2015年浙江省高考数学(文科)模拟试题
2015年湖南省高考数学试卷(文科)

2015 年湖南省高考数学试卷(文科)一、选择题(每题 5 分,共 50 分)1.(5 分)已知=1+i(i 为虚数单位),则复数 z=()A.1+i B.1﹣i C.﹣ 1+i D.﹣ 1﹣ i2.( 5 分)在一次马拉松竞赛中, 35 名运动员的成绩(单位:分钟)的茎叶图以下图.若将运动员按成绩由好到差编为 1﹣ 35 号,再用系统抽样方法从中抽取7 人,则此中成绩在区间 [ 139,151] 上的运动员人数是()A.3B.4C.5D.633.(5 分)设 x∈R,则“x>1“是“x>1”的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件4.(5 分)若变量 x, y 知足拘束条件,则z=2x﹣y的最小值为()A.﹣ 1 B.0C.1D.25.(5 分)履行以下图的程序框图,假如输入n=3,则输出的 S=()A.B.C.D.6.(5 分)若双曲线﹣=1 的一条渐近线经过点( 3,﹣ 4),则此双曲线的离心率为()A.B.C.D.7.(5 分)若实数 a,b 知足 + =,则 ab 的最小值为()A.B.2 C.2 D.48.(5 分)设函数 f( x)=ln(1+x)﹣ ln(1﹣x),则 f(x)是()A.奇函数,且在( 0, 1)上是增函数B.奇函数,且在( 0,1)上是减函数C.偶函数,且在( 0,1)上是增函数D.偶函数,且在( 0, 1)上是减函数.(分)已知,,在圆x 2+y2=1上运动,且⊥ ,若点P的坐标为(,9 5 A B C AB BC2 0),则 || 的最大值为()A.6 B.7 C.8 D.910.( 5 分)某工件的三视图以下图,现将该工件经过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件资料的利用率为(资料利用率=)()A .B .C .D .二、填空题(本大题共 5 小题,每题 5 分,共 25 分)11.(5 分)已知会合 U={ 1,2,3,4} ,A={ 1,3} ,B={ 1,3,4} ,则 A ∪(?U B )= .12.(5 分)在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴成立 极坐标系,若曲线 C 的极坐标方程为 ρ=2sin ,θ则曲线 C 的直角坐标方程为.22 213.(5 分)若直线 3x ﹣4y+5=0与圆 x+y(r >0)订交于 A ,B 两点,且∠ AOB=120°,=r( O 为坐标原点),则 r= .14(.5 分)已知函数 (fx )=| 2x﹣2| ﹣b 有两个零点,则实数 b 的取值范围是 .15.( 5 分)已知 ω>0,在函数 y=2sin ωx 与 y=2cos ωx 的图象的交点中,距离最短的两个交点的距离为 2,则 ω=.三、解答题16.( 12 分)某商场举行有奖促销活动,顾客购置必定金额的商品后即可抽奖,抽奖方法是:从装有 2 个红球 A 1,A 2 和 1 个白球 B 的甲箱与装有 2 个红球 a 1, a 2 和 2 个白球 b 1,b 2 的乙箱中,各随机摸出 1 个球,若摸出的 2 个球都是红球则中奖,不然不中奖.(Ⅰ)用球的标号列出全部可能的摸出结果;(Ⅱ)有人以为:两个箱子中的红球比白球多, 因此中奖的概率大于不中奖的概率,你以为正确吗?请说明原因.17.( 12 分)设△ ABC的内角 A,B,C 的对边分别为 a, b,c,a=btanA.(Ⅰ)证明: sinB=cosA;(Ⅱ)若 sinC﹣sinAcosB= ,且 B 为钝角,求 A, B, C.18.( 12 分)如图,直三棱柱 ABC﹣A1B1C1的底面是边长为 2 的正三角形, E,F 分别是 BC,CC 的中点,1(Ⅰ)证明:平面AEF⊥平面 B1BCC1;(Ⅱ)若直线 A1 C 与平面 A1ABB1所成的角为 45°,求三棱锥 F﹣ AEC的体积.19.( 13 分)设数列 { a n} 的前 n 项和为 S n,已知 a1=1,a2=2,a n+2=3S n﹣ S n+1+3,n∈N*,(Ⅰ)证明 a n+2=3a n;(Ⅱ)求 S n.20.(13 分)已知抛物线 C1:x2=4y 的焦点 F 也是椭圆 C2: +=1( a> b> 0)的一个焦点, C1与 C2的公共弦的长为2,过点F的直线l与C1订交于A,B两点,与 C2订交于 C,D 两点,且与同向.(Ⅰ)求 C2的方程;(Ⅱ)若 | AC| =| BD| ,求直线 l 的斜率.21.( 13 分)已知 a> 0,函数 f(x)=ae x cosx(x∈[ 0, +∞ ] ),记 x n为 f(x)的从小到大的第 n( n∈N*)个极值点.(Ⅰ)证明:数列 { f(x n)} 是等比数列;(Ⅱ)若对全部n∈N*,x n≤ | f (x n)| 恒成立,求 a 的取值范围.2015 年湖南省高考数学试卷(文科)参照答案与试题分析一、选择题(每题 5 分,共 50 分)1.(5 分)已知=1+i(i 为虚数单位),则复数 z=()A.1+i B.1﹣i C.﹣ 1+i D.﹣ 1﹣ i【剖析】由条件利用两个复数代数形式的乘除法法例,求得z 的值.【解答】解:∵已知=1+i(i 为虚数单位),∴z===﹣1﹣i,应选: D.【评论】此题主要考察两个复数代数形式的乘除法法例的应用,属于基础题.2.( 5 分)在一次马拉松竞赛中, 35 名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1﹣ 35 号,再用系统抽样方法从中抽取7 人,则此中成绩在区间 [ 139,151] 上的运动员人数是()A.3B.4C.5D.6【剖析】对各数据分层为三个区间,而后依据系统抽样方法从中抽取7 人,获得抽取比率为,而后各层依据此比率抽取.【解答】解:由已知,将个数据分为三个层次是[ 130,138] ,[ 139,151] ,[ 152,153] ,依据系统抽样方法从中抽取7 人,获得抽取比率为,因此成绩在区间 [ 139,151] 中共有 20 名运动员,抽取人数为20×=4;应选: B.【评论】此题考察了茎叶图的认识以及利用系统抽样抽取个体的方法;重点是正确分层,明确抽取比率.33.(5 分)设 x∈R,则“x>1“是“x>1”的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件【剖析】利用充要条件的判断方法判断选项即可.3【解答】解:因为 x∈R,“x>1“? “x>1”,3因此“x>1“是“x> 1”的充要条件.应选: C.【评论】此题考察充要条件的判断,基本知识的考察.4.(5 分)若变量 x, y 知足拘束条件,则z=2x﹣y的最小值为()A.﹣ 1 B.0C.1D.2【剖析】由拘束条件作出可行域,由图获得最优解,求出最优解的坐标,数形联合得答案.【解答】解:由拘束条件作出可行域如图,由图可知,最优解为A,联立,解得 A( 0,1).∴z=2x﹣y 的最小值为 2×0﹣1=﹣ 1.应选: A.【评论】此题考察了简单的线性规划,考察了数形联合的解题思想方法,是中档题.5.(5 分)履行以下图的程序框图,假如输入n=3,则输出的 S=()A.B.C.D.【剖析】列出循环过程中 S 与 i 的数值,知足判断框的条件即可结束循环.【解答】解:判断前 i=1,n=3, s=0,第 1 次循环, S=,i=2,第 2 次循环, S=,i=3,第 3 次循环, S=,i=4,此时, i>n,知足判断框的条件,结束循环,输出结果:S===应选: B.【评论】此题考察循环框图的应用,注意判断框的条件的应用,考察计算能力6.(5 分)若双曲线﹣=1 的一条渐近线经过点( 3,﹣ 4),则此双曲线的离心率为()A.B.C.D.【剖析】利用双曲线的渐近线方程经过的点,获得a、b 关系式,而后求出双曲线的离心率即可.【解答】解:双曲线﹣=1 的一条渐近线经过点( 3,﹣ 4),可得 3b=4a,即 9(c2﹣a2) =16a2,解得=.应选: D.【评论】此题考察双曲线的简单性质的应用,基本知识的考察.7.(5 分)若实数 a,b 知足+ =,则ab的最小值为()A.B.2C.2D.4【剖析】由+ =,可判断a>0,b>0,而后利用基础不等式即可求解 ab 的最小值【解答】解:∵+ =,∴a> 0,b> 0,∵(当且仅当 b=2a 时取等号),∴,解可得, ab,即ab的最小值为2,应选: C.【评论】此题主要考察了基本不等式在求解最值中的简单应用,属于基础试题8.(5 分)设函数 f( x)=ln(1+x)﹣ ln(1﹣x),则 f(x)是()A.奇函数,且在( 0, 1)上是增函数B.奇函数,且在( 0,1)上是减函数C.偶函数,且在( 0,1)上是增函数D.偶函数,且在( 0, 1)上是减函数【剖析】求出好的定义域,判断函数的奇偶性,以及函数的单一性推出结果即可.【解答】解:函数 f (x) =ln( 1+x)﹣ ln(1﹣x),函数的定义域为(﹣ 1, 1),函数 f (﹣ x)=ln(1﹣x)﹣ ln( 1+x)=﹣[ ln (1+x)﹣ ln( 1﹣ x)] =﹣f (x),所以函数是奇函数.清除 C,D,正确结果在 A,B,只要判断特别值的大小,即可推出选项, x=0 时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,明显f(0)<f(),函数是增函数,因此 B 错误, A 正确.应选: A.【评论】此题考察函数的奇偶性以及函数的单一性的判断与应用,考察计算能力.,,在圆x 2+y2=1上运动,且⊥ ,若点P的坐标为(,9.(5 分)已知 A B C AB BC2 0),则 || 的最大值为()A.6 B.7 C.8 D.9【剖析】由题意, AC为直径,因此 ||=|2+| .B 为(﹣ 1,0)时,| 2+| ≤7,即可得出结论.【解答】解:由题意, AC为直径,因此 ||=|2+|因此 B 为(﹣ 1,0)时, | 2+| ≤7.因此 || 的最大值为 7.另解:设 B(cosα, sin α),| 2+| =| 2 (﹣ 2 , 0 ) + ( cosα﹣ 2 , sin α) | =| ( cosα﹣ 6 , sin α) | ==,当 cosα=﹣1 时, B 为(﹣ 1,0),获得最大值7.应选: B.【评论】此题考察向量知识的运用,考察学生剖析解决问题的能力,比较基础.10.