两点之间的直线长度。

这些公式在计算机图形学、几何学和物理学等领域都有广泛的应用。

它们提供了一种简单而有效的方法来计算平面上两点之间的距离。

最后,值得注意的是,上述的距离公式适用于平面上的欧几里得距离。

在一些特殊情况下,如曼哈顿距离或切比雪夫距离等,计算方法可能会有所不同。

这些距离公式适用于特定的应用场景,根据实际情况选择合适的距离公式进行计算。

两点间的距离

两点间的距离

两点间的距离在我们日常生活中,我们经常需要计算两个点之间的距离。

这个距离可以是线性的,也可以是空间的。

而在数学和物理学中,有许多方法可以用来计算两点之间的距离。

这篇文章将介绍几种常用的计算两点间距离的方法,让我们一起来了解吧。

一、欧几里得距离欧几里得距离也被称为直线距离,它是最常见的计算两点间距离的方法。

欧几里得距离是基于勾股定理的,它可以用来计算平面上两点之间的直线距离。

设两点的坐标分别为(x1,y1)和(x2,y2),则它们之间的欧几里得距离可以通过以下公式计算:d = sqrt((x2 - x1)^2 + (y2 - y1)^2)其中,sqrt代表平方根,^表示乘方操作。

通过这个公式,我们可以得到两点之间的欧几里得距离。

二、曼哈顿距离曼哈顿距离,也称为城市街区距离或L1距离,是计算两点间距离的常用方法之一。

它是基于曼哈顿网格的概念,可以用来计算在平面上由水平和垂直线段连接两点的距离。

设两点的坐标分别为(x1,y1)和(x2,y2),则它们之间的曼哈顿距离可以通过以下公式计算:d = |x2 - x1| + |y2 - y1|其中,|x|表示取x的绝对值。

通过这个公式,我们可以得到两点之间的曼哈顿距离。

三、切比雪夫距离切比雪夫距离是计算两点间距离的一种度量方法,它是基于棋盘格中的距离定义的。

切比雪夫距离可以用来计算两点之间的最大距离,即沿任意一条轴的距离。

设两点的坐标分别为(x1,y1)和(x2,y2),则它们之间的切比雪夫距离可以通过以下公式计算:d = max(|x2 - x1|, |y2 - y1|)通过这个公式,我们可以得到两点之间的切比雪夫距离。

四、其他方法除了上述提到的方法,还有一些其他的方法可以计算两点间的距离,例如马哈拉诺比斯距离、闵可夫斯基距离等。

这些方法根据具体的应用场景来选择,每种方法都有自己的特点和适用范围。

结论通过上述介绍,我们了解了计算两点间距离的几种常用方法,包括欧几里得距离、曼哈顿距离和切比雪夫距离。

坐标平面距离计算公式

坐标平面距离计算公式

坐标平面距离计算公式在坐标平面上,两点间的距离可以使用距离公式来计算。

距离公式是基于勾股定理得出的。

假设有坐标平面上的两个点A(x1,y1)和B(x2,y2),我们需要计算它们之间的距离d。

可以使用以下的公式来计算:d=√((x2-x1)²+(y2-y1)²)公式中的√表示开方运算,(x2-x1)²表示x2-x1的平方,(y2-y1)²表示y2-y1的平方。

这个公式的由来可以通过勾股定理来解释。

勾股定理规定,直角三角形的两条直角边的平方和等于斜边的平方。

在坐标平面上,A点和B点构成的直角三角形的斜边就是距离d。

横坐标的差值(x2-x1)可以作为直角边,纵坐标的差值(y2-y1)也可以作为直角边,所以可以利用勾股定理来计算距离。

考虑一个简单的例子,假设A点的坐标是(1,2),B点的坐标是(4,6)。

我们可以将这些值代入距离公式来计算两点之间的距离:d=√((4-1)²+(6-2)²)=√(3²+4²)=√(9+16)=√(25)=5所以,点A和点B之间的距离是5使用距离公式可以计算任意两个点之间的距离。

这个公式在很多领域都有应用,包括几何学、物理学、计算机图形学等。

需要注意的是,距离公式只适用于二维坐标平面上的点。

在三维空间中,距离的计算涉及到3个坐标轴的数值差值的平方和的开方,其计算公式不同于二维情况。

综上所述,坐标平面上两点的距离计算公式是:d=√((x2-x1)²+(y2-y1)²)这个公式可以帮助我们计算任意两个点之间在坐标平面上的距离。

平面上两点间距离、点到直线距离公式

平面上两点间距离、点到直线距离公式

B1 B2
y y
C1 C2
0 0
点A
A坐标(a,b)
直线L
L方程:Ax+By+C=0
点A在L上 直线L1∩L2=A
aA1 bB1 C1 0
A1 A2
x x
B1 B2
y y
C1 C2
0 0
x y
a b
直线上的点
y
l
2x y 3 0
P(x,y) x
(1)点(1,5)在直线上吗? (2)点(2,7)在直线上吗?
A(0,0) B(a,0)
| AC |2 | BD |2 2(a2 b2 c2 )
| AB |2 | BC |2 | CD |2 | AD |2 2(a2 b2 c2 )
结 论 L:3x=2的距离。
解1 : d | 3 (1) 0 2 | 5
|PA|的值。
解: 设P( x,0),则
| PA | ( x 1)2 (0 2)2 x2 2 x 5
| PB | ( x 2)2 (0 7 )2 | PA || PB |
x2 2 x 5 x2 4 x 11 解得: x 1, P(1,0)
x2 4 x 11
| PA | (1 1)2 (0 2)2 2 2
由2x 3 y 1 0令x 0得y 1 ; y 0得x 1
3
2
直线与x轴交于A( 1 ,0),与y轴交于B(0, 1 ).
2
3
L过A关于y轴对称点( 1 ,0)和B点, L方程为
2
x 1
y 1
1即: 2x 3 y 1
0
23
2、已知L的方程:2x+3y+1=;则
(1)将L向上平移2个单位得:_________