( 5 分)某工件的三视图以下图,现将该工件经过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件资料的利用率为(资料利用率=)()A.B.C.D.【剖析】由题意,原资料对应的几何体是圆锥,其内接正方体是加工的新工件,求出它们的体积,正方体的体积与圆锥的体积比为所求.【解答】解:由题意,由工件的三视图获得原资料是圆锥,底面是直径为2的圆,母线长为 3,因此圆锥的高为2,圆锥是体积为;其内接正方体的棱长为x,则,解得x=,因此正方体的体积为,因此原工件资料的利用率为:=;应选: A.【评论】此题考察了由几何体的三视图获得几何体的体积以及几何体的内接正方体棱长的求法;正确复原几何体以及计算内接正方体的体积是重点,属于中档题.二、填空题(本大题共 5 小题,每题 5 分,共 25 分)11.(5 分)已知会合 U={ 1,2,3,4} ,A={ 1,3} ,B={ 1,3,4} ,则 A∪(?U B)= { 1,2,3}.【剖析】第一求出会合 B 的补集,而后再与会合 A 取并集.【解答】解:会合 U={ 1,2,3,4} , A={ 1,3} , B={ 1, 3,4} ,因此 ?U B={ 2} ,因此 A∪( ?U B)={ 1,2,3} .故答案为: { 1, 2,3} .【评论】此题考察了会合的交集、补集、并集的运算;依据定义解答,属于基础题.12.(5 分)在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴成立极坐标系,若曲线 C 的极坐标方程为ρ=2sin,θ则曲线 C 的直角坐标方程为 x2+(y﹣ 1)2=1 .【剖析】直接利用极坐标与直角坐标互化,求解即可.2【解答】解:曲线 C 的极坐标方程为ρ=2sn,θ即ρ=2ρ sn,θ它的直角坐标方程为: x2+y2 =2y,即 x2+(y﹣1)2=1.故答案为: x2+( y﹣ 1)2=1.【评论】此题考察极坐标与直角坐标方程的互化,基本知识的考察.2 2 213.(5 分)若直线 3x﹣4y+5=0与圆 x +y =r(r>0)订交于 A,B两点,且∠AOB=120°,( O 为坐标原点),则 r= 2 .【剖析】若直线 3x﹣4y+5=0 与圆 x2+y2=r2( r>0)交于 A、B 两点,∠AOB=120°,则△ AOB为顶角为 120°的等腰三角形,极点(圆心)到直线 3x﹣4y+5=0 的距离d= r,代入点到直线距离公式,可结构对于r 的方程,解方程可得答案.【解答】解:若直线 3x﹣4y+5=0 与圆 x2+y2=r2(r> 0)交于 A、 B 两点, O 为坐标原点,且∠ AOB=120°,则圆心( 0, 0)到直线 3x﹣4y+5=0 的距离 d=rcos= r,即= r,解得 r=2,故答案为: 2.【评论】此题考察的知识点是直线与圆订交的性质,此中剖析出圆心(0,0)到直线 3x﹣ 4y+5=0 的距离 d=r 是解答的重点.14.(5 分)已知函数 f(x)=| 2x﹣2| ﹣b 有两个零点,则实数 b 的取值范围是0<b< 2 .【剖析】由函数 f( x) =| 2x﹣2| ﹣b 有两个零点,可得 | 2x﹣ 2| =b 有两个零点,进而可得函数 y=| 2x﹣ 2| 函数 y=b 的图象有两个交点,联合函数的图象可求 b 的范围【解答】解:由函数 f(x)=| 2x﹣2| ﹣ b 有两个零点,可得 | 2x﹣2| =b 有两个零点,进而可得函数 y=| 2x﹣ 2| 函数 y=b 的图象有两个交点,联合函数的图象可得,0<b<2 时切合条件,故答案为:0<b<2【评论】此题主要考察函数的零点以及数形联合方法,数形联合是数学解题中常用的思想方法,可以变抽象思想为形象思想,有助于掌握数学识题的实质.15.( 5 分)已知ω>0,在函数 y=2sin ωx与 y=2cos ωx的图象的交点中,距离最短的两个交点的距离为2,则ω=.【剖析】依据正弦线,余弦线得出交点((k1,),((k2,), k1,k2都为整数,两个交点在同一个周期内,距离近来,即可得出方程求解即可.【解答】解:∵函数 y=2sin ωx与 y=2cosωx的图象的交点,∴依据三角函数线可得出交点((k1,),((k2,),k1, k2都为整数,∵距离最短的两个交点的距离为2,∴这两个交点在同一个周期内,∴ 12=()2+()2,ω=故答案为:【评论】此题考察了三角函数的图象和性质,三角函数线的运用,属于中档题,计算较麻烦.三、解答题16.( 12 分)某商场举行有奖促销活动,顾客购置必定金额的商品后即可抽奖,抽奖方法是:从装有 2 个红球 A1,A2和 1 个白球 B 的甲箱与装有 2 个红球 a1, a2和 2 个白球 b1,b2的乙箱中,各随机摸出 1 个球,若摸出的 2 个球都是红球则中奖,不然不中奖.(Ⅰ)用球的标号列出全部可能的摸出结果;(Ⅱ)有人以为:两个箱子中的红球比白球多,因此中奖的概率大于不中奖的概率,你以为正确吗?请说明原因.【剖析】(Ⅰ)中奖利用列举法列出全部可能的摸出结果;(Ⅱ)在(Ⅰ)中求出摸出的 2 个球都是红球的结果数,而后利用古典概型概率计算公式求得概率,并说明中奖的概率大于不中奖的概率是错误的.【解答】解:(Ⅰ)全部可能的摸出的结果是:{ A1,a1} , { A1, a2} , { A1,b1} ,{ A1,b2} ,{ A2,a1} ,{ A2, a2} ,{ A2,b1} , { A2, b2} ,{ B,a1} , { B,a2} ,{ B,b1} ,{ B, b2 } ;(Ⅱ)不正确.原因以下:由(Ⅰ)知,全部可能的摸出结果共 12 种,此中摸出的 2 个球都是红球的结果为:{ A1,a1} , { A1, a2} , { A2,a1} ,{ A2,a2} ,共 4 种,∴中奖的概率为.不中奖的概率为: 1﹣.故这类说法不正确.【评论】此题考察了古典概型及其概率计算公式,训练了列举法求基本领件个数,是基础题.17.( 12 分)设△ ABC的内角 A,B,C 的对边分别为 a, b,c,a=btanA.(Ⅰ)证明: sinB=cosA;(Ⅱ)若 sinC﹣sinAcosB= ,且 B 为钝角,求 A, B, C.【剖析】(Ⅰ)由正弦定理及已知可得=,由sinA≠0,即可证明sinB=cosA.(Ⅱ)由两角和的正弦函数公式化简已知可得sinC﹣ sinAcosB=cosAsinB= ,由(1)sinB=cosA,可得 sin2B= ,联合范围可求 B,由 sinB=cosA及 A 的范围可求 A,由三角形内角和定理可求 C.【解答】解:(Ⅰ)证明:∵ a=btanA.∴=tanA,∵由正弦定理:,又 tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵ sinC=sin[ π﹣( A+B)] =sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB= ,由( 1)sinB=cosA,∴sin2B= ,∵0< B<π,∴ sinB= ,∵B 为钝角,∴B= ,又∵ cosA=sinB=,∴A= ,∴C=π﹣A﹣B= ,综上, A=C=,B=.【评论】此题主要考察了正弦定理,三角形内角和定理,两角和的正弦函数公式的应用,属于基础题.18.( 12 分)如图,直三棱柱 ABC﹣A1B1C1的底面是边长为2 的正三角形, E,F 分别是 BC,CC1的中点,(Ⅰ)证明:平面AEF⊥平面 B1BCC1;(Ⅱ)若直线 A1 C 与平面 A1ABB1所成的角为 45°,求三棱锥 F﹣ AEC的体积.【剖析】(Ⅰ)证明 AE⊥ BB1, AE⊥BC,BC∩ BB1=B,推出 AE⊥平面 B1 BCC1,利用平面余平米垂直的判断定理证明平面AEF⊥平面 B1BCC1;(Ⅱ)取 AB 的中点 G,说明直线 A1C与平面 A1ABB1所成的角为 45°,就是∠ CA1G,求出棱锥的高与底面面积即可求解几何体的体积.【解答】(Ⅰ)证明:∵几何体是直棱柱,∴BB1⊥底面 ABC,AE? 底面 ABC,∴AE⊥BB1,∵直三棱柱 ABC﹣ A1B1C1的底面是边长为 2 的正三角形, E 分别是 BC的中点,∴AE⊥BC,BC∩BB1=B,∴AE⊥平面B1BCC1,∵ AE? 平面 AEF,∴平面 AEF⊥平面 B1BCC1;(Ⅱ)解:取 AB 的中点 G,连接 A1G,CG,由(Ⅰ)可知 CG⊥平面 A1ABB1,直线 A1C 与平面 A1ABB1所成的角为 45°,就是∠ CA1G,则 A1G=CG= ,∴AA1== ,CF=.三棱锥 F﹣AEC的体积:×== .【评论】此题考察几何体的体积的求法,平面与平面垂直的判断定理的应用,考察空间想象能力以及计算能力.19.( 13 分)设数列 { a n} 的前 n 项和为 S n,已知 a1=1,a2=2,a n+2=3S n﹣ S n+1+3,n∈N*,(Ⅰ)明 a n+2=3a n;(Ⅱ)求 S n.【剖析】(Ⅰ)当 n≥2 ,通 a n+2=3S n S n+1+3 与 a n+1=3S n﹣1 S n+3 作差,而后当 n=1 命也成立刻可;(Ⅱ)通( I)写出奇数、偶数的通公式,分奇数的和、偶数的和算即可.【解答】(Ⅰ)明:当 n≥2 ,由 a n+2=3S n S n+1+3,可得 a n+1=3S n﹣1S n+3,两式相减,得 a n+2a n+1=3a n a n+1,∴a n+2=3a n,当 n=1 ,有 a3 =3S1 S2+3=3×1( 1+2)+3=3,∴ a3=3a1,命也成立,上所述: a n+2=3a n;(Ⅱ)解:由( I)可得,此中k是随意正整数,∴S2k﹣1=(a1+a2)+(a3+a4)+⋯+(a2k﹣3+a2k﹣2)+a2k﹣1=3+32+⋯+3k﹣1+3k﹣1=+3k﹣ 1=×3k﹣1,k﹣ 1k﹣ 1S2k=S2k﹣1+a2k= ×3+2×3=,上所述, S n=.【点】本考求数列的通及乞降,考分的思想,注意解方法的累,属于中档.20.(13 分)已知抛物线 C1:x2=4y 的焦点 F 也是椭圆 C2: +=1( a> b> 0)的一个焦点, C1与 C2的公共弦的长为2,过点F的直线l与C1订交于A,B两点,与 C2订交于 C,D 两点,且与同向.(Ⅰ)求 C2的方程;(Ⅱ)若 | AC| =| BD| ,求直线 l 的斜率.【剖析】(Ⅰ)经过 C1方程可知 a2﹣b2=1,经过 C1与 C2的公共弦的长为2且C1与 C2的图象都对于 y 轴对称可得,计算即得结论;(Ⅱ)设 A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),经过=可得(x1+x2)2﹣4x1x2 =( x3+x4)2﹣4x3x4,设直线l方程为 y=kx+1,分别联立直线与抛物线、直线与椭圆方程,利用韦达定理计算即可.【解答】解:(Ⅰ)由 C1方程可知 F(0,1),∵ F 也是椭圆 C2的一个焦点,∴ a2﹣b2=1,又∵ C1与 C2的公共弦的长为2,C1与C2的图象都对于y轴对称,∴易得 C1与 C2的公共点的坐标为(±,),∴,又∵ a2﹣b2=1,∴a2=9,b2=8,∴C2的方程为+ =1;(Ⅱ)如图,设A( x1,y1),B(x2, y2),C( x3,y3),D(x4,y4),∵与同向,且| AC| =| BD|,∴= ,∴ x1﹣x2=x3﹣x4,∴( x1+x2)2﹣ 4x1x2=(x3+x4)2﹣4x3x4,设直线 l 的斜率为 k,则 l 方程: y=kx+1,由,可得 x2﹣4kx﹣4=0,由韦达定理可得x1+x2=4k, x1x2=﹣ 4,由,得( 9+8k2)x2+16kx﹣64=0,由韦达定理可得x3+x4=﹣,x3x4=﹣,又∵( x1+x2)2﹣4x1x2=( x3+x4)2﹣4x3x4,∴ 16(k2+1)=+,化简得 16(k2+1)=,∴( 9+8k2)2=16×9,解得 k=±,即直线 l 的斜率为±.【评论】此题是一道直线与圆锥曲线的综合题,考察求椭圆方程以及直线的斜率,波及到达定理等知,考算能力,注意解方法的累,属于中档.21.( 13 分)已知 a> 0,函数 f(x)=ae x cosx(x∈[ 0, +∞ ] ), x n f(x)的从小到大的第 n( n∈N*)个极点.(Ⅰ)明:数列 { f(x n)} 是等比数列;(Ⅱ)若全部n∈N*,x n≤ | f (x n)| 恒成立,求 a 的取范.【剖析】(Ⅰ)求出函数的数,令数 0,求得极点,再由等比数列的定,即可得;(Ⅱ)由 n=1 可得 a 的范,运用数学法8n>4n+3,当 a≥π,得 | f( x n+1) | > x n+1,即可获得 a 的范.【解答】(Ⅰ)明:函数f(x)=ae x cosx的数 f (′x) =ae x(cosx sinx),a>0,x≥0, e x≥1,由 f ′(x) =0,可得 cosx=sinx,即 tanx=1,解得 x=kπ+,k=0, 1, 2,⋯,当 k 奇数, f ′(x)在 kπ+邻近左右正,当 k 偶数, f ′(x)在 kπ+邻近左正右.故 x=kπ+,k=0,1,2,⋯,均极点,x n=(n 1)π+ =nπ ,f(x n)=a cos( nπ ),f(x n+1)=a cos( nπ+),π当 n 偶数, f(x n+1)= e f(x n),π当 n 奇数, f(x n+1)= e f(x n),即有数列 { f(x n)} 是等比数列;(Ⅱ)解:因为x1≤| f( x1) | ,≤a,解得 a≥π,下边明 8n>4n+3.2015年湖南省高考数学试卷(文科)当 n=1 时, 8>7 明显成立,假定 n=k 时, 8k> 4k+3,当 n=k+1 时, 8k+1=8?8k>8(4k+3)=32k+24=4(k+1)+28k+20>4(k+1)+3,即有 n=k+1 时,不等式成立.综上可得 8n>4n+3(n∈N+),π由 e >8,当 a≥ π时,πn由(Ⅰ)可得 | f( x n+1) | =| (﹣ e ) || f(x1)|>8n| f (x1)| =8n f( x1)>( 4n+3)x1>x n+1,n∈N+,综上可得 a≥π成立.【评论】此题考察导数的运用:求极值,主要考察不等式的恒成立问题,同时考查等比数列的通项公式和数学概括法证明不等式的方法,以及不等式的性质,属于难题.第 21 页(共 21 页)。
2015高考真题:文科数学(湖南卷)试卷(含答案)

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知2(1)iz-=1+i(i为虚数单位),则复数z=( )A、1+iB、1-iC、-1+iD、-1-i 【答案】D【解析】试题分析:.由题根据所给复数式子进行化简即可得到复数z的代数式;由题22(1)(1)22(1i)1,1112i i i ii z iz i i-----=+∴====--++,故选D.考点:复数的运算2、在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A、3B、4C、5D、6【答案】B考点:茎叶图3、设x∈R,则“x>1”是“2x>1”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件【答案】C【解析】试题分析:.由题根据明天的关系进行发现即可得到所给两个明天的关系;由题易知“x>1”可以推得“2x>1”,“2x>1”可以得到“x>1”,所以“x>1”是“2x>1”的充要条件,故选C.考点:命题与条件4、若变量x、y满足约束条件111x yy xx+≥⎧⎪-≤⎨⎪≤⎩,则z=2x-y的最小值为( )A、-1B、0C、1D、2 【答案】A考点:简单的线性规划5、执行如图2所示的程序框图,如果输入n=3,中输入的S=( )A、67B、37C、89D、49【答案】B考点:程序框图6、若双曲线22221x ya b-=的一条渐近线经过点(3,-4),则此双曲线的离心率为A B、54C、43D、53【答案】D【解析】试题分析:由题利用双曲线的渐近线方程经过的点,得到a、b关系式,然后求出双曲线的离心率即可.因为双曲线22221x ya b-=的一条渐近线经过点(3,-4),2225349163c b a c a a e a ∴=∴-=∴=,(),=. 故选D.考点:双曲线的简单性质7、若实数a ,b 满足12a b+=,则ab 的最小值为( )A B 、2 C 、 D 、4 【答案】C考点:基本不等式8、设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数 【答案】A 【解析】试题分析:求出函数的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可. 函数f (x )=ln (1+x )-ln (1-x ),函数的定义域为(-1,1),函数f (-x )=ln (1-x )-ln (1+x )=-[ln (1+x )-ln (1-x )]=-f (x ),所以函数是奇函数.()2111'111f x x x x =+=+-- ,已知在(0,1)上()'0f x > ,所以f(x)在(0,1)上单调递增,故选A.考点:利用导数研究函数的性质9、已知点A,B,C 在圆221x y +=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则PA PB PC ++ 的最大值为A 、6B 、7C 、8D 、9 【答案】B【解析】试题分析:由题根据所给条件不难得到该圆221x y +=是一AC 位直径的圆,然后根据所给条件结合向量的几何关系不难得到24PA PB PC PO PB PB ++++==,易知当B 为(-1,0)时取得最大值.由题意,AC 为直径,所以24PA PB PC PO PB PB ++++== ,已知B 为(-1,0)时,4PB +取得最大值7,故选B.考点:直线与圆的位置关系、平面向量的运算性质10、某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)A 、89πB 、827πC 、21)πD 、21)π【答案】A考点:三视图、基本不等式求最值、圆锥的内接长方体 二、填空题:本大题共5小题,每小题5分,共25分. 11、已知集合U={}1,2,3,4,A={}1,3,B={}1,3,4,则A (U B ð)=_____.【答案】{1,2,3}.考点:集合的运算12、在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为_____.【答案】2211x y +-=() 【解析】试题分析:将极坐标化为直角坐标,求解即可.曲线C 的极坐标方程为222sn sn ρθρρθ=∴=,,它的直角坐标方程为222x y y += , 2211x y ∴+-=(). 故答案为:2211x y +-=(). 考点:圆的极坐标方程13. 若直线3x-4y+5=0与圆()2220x y r r +=>相交于A,B 两点,且120o AOB ∠=(O 为坐标原点),则r=_____. 【答案】 【解析】试题分析:直线3x-4y+5=0与圆2220x y r r +=(>)交于A 、B 两点,∠AOB=120°,则△AOB 为顶角为120°的等腰三角形,顶点(圆心)到直线3x-4y+5=0的距离为12r ,代入点到直线距离公式,可构造关于r 的方程,解方程可得答案.如图直线3x-4y+5=0与圆2220x y r r +=(>) 交于A 、B 两点,O 为坐标原点,且∠AOB=120°,则圆心(0,0)到直线3x-4y+5=0的距离为12r 12r r =∴,=2 .故答案为2.考点:直线与圆的位置关系14、若函数f (x )=| 2x-2 |-b 有两个零点,则实数b 的取值范围是_____. 【答案】0<b <2考点:函数零点15、已知ω>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为,则ω =_____. 【答案】2πω=考点:三角函数图像与性质三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。
2015年江西省高考数学试卷(文科)(全国新课标ⅰ)