5《平面上两点间的距离》课件1.ppt(2)

5《平面上两点间的距离》课件1.ppt(2)

o
x2
x
合 作 探 究
因为
PQ x2 x1 , PQ y2 y1 1 2
y2
所以,在
y
P2 ( x2 , y2 )
Rt PP2Q 中, 1
x1
PP PQ PQ 1 2
2 1 2 2 2
P1 ( x1, y1 ) y1 Q(x2 , y2 )
(
o
x2
x
( x2 x1 )2 ( y2 y1 )2
平面上两点间的距离
已知四点A(-1,3),B(3,-2), C(6,-1),D(2,4),则四边形ABCD 是否为平行四边形? 分析:如何判断一个四边形是否为平行四边形? 1.判断两组对边是否对应平行
2.判断一组对边是否平行且相等
3.对角线互相平分的四边形为平行四边形
问题:如何计算两点间的距离?
过点A向X轴作垂线,过点B向Y轴作垂线, 两条垂线交于点P,则点P的坐标是(-1,-2), 且 PA 3 (2) 5, PB 3 (1) 4
1
1
则 A , 1,C 的横坐标分别为-1,x,6 1 M
1
y
D(2,4)
A(1,3)
O
B(3, 2)
C(6, 1)
x
y
A(1,3)
M ( x, y)
A1 O
M1
C(6, 1)
C1
x
C1 6 由 A1M1 M11 ,得5 x (1) 6 x , 1) 3 ( 1 同理可得 y 解得 x 2 2 2
M
OA
分析: 设出两点坐标
B(b,0), C (0, c)
,
则由中点坐标公式

5《平面上两点间的距离》课件1.ppt

5《平面上两点间的距离》课件1.ppt


)
如果
x1 x2 , 那么 PP2 y2 y1 1
) 式也成立

y
(

y2
P2 ( x2 , y2 )
如果 y1 y2 , 那么 P P2 1
x2 x1
y1
o
(
) 式仍成立.
P1 ( x1 , y1 )
x
由此,我们得到平面上两点 P ( x1 , y1 ), P2 ( x2 , y2 ) 间的 1 距离公式
o
x2
x
合 作 探 究
因为
PQ x2 x1 , 1
P2Q y2 y1
y2
所以,在
y
P2 ( x2 , y2 )
Rt PP2Q 中, 1
x1
PP PQ P2Q 1
2 1 2 2 2
P1 ( x1 , y1 )
(
o
x2 y1
Q( x2 , y2 )
x
( x2 x1 ) 2 ( y2 y1 ) 2
分析: 设出两点坐标
B(b, 0), C (0, c)
则由中点坐标公式
M
OA
b c M( , ) 2 2
由两点间距离公式易证得
B(b,0)
x
1 AM BC 2


P92练习 1,2,3
小 结:
1. 平面上两点 P ( x1 , y1 ), P2 ( x2 , y2 ) 间的距离公式 1
P P2 ( x2 x1 ) ( y2 y1 ) 1
一般地说,已知两点
如何求两点间的距离?
P ( x1 , y1 ), P2 ( x2 , y2 ) 1

第9课:平面上两点间距离

第9课:平面上两点间距离

3 2 =1, 2 -0 3 2 - 0 = 3, 2
1 2 --1 + 2
∵AC2+BC2=AB2,
∴△ABC 为直角三角形.
研一研· 问题探究、课堂更高效
2.1.5
探究点二
中点坐标公式
问题 1 已知 A(-1,3),C(6,-1),怎样求 AC 的中点呢?

研一研· 问题探究、课堂更高效
2.1.5
小结
一般地,对于平面上两点 P1(x1,y1),P2(x2,y2),线
本 课 时 栏 目 开 关
x =x1+x2 2 0 段 P1P2 的中点是 M(x0,y0),则 y1+y2 y= 2 0
.
研一研· 问题探究、课堂更高效
2.1.5
本 课 时 栏 目 开 关
题时,首先要根据题设条件建立适当的直角坐标系,然后根 据题中所给的条件,设出已知点的坐标;(2)再根据题设条件 及几何性质推出未知点的坐标;(3)另外,在证题过程中要不 失一般性.
研一研· 问题探究、课堂更高效
2.1.5
跟踪训练 3
证明直角三角形斜边的中点到三个顶点的距离
2.1.5
2. 求点 P(2,4)关于直线 l: 2x-y+1=0 的对称点 P′的坐标.
解 y-4 设 P′(x,y),∵PP′⊥l,∴ · 2=-1. x-2 ①
本 课 时 栏 目 开 关
又∵线段 PP′的中点在直线 l 上,
x+2 y+4 ∴2· - +1=0. 2 2
6 x=5, 由①②组成方程组可解得 y=22. 5 6 22 ∴P′(5, 5 ).
因此 k MP1 = k MP ,所以三点 P1,M,P2 在同一直线上.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档