2015年江西省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x |x=3n +2,n ∈N },B={6,8,10,12,14},则集合A ∩B 中元素的个数为( ) A .5B .4C .3D .22.(5分)已知点A (0,1),B (3,2),向量AC →=(﹣4,﹣3),则向量BC →=( ) A .(﹣7,﹣4)B .(7,4)C .(﹣1,4)D .(1,4)3.(5分)已知复数z 满足(z ﹣1)i=1+i ,则z=( ) A .﹣2﹣i B .﹣2+iC .2﹣iD .2+i4.(5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .310B .15C .110 D .120 5.(5分)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( ) A .3B .6C .9D .126.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛7.(5分)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A .172B .192C .10D .128.(5分)函数f (x )=cos (ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A .(kπ﹣14,kπ+34),k ∈zB .(2kπ﹣14,2kπ+34),k ∈zC .(k ﹣14,k +34),k ∈zD .(2k −14,2k +34),k ∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=( )A .5B .6C .7D .810.(5分)已知函数f (x )={2x−1−2,x ≤1−log 2(x +1),x >1,且f (α)=﹣3,则f (6﹣α)=( )A .﹣74B .﹣54C .﹣34D .﹣1411.(5分)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A .1B .2C .4D .812.(5分)设函数y=f (x )的图象与y=2x +a 的图象关于y=﹣x 对称,且f (﹣2)+f (﹣4)=1,则a=( ) A .﹣1 B .1 C .2 D .4二、本大题共4小题,每小题5分.13.(5分)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n= .14.(5分)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a= .15.(5分)若x ,y 满足约束条件{x +y −2≤0x −2y +1≤02x −y +2≥0,则z=3x +y 的最大值为 .16.(5分)已知F 是双曲线C :x 2﹣y 28=1的右焦点,P 是C 的左支上一点,A (0,6√6).当△APF 周长最小时,该三角形的面积为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B=2sinAsinC . (Ⅰ)若a=b ,求cosB ;(Ⅱ)设B=90°,且a=√2,求△ABC 的面积.18.(12分)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (Ⅰ)证明:平面AEC ⊥平面BED ;(Ⅱ)若∠ABC=120°,AE ⊥EC ,三棱锥E ﹣ACD 的体积为√63,求该三棱锥的侧面积.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x y w∑8i=1(x i ﹣x )2 ∑8i=1(w i ﹣w )2∑8i=1(x i ﹣x )(y i ﹣y )∑8i=1(w i﹣w )(y i ﹣y )46.6 563 6.8289.8 1.6 1469 108.8表中w i =√x i ,w =18∑8i=1wi(Ⅰ)根据散点图判断,y=a +bx 与y=c +d √x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x 、y 的关系为z=0.2y ﹣x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x=49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…..(u n v n ),其回归线v=α+βu 的斜率和截距的最小二乘估计分别为:β^=∑n i=1(u i −u)(v i −v)∑n i=1(u i −u)2,α^=v ﹣β^u . 20.(12分)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x ﹣2)2+(y ﹣3)2=1交于点M 、N 两点.(1)求k 的取值范围;(2)若OM →•ON →=12,其中O 为坐标原点,求|MN |. 21.(12分)设函数f (x )=e 2x ﹣alnx .(Ⅰ)讨论f (x )的导函数f′(x )零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln 2a.四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=√3CE,求∠ACB的大小.五、【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.六、【选修4-5:不等式选讲】24.已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年江西省高考数学试卷(文科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【解答】解:A={x |x=3n +2,n ∈N }={2,5,8,11,14,17,…}, 则A ∩B={8,14},故集合A ∩B 中元素的个数为2个, 故选:D . 2.【解答】解:由已知点A (0,1),B (3,2),得到AB →=(3,1),向量AC →=(﹣4,﹣3),则向量BC →=AC →−AB →=(﹣7,﹣4); 故选:A . 3.【解答】解:由(z ﹣1)i=1+i ,得z ﹣1=1+i i =−i(1+i)−i 2=1−i ,∴z=2﹣i .故选:C . 4.【解答】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种, 其中只有(3,4,5)为勾股数, 故这3个数构成一组勾股数的概率为110.故选:C . 5.【解答】解:椭圆E 的中心在坐标原点,离心率为12,E 的右焦点(c ,0)与抛物线C :y 2=8x 的焦点(2,0)重合, 可得c=2,a=4,b 2=12,椭圆的标准方程为:x 216+y 212=1,抛物线的准线方程为:x=﹣2,由{x =−2x 216+y 212=1,解得y=±3,所以A (﹣2,3),B (﹣2,﹣3).|AB |=6. 故选:B . 6.【解答】解:设圆锥的底面半径为r ,则π2r=8,解得r=16π,故米堆的体积为14×13×π×(16π)2×5≈3209,∵1斛米的体积约为1.62立方,∴3209÷1.62≈22,故选:B . 7.【解答】解:∵{a n }是公差为1的等差数列,S 8=4S 4,∴8a 1+8×72×1=4×(4a 1+4×32),解得a 1=12.则a 10=12+9×1=192.故选:B .【解答】解:由函数f (x )=cos (ωx +ϕ)的部分图象,可得函数的周期为2πω=2(54﹣14)=2,∴ω=π,f (x )=cos (πx +ϕ). 再根据函数的图象以及五点法作图,可得π4+ϕ=π2,k ∈z ,即ϕ=π4,f (x )=cos (πx +π4).由2kπ≤πx +π4≤2kπ+π,求得 2k ﹣14≤x ≤2k +34,故f (x )的单调递减区间为(2k −14,2k +34),k ∈z ,故选:D . 9.【解答】解:第一次执行循环体后,S=12,m=14,n=1,不满足退出循环的条件;再次执行循环体后,S=14,m=18,n=2,不满足退出循环的条件;再次执行循环体后,S=18,m=116,n=3,不满足退出循环的条件;再次执行循环体后,S=116,m=132,n=4,不满足退出循环的条件;再次执行循环体后,S=132,m=164,n=5,不满足退出循环的条件;再次执行循环体后,S=164,m=1128,n=6,不满足退出循环的条件;再次执行循环体后,S=1128,m=1256,n=7,满足退出循环的条件;故输出的n 值为7, 故选:C . 10.【解答】解:由题意,α≤1时,2α﹣1﹣2=﹣3,无解; α>1时,﹣log 2(α+1)=﹣3,∴α=7, ∴f (6﹣α)=f (﹣1)=2﹣1﹣1﹣2=﹣74.故选:A .【解答】解:由几何体三视图中的正视图和俯视图可知, 截圆柱的平面过圆柱的轴线, 该几何体是一个半球拼接半个圆柱,∴其表面积为:12×4πr 2+12×πr 2+12×2r ×2πr +2r ×2r +12×πr 2=5πr 2+4r 2, 又∵该几何体的表面积为16+20π, ∴5πr 2+4r 2=16+20π,解得r=2, 故选:B .12.【解答】解:∵与y=2x +a 的图象关于y=x 对称的图象是y=2x +a 的反函数, y=log 2x ﹣a (x >0),即g (x )=log 2x ﹣a ,(x >0).∵函数y=f (x )的图象与y=2x +a 的图象关于y=﹣x 对称, ∴f (x )=﹣g (﹣x )=﹣log 2(﹣x )+a ,x <0, ∵f (﹣2)+f (﹣4)=1, ∴﹣log 22+a ﹣log 24+a=1, 解得,a=2, 故选:C .二、本大题共4小题,每小题5分. 13.【解答】解:∵a n +1=2a n ,∴a n+1a n =2,∵a 1=2,∴数列{a n }是a 1=2为首项,以2为公比的等比数列,∴S n =a 1(1−q n )1−q =2(1−2n )1−2=2n +1﹣2=126,∴2n +1=128, ∴n +1=7, ∴n=6. 故答案为:6 14.【解答】解:函数f (x )=ax 3+x +1的导数为:f′(x )=3ax 2+1,f′(1)=3a +1,而f (1)=a +2,切线方程为:y ﹣a ﹣2=(3a +1)(x ﹣1),因为切线方程经过(2,7), 所以7﹣a ﹣2=(3a +1)(2﹣1), 解得a=1. 故答案为:1. 15.【解答】解:由约束条件{x +y −2≤0x −2y +1≤02x −y +2≥0作出可行域如图,化目标函数z=3x +y 为y=﹣3x +z ,由图可知,当直线y=﹣3x +z 过B (1,1)时,直线在y 轴上的截距最大, 此时z 有最大值为3×1+1=4. 故答案为:4. 16.【解答】解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),直线AF′的方程为x−3+6√6=1与x2﹣y28=1联立可得y2+6√6y﹣96=0,∴P的纵坐标为2√6,∴△APF周长最小时,该三角形的面积为12×6×6√6﹣12×6×2√6=12√6.故答案为:12√6.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:asinA =bsinB=csinC=1k>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB=a2+c2−b22ac=a2+14a2−a22a×12a=14.(II)由(I)可得:b2=2ac,∵B=90°,且a=√2,∴a2+c2=b2=2ac,解得a=c=√2.∴S△ABC =12ac=1.18.【解答】证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC ⊂平面AEC , ∴平面AEC ⊥平面BED ;解:(Ⅱ)设AB=x ,在菱形ABCD 中,由∠ABC=120°,得AG=GC=√32x ,GB=GD=x 2,∵BE ⊥平面ABCD ,∴BE ⊥BG ,则△EBG 为直角三角形,∴EG=12AC=AG=√32x ,则BE=√EG 2−BG 2=√22x ,∵三棱锥E ﹣ACD 的体积V=13×12AC ⋅GD ⋅BE =√624x 3=√63,解得x=2,即AB=2,∵∠ABC=120°,∴AC 2=AB 2+BC 2﹣2AB•BCcosABC=4+4﹣2×2×2×(−12)=12,即AC=√12=2√3,在三个直角三角形EBA ,EBG ,EBC 中,斜边AE=EC=ED , ∵AE ⊥EC ,∴△EAC 为等腰三角形, 则AE 2+EC 2=AC 2=12, 即2AE 2=12, ∴AE 2=6, 则AE=√6,∴从而得AE=EC=ED=√6,∴△EAC 的面积S=12×EA ⋅EC =12×√6×√6=3,在等腰三角形EAD 中,过E 作EF ⊥AD 于F ,则AE=√6,AF=12AD =12×2=1,则EF=√(√6)2−12=√5,∴△EAD 的面积和△ECD 的面积均为S=12×2×√5=√5,故该三棱锥的侧面积为3+2√5.19.【解答】解:(Ⅰ)由散点图可以判断,y=c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型;(Ⅱ)令w=√x ,先建立y 关于w 的线性回归方程,由于d ^=108.81.6=68,c ^=y ﹣d ^w =563﹣68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68√x ,(Ⅲ)(i )由(Ⅱ)知,当x=49时,年销售量y 的预报值y ^=100.6+68√49=576.6, 年利润z 的预报值z ^=576.6×0.2﹣49=66.32,(ii )根据(Ⅱ)的结果可知,年利润z 的预报值z ^=0.2(100.6+68√x )﹣x=﹣x +13.6√x +20.12, 当√x =13.62=6.8时,即当x=46.24时,年利润的预报值最大. 20.【解答】(1)由题意可得,直线l 的斜率存在,设过点A (0,1)的直线方程:y=kx +1,即:kx ﹣y +1=0. 由已知可得圆C 的圆心C 的坐标(2,3),半径R=1.故由√k 2+1<1,故当4−√73<k <4+√73,过点A (0,1)的直线与圆C :(x ﹣2)2+(y ﹣3)2=1相交于M ,N 两点.(2)设M (x 1,y 1);N (x 2,y 2),由题意可得,经过点M 、N 、A 的直线方程为y=kx +1,代入圆C 的方程(x ﹣2)2+(y ﹣3)2=1,可得 (1+k 2)x 2﹣4(k +1)x +7=0, ∴x 1+x 2=4(1+k)1+k 2,x 1•x 2=71+k 2,∴y 1•y 2=(kx 1+1)(kx 2+1)=k 2x 1x 2+k (x 1+x 2)+1=71+k 2•k 2+k•4(1+k)1+k 2+1=12k 2+4k+11+k 2, 由OM →•ON →=x 1•x 2+y 1•y 2=12k 2+4k+81+k 2=12,解得 k=1,故直线l 的方程为 y=x +1,即 x ﹣y +1=0.圆心C 在直线l 上,MN 长即为圆的直径. 所以|MN |=2. 21.【解答】解:(Ⅰ)f (x )=e 2x ﹣alnx 的定义域为(0,+∞), ∴f′(x )=2e 2x ﹣a x.当a ≤0时,f′(x )>0恒成立,故f′(x )没有零点,当a >0时,∵y=e 2x 为单调递增,y=﹣ax单调递增,∴f′(x )在(0,+∞)单调递增, 又f′(a )>0,假设存在b 满足0<b <ln a2时,且b <14,f′(b )<0,故当a >0时,导函数f′(x )存在唯一的零点,(Ⅱ)由(Ⅰ)知,可设导函数f′(x )在(0,+∞)上的唯一零点为x 0, 当x ∈(0,x 0)时,f′(x )<0, 当x ∈(x 0+∞)时,f′(x )>0,故f (x )在(0,x 0)单调递减,在(x 0+∞)单调递增, 所欲当x=x 0时,f (x )取得最小值,最小值为f (x 0),由于2e 2x 0﹣a x 0=0,所以f (x 0)=a 2x 0+2ax 0+aln 2a ≥2a +aln 2a.故当a>0时,f(x)≥2a+aln 2a.四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2√3,BE=√12−x2,由射影定理可得AE2=CE•BE,∴x2=√12−x2,即x4+x2﹣12=0,解方程可得x=√3∴∠ACB=60°五、【选修4-4:坐标系与参数方程】23.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C 3的极坐标方程θ=π4(ρ∈R )代入圆C 2:(x ﹣1)2+(y ﹣2)2=1, 可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0, 求得ρ1=2√2,ρ2=√2,∴|MN |=|ρ1﹣ρ2|=√2,由于圆C 2的半径为1,∴C 2M ⊥C 2N ,△C 2MN 的面积为12•C 2M•C 2N=12•1•1=12.六、【选修4-5:不等式选讲】 24.【解答】解:(Ⅰ)当a=1时,不等式f (x )>1,即|x +1|﹣2|x ﹣1|>1, 即{x <−1−x −1−2(1−x)>1①,或{−1≤x <1x +1−2(1−x)>1②,或{x ≥1x +1−2(x −1)>1③.解①求得x ∈∅,解②求得23<x <1,解③求得1≤x <2.综上可得,原不等式的解集为(23,2).(Ⅱ)函数f (x )=|x +1|﹣2|x ﹣a |={x −1−2a ,x <−13x +1−2a ,−1≤x ≤a −x +1+2a ,x >a ,由此求得f (x )的图象与x 轴的交点A (2a−13,0),B (2a +1,0),故f (x )的图象与x 轴围成的三角形的第三个顶点C (a ,a +1), 由△ABC 的面积大于6,可得12[2a +1﹣2a−13]•(a +1)>6,求得a >2.故要求的a 的范围为(2,+∞).。
高考文科数学集合专题讲解与高考真题精选(含答案)

集合、简易逻辑(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N 表示自然数集,N 或N 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a与集合M 的关系是a M ,或者a M ,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x| x 具有的性质} ,其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集( ).【1.1.2 】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图A B(1)A A子集B (或A)A中的任一元素都属于B(2) A(3)若A B且B C ,则A C(4)若A B且B A,则A BA(B)B A或真子集A B(或B A ) A B,且 B 中至少有一元素不属于 AA(1) A(为非空子集)(2)若A B且B C ,则A CB A集合相等A BA中的任一元素都属于B,B 中的任一元素都属于 A(1)A B(2)B AA(B)n(7)已知集合A有n(n 1) 个元素,则它有2个子集,它有2n 1个真子集,它有2n 1个非空子集,它有2n 2非空真子集.集合的基本运算1. 集合运算:交、并、补.交:A I B { x | x A,且x B}并:A U B{ x | x A或x B}补:C 且A { x U , x A} U2. 主要性质和运算律(1)包含关系:A A, A,A U , C A U ,UA B,BC A C; A I B A, A I B B; A U B A, A U B B.(2)等价关系: A B A I B A A U B B C U A U B U(3)集合的运算律:交换律: A B B A; A B B A.结合律: ( A B) C A (B C); (A B) C A (B C)分配律:. A (B C) (A B) ( A C); A (B C) ( A B) (A C)0-1 律:I A , U A A,U I A A,U U A U等幂律: A A A, A A A.求补律:A∩C U A=φ A ∪C U A=U C U U=φC Uφ=U反演律:C U(A∩B)= (C U A)∪( C U B) C U(A∪B)= (C U A)∩( C U B)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高考数学文科5年高考3年模拟精品课件全国卷1地区通用:1.1 集合

A.{1}
B.{3,5}
C.{1,2,4,6} D.{1,2,3,4,5}
答案 C ∵U={1,2,3,4,5,6},P={1,3,5}, ∴∁UP={2,4,6}, ∵Q={1,2,4}, ∴(∁UP)∪Q={1,2,4,6}. 2.(2015课标Ⅱ,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B= ( ) A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)
A.{0,2} B.{1,2}
C.{0}
D.{-2,-1,0,1,2}
答案 A 本题主要考查集合的基本运算. ∵A={0,2},B={-2,-1,0,1,2},∴A∩B={0,2},故选A.
2.(2018课标全国Ⅱ,2,5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B= ( )
答案 A 本题考查集合的并集. A∪B={1,2,3}∪{2,3,4}={1,2,3,4}.故选A. 5.(2017课标全国Ⅲ,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为 ( ) A.1 B.2 C.3 D.4 答案 B 因为集合A和集合B有共同元素2,4,所以A∩B={2,4},所以A∩B中元素的个数为2.
12.(2017浙江,1,5分)已知集合P={x|-1<x<1},Q={x|0<x<2},则P∪Q= ( ) A.(-1,2) B.(0,1) C.(-1,0) D.(1,2) 答案 A 本题考查集合的概念和集合的运算. P∪Q={x|-1<x<2}.故选A. 易错警示 把求并集看成求交集,而错选B,因为平时做得最多的集合运算是求两集合的交集, 从而形成思维定势. 13.(2015四川,1,5分)设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B= ( ) A.{x|-1<x<3} B.{x|-1<x<1} C.{x|1<x<2} D.{x|2<x<3} 答案 A 把集合A、B表示在数轴上,如图.
2016年浙江省高考数学试题及答案

2015年普通高等学校招生全国统一考试(浙江卷)数学(文科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U PQ ()ð= A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}2.已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n3.函数y =sin x 2的图象是4.若平面区域30,230,230x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是 A.355 B.2 C.322 D.55.已知a ,b >0,且a ≠1,b ≠1,若4log >1b ,则A.(1)(1)0a b --<B. (1)()0a a b -->C. (1)()0b b a --<D. (1)()0b b a -->6.已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.已知函数()f x 满足:()f x x ≥且()2,xf x x ≥∈R .A.若()f a b ≤,则a b ≤B.若()2b f a ≤,则a b ≤C.若()f a b ≥,则a b ≥D.若()2b f a ≥,则a b ≥8.如图,点列{}{},n n A B 分别在某锐角的两边上,且 *1122,,n n n n n n A A A A A A n ++++=≠∈N ,*1122,,n n n n n n B B B B B B n ++++=≠∈N .(P ≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则A.{}n S 是等差数列B.{}2n S 是等差数列C.{}n d 是等差数列D.{}2n d 是等差数列二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.10.已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是cm 2,体积是cm 3.12.设函数f (x )=x 3+3x 2+1.已知a ≠0,且f (x )–f (a )=(x –b )(x –a )2,x ∈R ,则实数a =_____,b =______. 13.设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.14.如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是______.15.已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1.若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是______.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (Ⅰ)证明:A =2B ;(Ⅱ)若cos B =23,求cos C 的值.17.(本题满分15分)设数列{n a }的前n 项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈.(I )求通项公式n a ;(II )求数列{2n a n --}的前n 项和.18.(本题满分15分)如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3.(I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.19.(本题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (I )求p 的值;(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.20.(本题满分15分)设函数()f x =311x x ++,[0,1]x ∈.证明:(I )()f x 21x x ≥-+;(II )34<()f x 32≤.2015年普通高等学校招生全国统一考试(浙江卷)数学(文科)一、选择题1.【答案】C2. 【答案】C3. 【答案】D4.【答案】B5. 【答案】D6. 【答案】A7. 【答案】B8. 【答案】A二、填空题9. 【答案】80 ;40.10.【答案】(2,4)--;5.11. 【答案】2;1.12.【答案】-2;1.13.【答案】(27,8). 14.【答案】6915.【答案】7 三、解答题16.【答案】(1)证明详见解析;(2)22cos 27C =. 【解析】试题分析:本题主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力. 试题解析:(1)由正弦定理得sin sin 2sin cos B C A B +=,故2sin cos sin sin()sin sin cos cos sin A B B A B B A B A B =++=++,于是,sin sin()B A B =-,又,(0,)A B π∈,故0A B π<-<,所以()B A B π=--或B A B =-,因此,A π=(舍去)或2A B =,所以,2A B =.(2)由2cos 3B =,得5sin 3B =,21cos 22cos 19B B =-=-, 故1cos 9A =-,45sin 9A =, 22cos cos()cos cos sin sin 27C A B A B A B =-+=-+=. 考点:三角函数及其变换、正弦和余弦定理.【结束】17. 【答案】(1)1*3,n n a n N -=∈;(2)2*2,13511,2,2n n n T n n n n N =⎧⎪=⎨--+≥∈⎪⎩. 【解析】试题分析:本题主要考查等差、等比数列的基础知识,同时考查数列基本思想方法,以及推理论证能力.试题解析:(1)由题意得:1221421a a a a +=⎧⎨=+⎩,则1213a a =⎧⎨=⎩, 又当2n ≥时,由11(21)(21)2n n n n n a a S S a +--=+-+=,得13n n a a +=,所以,数列{}n a 的通项公式为1*3,n n a n N -=∈.(2)设1|32|n n b n -=--,*n N ∈,122,1b b ==.当3n ≥时,由于132n n ->+,故132,3n n b n n -=--≥.设数列{}n b 的前n 项和为n T ,则122,3T T ==.当3n ≥时,229(13)(7)(2)351131322n n n n n n n T --+---+=+-=-, 所以,2*2,13511,2,2n n n T n n n n N =⎧⎪=⎨--+≥∈⎪⎩.考点:等差、等比数列的基础知识.【结束】18.【答案】(1)证明详见解析;(2)217. 【解析】试题分析:本题主要考查空间点、线、面位置关系、线面角等基础知识,同时考查空间想象能力和运算求解能力.试题解析:(1)延长,,AD BE CF 相交于一点K ,如图所示,因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以AC ⊥平面BCK ,因此BF AC ⊥,又因为//EF BC ,1BE EF FC ===,2BC =,所以BCK ∆为等边三角形,且F 为CK 的中点,则BF CK ⊥,所以BF ⊥平面ACFD .(2)因为BF ⊥平面ACK ,所以BDF ∠是直线BD 与平面ACFD 所成的角,在Rt BFD ∆中,33,2BF DF ==,得21cos 7BDF ∠=, 所以直线BD 与平面ACFD 所成的角的余弦值为217.考点:空间点、线、面位置关系、线面角.【结束】19.【答案】(1)p=2;(2)()(),02,-∞+∞ .【解析】试题分析:本题主要考查抛物线的几何性质、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题方法.试题解析:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线x=-1的距离. 由抛物线的第一得12p =,即p=2. (Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠±. 因为AF 不垂直于y 轴,可设直线AF:x=sy+1,()0s ≠,由241y x x sy ⎧=⎨=+⎩消去x 得2440y sy --=,故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭. 又直线AB 的斜率为212tt -,故直线FN 的斜率为212t t --, 从而的直线FN:()2112t y x t-=--,直线BN:2y t =-, 所以2232,1t N t t ⎛⎫+- ⎪-⎝⎭,设M(m,0),由A,M,N 三点共线得:222222231t t t t t m t t +=+---, 于是2221t m t =-,经检验,m<0或m>2满足题意. 综上,点M 的横坐标的取值范围是()(),02,-∞+∞ .考点:抛物线的几何性质、直线与抛物线的位置关系.【结束】20.【答案】(Ⅰ)证明详见解析;(Ⅱ)证明详见解析.【解析】试题分析:本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.第一问,利用放缩法,得到41111x x x-≤++,从而得到结论;第二问,由01x ≤≤得3x x ≤,进行放缩,得到()32f x ≤,再结合第一问的结论,得到()34f x >,从而得到结论. 试题解析:(Ⅰ)因为()()4423111,11x x x x x x x----+-==--+ 由于[]0,1x ∈,有411,11x x x-≤++即23111x x x x -≤-++, 所以()21.f x x x ≥-+ (Ⅱ)由01x ≤≤得3x x ≤,故()()()()312111333311222122x x f x x x x x x -+=+≤+-+=+≤+++, 所以()32f x ≤. 由(Ⅰ)得()221331244f x x x x ⎛⎫≥-+=-+≥ ⎪⎝⎭, 又因为11932244f ⎛⎫=> ⎪⎝⎭,所以()34f x >, 综上,()33.42f x <≤ 考点:函数的单调性与最值、分段函数.【结束】。
2015年浙江省高考数学(文科)试题(教师版含解析)

2015年普通高等学校招生全国统一考试(浙江卷)文科数学1. 解析 {1P x x=-或}3x,所以[)34P Q =, .故选A.2. 解析 该几何体是棱长为2的正方体和底面边长为2、高为2的正四棱锥的组合体,所以3213222233V =+⨯⨯=.故选C . 3. 解析 取3a =,2b =-,所以0a b +>0ab >;反之取1a =-,2b =-,所以00ab a b >+>.故选D.4. 解析 由面面垂直判定定理知,A 正确.故选A.5. 解析 ()f x 是奇函数,排除A ,B ;当0x >, x 趋于0时,1x x-→-∞,cos 1x →,所以1cos x x x ⎛⎫-→-∞ ⎪⎝⎭.故选D. 6. 解析 解法一 特殊值:1x =,2y =,3z =,所以1a =,2b =,3c =.故选B. 解法二 利用排序不等式,最小的值是反序和.故选B.7. 解析 若30PAB ∠=,则AP 绕点A 旋转形成圆锥面,这面被平面α截得图象是椭圆.故选C.8. 解析 若t 确定,则2221a a t ++=,所以2221a a t +=-唯一确定.故选B. 9. 解析12221log log 22-==-,3222423log 3log 3log 3log 32222+=== 10. 解析 23271221a a a a a ⎧=⋅⎨+=⎩,所以()()()211112631a d a d a d a d ⎧+=++⎪⎨+=⎪⎩ , 所以1231a d ⎧=⎪⎨⎪=-⎩.11. 解析 ()1cos 21π3sin 2122242x f x x x -⎛⎫=++=-+ ⎪⎝⎭, 所以2ππ2T ==,()min 32f x =. 12. 解析 ()()61244642f f f -==+-=-⎡⎤⎣⎦, 当1x时,()()min 00f x f ==;当1x >时,()min 6f x =.综上所述,()min 6f x =.13. 解析 设1e OA =,2e OB =,由2e OB =得121cos e e 2=,,即12πe e 3=,.又12e e ⋅=⋅b b ,得12e e 0⋅-⋅=b b ,即()12e e 0⋅-=b ,故()12e e ⊥-b .过点O 作直线l AB ⊥,如图所示,因为1e 1⋅=b ,2e 1⋅=b ,据平面向量数量积的几何意义知,OC 在OA ,OB 上的投影均为1,所以12cos30OC ==故3=b .14. 解析 依题意知,240x y +-<,630x y -->,则2463x y x y +-+--=42631034x y x y x y --+--=--.令1034z x y =--,即34100x y z ++-=,且221x y +,因此圆心()00,到直线34100x y z ++-=的距离小于等于1,即1015z -,得515z ,所以z 的最大值为15,即2463x y x y +-+--的最大值为15.15. 解析 解法一 设()00Q x y ,,则12πe e 3=,OQ OF c ==,所以22200x y c +=,又2200221x y a b +=,所以()()22222220222a c b a c b x a b c--==-,所以4222002b y c x c =-=,所以2b yc =,不妨取0x =,所以QF 中点0022x c y +⎛⎫⎪⎝⎭,,代入00b y x c =, 得2bc c -=,化简得2220()b bc c b c ⎧++=⎪⎨≠⎪⎩舍去或b c =,所以2e =. 解法二 设椭圆的左焦点为1F ,依题意,1OF OQ OF ==,故112OQ FF =,且O 为1FF的中点,因此1FFQ △为Rt △,且1π2F QF ∠=,即1F Q FQ ⊥,则1F Q 所在直线斜率为 cb ,所以()0Q b ,,则1FQF △为等腰直角三角形,故b c =,2c e a ===. 16. 解析 (1) πtan tanπ1tan 4tan 2π41tan 1tan tan 4A A A AA ++⎛⎫+=== ⎪-⎝⎭-,得1tan 3A =. 2212sin 22sin cos 2tan 231sin 2cos 2sin cos cos 2tan 15213A A A A A A A A A A ⨯====+++⨯+.(2) sin 10A =,cos 10A =.由正弦定理得,sin sin a b AB =,所以b AC ==,又()sin sin sin cos cos sin 210105C A B A B A B =+=+=+=⎝⎭,所以11sin 39225ABC S ab C ==⨯⨯=△. 17. 解析 (1)由题意知{}n a 是等比数列,12a =,2q =,所以2nn a =.当2n 时,()*231111111231n n b b b b n b n -++++=-∈-N ,所以11n n n b b b n +=-,所以11n n n b b n ++=,所以12112n n b b b n n+====+,又11b =,所以n b n =.(或采用累乘法) (2)212222n n T n =⨯+⨯++⋅,所以()21212122n n n T n n +=⨯++-⨯+⋅, 所以()()()2111212122222212212n n n n n n T n n n +++--=+++-⋅=-=---,所以()1122n n T n +=-+.18. 解析 (1) 记BC 中点E ,连AE ,DE ,1A E .因为AB AC =,所以AE BC ⊥,又1A E ⊥面ABC ,AE ⊂面ABC ,所以1AE A E ⊥,又1BCA E E =,所以AE ⊥面1A BC ,又1=//AA DE ,所以1AEDA 是平行四边形,所以1//AE A D ,所以1A D ⊥面1A BC .(2)作1A F DE ⊥,垂足F ,连BF .因为1A D ⊥面1A BC ,所以1BC A D ⊥,又1BC A E ⊥,111A EA D A =,所以BC ⊥面1A DE ,又1A F ⊂面1A DE ,所以1BC A F ⊥,又DEBC E =,所以1A F ⊥面11BB C C ,所以1A BF ∠是直线1A B 和平面11BB C C 所成的角.经计算得1A D =,14A B =,1A E =11142A E A D A F DE ⋅===,所以1112sin 4A F A BF A B ∠===.19. 解析 (1)设直线AP 的方程为:()y k x t =-,联立214y x =,得2104x kx kt -+=,由直线AP 与抛物线1C 相切知,0∆=,又0k ≠,求得k t =,因为12y x t '==,所以2x t =,2y t =,所以()22A t t ,.设()00B x y ,,代入圆222(1)1C x y :,得20002x y y ,因为BP 为圆2C 的切线,所以21BP BC k k ⋅=-1==-,解得2221t y t =+,所以 0221tx t =+,所以2222211t t B t t ⎛⎫ ⎪++⎝⎭,. (2)B 到AP的距离2d ==12AB x =-=所以23111222PABS AB d t t =⋅==△. 20. 解析 (1) ()2221142a a f x x ax x ⎛⎫=+++=++ ⎪⎝⎭,对称轴2a x =-.当12a -<-,即2a >时,()()21124a g a f ab a =-=-+=-+;当112a--,即22a-时,()12a g a f ⎛⎫=-= ⎪⎝⎭;当12a ->,即2a <-时,()()2124a g a f a ==++ .综上所述,()22224122224a a a g a a a a a ⎧-+>⎪⎪⎪=-⎨⎪⎪++<-⎪⎩,, ,.(2)假设()f x 在[]11-,上的零点0x ,则2000x ax b ++=,所以[]2200001124a a b x ax x x ⎛⎫=--=-++∈- ⎪⎝⎭,,,对称轴直线02a x =-.当12a-<-,即2a >时,11a b a ---,综合221a b a +,得b ∈Φ; 当102a--<,即02a <时,214a a b--,综合221a ba +,得b ∈Φ;当012a -,即20a -时,214a ab -,综合221a b a +,得3945b--当12a->,即2a <-时,11a b a ---,综合221a b a +,得b ∈Φ.综上所述,3945b--。
2015届高考数学大一轮复习 函数的基本性质精品试题 文(含2014模拟试题)

精品题库试题文数1.(河北省衡水中学2014届高三下学期二调) 给定命题p:函数为偶函数;命题q:函数为偶函数,下列说法正确的是( )A.是假命题 B.是假命题C.是真命题 D.是真命题[解析] 1.因为且定义域关于原点对称,所以为偶函数,为真命题,若,则,所以为奇函数,为真命题,得为假命题.2.(河南省豫东豫北十所名校2014届高中毕业班阶段性检测(四)) 已知为偶函数,且在区间(1,+∞) 上单调递减,,,则有(A) a< b< c (B) b< c< a (C) c< b< a (D) a< c< b [解析] 2.因为为偶函数,所以,关于对称,由在区间(1,+∞) 上单调递减,得在区间上单调递增,因为,,所以.3.(重庆市名校联盟2014届高三联合考试)已知定义在R上的偶函数f(x) 满足f(x-4) =f(x), 且在区间[0,2]上f(x) =x,若关于x的方程有且只有三个不同的根,则a的范围为()A. (2,4)B. (2, )C.D.[解析] 3.因为,所以函数的周期为4,又因为为偶函数,且时,,所以可以作出当时,的草图,如图所示,,再由关于的方程有三个不同根,可得,解得.4.(重庆市杨家坪中学2014届高三下学期第一次月考) 设函数,则下列结论错误的是()A. D(x)的值域为{0,1}B. D(x)是偶函数C. D(x)不是周期函数D. D(x)不是单调函数[解析] 4.A、D项显然正确,若为有理数,则若为无理数,则所以D(x)是偶函数也是周期函数,故B正确,C错误.5.(重庆市杨家坪中学2014届高三下学期第一次月考) 下列区间中,函数,在其上为增函数的是()A. B. C. D.[解析] 5.因为是增函数,所以只需求的增区间,将先关于轴对称得,然后向右平移2个单位得,最后将轴下方的关于对称得的图象如图所示,由图像可知在上为增函数.6.(江西省重点中学协作体2014届高三第一次联考)已知函数(k≠0),定义函数,给出下列命题:①函数是奇函数;②;③当k<0,若mn<0,m+n<0,总有成立,其中所有正确命题的个数是()A.0 B.1 C.2 D.3[解析] 6.若,则,,若,则,,所以是奇函数,故①正确,若,则当时,,当时,,所以,故②错误,因为若mn<0,m+n<0,所以不妨设,因为k<0,所以当时,为减函数,所以,得,即,故③正确.7.(重庆一中2014年高三下期第一次月考) 定义在实数集函数满足,且为奇函数,现有以下三种叙述:(1)是函数的一个周期;(2)的图像关于点对称;(3)是偶函数. 其中正确的是()A (2)(3) B (1)(2) C (1)(3) D (1)(2)(3)[解析] 7.因为,所以,的周期为4,又因为为奇函数,所以,即,,所以,即,奇函数,因为为奇函数,所以关于原点对称,则关于对称,根据周期为4得关于对称,所以(1)(2)(3)都正确.8.(山西省忻州一中、康杰一中、临汾一中、长治一中四校2014届高三第三次联考) 定义在上的函数满足且时,则( )A.-1 B.4/5 C.1 D.-4/5[解析] 8.由得,所以函数的周期为4,又因为,所以,由得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年浙江省高考数学(文科)模拟试题满分150分,考试时间120分钟。
参考公式: 球的表面积公式 S=4πR 2球的体积公式 V=43πR 3 其中R 表示球的半径 锥体的体积公式 V=13Sh 其中S 表示锥体的底面积,h 表示锥体的高柱体的体积公式 V=Sh其中S 表示柱体的底面积,h 表示柱体的高 台体的体积公式 V=13h(S 12) 其中S 1,S 2分别表示台体的上、下底面积, h 表示台体的高如果事件A ,B 互斥,那么 P(A+B)=P(A)+P(B)选择题部分 (共50分)一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集U R =,{22}M x x =-≤≤,{1}N x x =<,那么M N =( )A .{21}x x -≤<B .{21}x x -<<C .{2}x x <-D .{|2}x x ≤ 2.已知i 是虚数单位,则i i+-221等于( ) A.i -B.i -54C.i 5354-D.i3、等比数列{}n a 中,01>a ,则“41a a <”是“53a a <” 的( )A.充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 4、已知函数()sin f x x π=的图像一部分如下方左图,则下方右图的函数图像所对应的解析式为 ( )A 、1(2)2y f x =- B 、(21)y f x =- C 、(1)2x y f =- D 、1()22x y f =- ····5.设m 、n 是两条不同的直线,α、β是两个不同的平面,考察下列命题,其中真命题是( )A .,,m m n n αβαββ⊥=⊥⇒⊥ B . α∥β,,m α⊥n ∥βm n ⇒⊥C .,,m n αβα⊥⊥∥βm n ⇒⊥D . ,,m n m n αβαβ⊥⊂⊥⇒⊥6.从1,2,3,4这四个数字中依次取(不放回)两个数a ,b ,使得a 2≥4b 的概率是()A .31B .512 C .21D .7127.已知一个空间几何体的三视图如右图,其中主视图,侧视图都是由半圆和矩形组成,根据图中标出的尺寸,可得这个几何体的表面积是( ) A 、3π B、 C 、6π D 、5π8.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( )A .32B .322C .33D .3329.一个半径为2的球放在桌面上,桌面上的一点1A 的正上方有一个光源A ,1AA 与球相切,16AA =,球在桌面上的投影是一个椭圆,则这个椭圆的离心率等于 ( ) A .12 B C D10.设a ,b 为单位向量,若向量c 满足|c -(a +b)|=|a -b |,则|c |的最大值是()A .1BC .2D .主观图侧视图B 1A 21B 2非选择题部分 (共100分)二、 填空题:本大题共7小题,每小题4分,共28分.11.甲、乙两名同学在5次数学考试中,成绩统计用茎叶图表示如图所示,若甲、乙两人的 平均成绩分别为_____________.12.函数f(x)=223xx a m +-+(a>1)恒过点(1,10),则m =________.13.如图所示,程序框图(算法流程图)的输出值x =________. 14.若实数x ,y 满足⎩⎪⎨⎪⎧2x -y ≥0,y ≥x ,y ≥-x +b ,且z =2x +y 的最小值为3,则实数b 的值为________.15.已知点O(0,0),A(2,0),B(-4,0),点C 在直线l :y =-x 上.若CO 是∠ACB 的平分线,则点C 的坐标为________. 16.设A(4,0),B(0,3),直线l :y =19196ax ,圆C :(x -a)2+y 2=9.若圆C 既与线段AB 又与直线l 有公共点,则实数a 的取值范围是________.17.已知函数f (x)=12x 4-2x 3+3m ,x ∈R ,若f (x)+9≥0恒成立,则实数m 的取值范围是________.三、 解答题: 本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)在△ABC 中,已知cos A =35.(1)求sin 2A2-cos(B +C)的值;(2)若△ABC 的面积为4,AB =2,求BC 的长.19.(本题满分14分)已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列; (3)若c n =a n ·b n ,求证:c n +1<c n .20.(本题满分15分)如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,AD ⊥CD ,DB 平分∠ADC ,E 为PC 的中点,AD =CD =1,DB =2 2.(1)证明PA ∥平面BDE ; (2)证明AC ⊥平面PBD ;(3)求直线BC 与平面PBD 所成的角的正切值.21.(本题满分15分)已知x =1是函数f (x)=mx 3-3(m +1)x 2+nx +1的一个极值点,其中m 、n ∈R ,m<0.(1)求m 与n 的关系表达式; (2)求f (x)的单调区间;(3)当x ∈[-1,1]时,函数y =f (x)的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.22.(本题满分14分)已知定点F(0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C.(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P,Q,交直线l 1于点R ,求RP →·RQ →的最小值.参考答案一、选择题: 本题考查基本知识和基本运算。
每小题5分,满分50分。
1.D 2.A 3.A 4.B 5.B 6.C7.D8.B9.A 10.D二、填空题:本题考查基本知识和基本运算。
每小题4分,满分28分。
11.89.8 、 88 12.9 13.12 14.9415.(4,-4) 16.2381≤≤-a 17.m ≥32三、解答题:本大题共5小题,共72分。
18、解 (1)sin 2A2-cos(B +C)=1-cos A 2+cos A =1-352+35=45.(2)在△ABC 中,∵cos A =35,∴sin A =45.由S △ABC =4,得12bcsin A =4,得bc =10.∵c =AB =2,∴b =5.∴BC 2=a 2=b 2+c 2-2bccos A =52+22-2×5×2×35=17.∴BC =17.19. (1)解 由已知点A n 在y 2-x 2=1上知,a n +1-a n =1,∴数列{a n }是一个以2为首项,以1为公差的等差数列, ∴a n =a 1+(n -1)d =2+n -1=n +1. (2)证明 ∵点(b n ,T n )在直线y =-12x +1上,∴T n =-12b n +1,① ∴T n -1=-12b n -1+1 (n ≥2),②①②两式相减得b n =-12b n +12b n -1 (n ≥2),∴32b n =12b n -1,∴b n =13b n -1. 令n =1,得b 1=-12b 1+1,∴b 1=23,∴{b n }是一个以23为首项,以13为公比的等比数列,(3)证明 由(2)可知b n =23·⎝ ⎛⎭⎪⎫13n -1=23n .∴c n =a n ·b n =(n +1)·23n ,∴c n +1-c n =(n +2)·23n +1-(n +1)·23n=23n +1[(n +2)-3(n +1)]=23n +1(-2n -1)<0,∴c n +1<c n .20. (1)证明 设AC ∩BD =H ,连接EH ,在△ADC 中,因为AD =CD ,且DB 平分∠ADC ,所以H 为AC 的中点,又由题设,知E 为PC 的中点,故EH ∥PA.又EH ⊂平面BDE ,且PA ⊄平面BDE ,所以PA ∥平面BDE.(2)证明 因为PD ⊥平面ABCD ,AC ⊂平面ABCD , 所以PD ⊥AC. 由(1)可得,DB ⊥AC.又PD ∩DB =D ,故AC ⊥平面PBD.(3)解 由AC ⊥平面PBD 可知,BH 为BC 在平面PBD 内的射影,所以∠CBH 为直线BC 与平面PBD 所成的角.由AD ⊥CD ,AD =CD =1,DB =22, 可得DH =CH =22,BH =322. 在Rt △BHC 中,tan ∠CBH =CH BH =13.所以直线BC 与平面PBD 所成的角的正切值为13.21. 解 (1)f ′(x)=3mx 2-6(m +1)x +n.因为x =1是f (x)的一个极值点,所以f ′(1)=0, 即3m -6(m +1)+n =0,所以n =3m +6. (2)由(1)知,f ′(x)=3mx 2-6(m +1)x +3m +6=3m(x -1)⎣⎡⎦⎤x -⎝⎛⎭⎫1+2m . 当m<0时,有1>1+2m ,当x 变化时,f (x)与f ′(x)的变化如下表:由上表知,当m<0时,f (x)在⎝⎛⎭⎫-∞,1+2m ,(1,+∞)上单调递减,在⎝⎛⎭⎫1+2m ,1上单调递增.(3)由已知,得f ′(x)>3m ,即mx 2-2(m +1)x +2>0. ∵m<0,∴x 2-2m (m +1)x +2m <0,即x 2-2⎝⎛⎭⎫1+1m x +2m<0,x ∈[-1,1].① 设g(x)=x 2-2⎝⎛⎭⎫1+1m x +2m ,其函数图象开口向上. 由题意①式恒成立. ∴(1)0(1)0g g -<⎧⎨<⎩⇒⎩⎪⎨⎪⎧1+2+2m +2m <0,-1<0 ⇒⎩⎪⎨⎪⎧4m <-3,-1<0⇒m>-43.又m<0,∴-43<m<0.∴m 的取值范围是⎝⎛⎭⎫-43,0.22. 解 (1)由题设知点C 到点F 的距离等于它到l 1的距离,∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴动点C 的轨迹方程为x 2=4y.(2)由题意知,直线l 2的方程可设为y =kx +1 (k ≠0), 与抛物线方程联立消去y ,得x 2-4kx -4=0. 设P(x 1,y 1),Q(x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4. 又易得点R 的坐标为⎝⎛⎭⎫-2k ,-1, RP →·RQ →=⎝⎛⎭⎫x 1+2k ,y 1+1·⎝⎛⎭⎫x 2+2k ,y 2+1 =⎝⎛⎭⎫x 1+2k ⎝⎛⎭⎫x 2+2k +(kx 1+2)(kx 2+2) =(1+k 2)x 1x 2+⎝⎛⎭⎫2k +2k (x 1+x 2)+4k2+4=-4(1+k 2)+4k ⎝⎛⎭⎫2k +2k +4k 2+4 =4⎝⎛⎭⎫k 2+1k 2+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.。