模型设定误差

合集下载

古扎拉蒂计量经济学第四版讲义Ch9 Model Specification

古扎拉蒂计量经济学第四版讲义Ch9 Model Specification

第九章模型设定Model Specification and Diagnostic Testing1. Introduction假如模型没有被正确设定,我们会遇到model specification error或model specification bias 问题。

本章主要回答这些问题:1、选择模型的标准是什么?2、什么样的模型设定误差会经常遇到?3、模型设定误差的后果是什么?4、有那些诊断工具来发现模型设定误差?5、如果诊断有设定误差,如何校正,有何益处?6、怎样评估相互竞争模型的表现(model evaluation)?Model Selection Criteria这是笼统的模型选择标准:1、利用该模型进行预测在逻辑上是可能的;2、模型的参数具有稳定性,否则,预测就很困难。

弗里德曼说:模型有效性的唯一检验标准就是比较模型的预测是否与经验一致。

3、模型要与经济理论一致。

4、解释变量必须与误差项不相关。

5、模型的残差必须是白噪声;否则就存在模型设定误差。

6、最后选择的模型应该涵盖其它可能的竞争模型;也就是说,其他模型不应该比所选模型的表现更好。

Types of specification errors大概有这几种设定误差:设定误差之一:所选模型忽略了重要的解释变量(该解释变量被包含在模型误差中)设定误差之二:所选模型包含了不必要或不相关的解释变量设定误差之三:所选模型具有错误的方程形式(比如y采用了不该采用的对数转换)设定误差之四:被解释变量and/or解释变量测量偏差(所用数据相对于真实值有偏差)导致的误差(commit the errors of measurement bias)设定误差之五:随机误差项进入模型的形式不对引起的误差(比如是multiplicatively还是additively)The assumption of the CLRM that the econometric model is correctly specified has two meanings. One, there are no equation specification errors, and two, there are no model specification errors.上面概括的五种设定误差称为equation specification errors。

计量经济学简答题整理

计量经济学简答题整理

简答题一、计量经济学的步骤答:选择变量和数学关系式 —— 模型设定 确定变量间的数量关系 —— 估计参数 检验所得结论的可靠性 —— 模型检验 作经济分析和经济预测 —— 模型应用 二、模型检验答:所谓模型检验,就是要对模型和所估计的参数加以评判,判定在理论上是否有意义,在统计上是否有足够的可靠性。

对计量经济模型的检验主要应从以下四方面进行:1、经济意义的检验。

2、统计推断检验。

3、计量经济学检验。

4、模型预测检验。

三、模型应用 答:(1)经济结构分析,是指用已经估计出参数的模型,对所研究的经济关系进行定量的考查,以说明经济变量之间的数量比例关系。

(2)经济预测,是指利用估计了参数的计量经济模型,由已知的或预先测定的解释变量,去预测被解释变量在所观测的样本数据以外的数值。

(3)政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案作出评价。

(4)检验与发展经济理论,是利用计量经济模型去验证既有经济理论或者提出新的理论。

四、普通方法的思想和它的计算方法答:计量经济学研究的直接目的是确定总体回归函数12,然而能够得到的知识来自总体的若干样本的观测值,要用样本信息建立的样本回归函数尽可能“接近”地去估计总体回归函数。

为此,可以以从不同的角度去确定建立样本回归函数的准则,也就有了估计回归模型参数的多种方法。

例如,用生产该样本概率最大的原则去确定样本回归函数,成为极大似然发展;用估计的剩余平方和的最小的原则确定样本回归函数。

称为最小二乘法则。

为了使样本回归函数尽可能接近总体回归函数,要使样本回归函数估计的与实际的的误差尽量小,即要使剩余项越小越好。

可是作为误差有正有负,其简单代数和∑最小的准则,这就是最小乘准则,即∑∑∑五、简单线性回归模型基本假定 答:(1)对模型和变量的假定,如12i i iY X u ββ=++①假定解释变量x 是确定性变量,是非随机的,这是因为在重复抽样中是取一组固定的值.或者虽然是随机的,但与随机扰动项也是不相关;②假定模型中的变量没有测量误差。

计量经济学名词解释

计量经济学名词解释

计量经济学名词解释1、计量经济学计量经济学是一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科,统计学,经济理论和数学这结合便构成了计量经济学。

2、计量经济学模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。

3、解释变量影响被解释变量的因素或因子,是原因变量,记为“X”.4、被解释变量结果变量称为被解释变量,记为“Y”。

5、结构分析结构分析是对经济现象中变量之间相互关系的研究。

所采用的主要方法是弹性分析、乘数分析与比较静力分析。

6、时间序列数据按照时间先后顺序排列的统计数据,又称为纵向数据。

7、截面数据一批发生在同一时间截面上的调查数据,又称横向数据。

8、平行数据(面板数据)时间序列数据与截面数据的合成体,又称面板数据。

9、回归分析回归分析是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。

10、随机误差项被解释变量数值与其条件期望之间的离差,是一个不可观测的随机变量,称为随机误差项,或随机干扰项。

11、最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配。

12、最佳线性无偏估计量拥有有限样本性质或小样本性质这类性质的估计量,称为最佳线性无偏估计量。

13、拟合优度是SRF对样本观测值的拟合程度,即样本回归直线与观测散点之间的紧密程度。

14、方程显著性检验对所有被解释变量与解释变量之间的线性关系在总体上是否显著成立做出推断的检验。

15、变量显著性检验是对模型中某一个具体的解释变量X与被解释变量Y之间的线性关系在总体上是否显著成立做出判断,换言之,是考察所选择的X在总体上是否对Y有显著的线性影响。

16、最小样本容量是指从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。

17、满足基本要求的样本容量当n≥30或者至少n≥3(k+1)时,才能说满足模型估计的基本要求。

18、需求函数的零阶齐次性当所有商品价格和消费者货币支出总额按照同一比例变动时,需求量保持不变,这就是所谓的消费者无货币幻觉。

计量经济学名词解释与简答

计量经济学名词解释与简答

1、完全共线性:对于多元线性回归模型,其基本假设之一是解释变量1x ,2x ,…,k x 是相互独立的,如果存在02211=+++ki k i i x c x c x c ,i=1,2,…,n ,其中c 不全为0,即某一个解释变量可以用其他解释变量的线性组合表示,则称为完全共线性。

2、虚假序列相关:由于随机干扰项的序列相关往往是在模型设定中遗漏了重要的解释变量或对模型的函数形式设定有误时而导致的序列相关。

3、残差项:是指对每个样本点,样本观测值与模型估计值之间的差值。

4、多重共线性:在经典回归模型中总是假设解释变量之间是相互独立的。

如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。

5、无偏性:是指参数估计量的均值(期望)等于模型的参数值。

6、工具变量:是在模型估计过程中被作为工具使用,以替代模型中与随机误差项相关的随机解释变量的变量。

7、结构分析:经济学中所说的结构分析是指对经济现象中变量之间关系的研究。

8、虚假回归(伪回归):如果两列时间序列数据表现出一致的变化趋势(非平稳),即它们之间没有任何经济关系,但进行回归也会表现出较高的可决系数。

9、异方差性:即相对于不同的样本点,也就是相对于不同的解释变量观测值,随机干扰项具有不同的方差。

10、计量经济学:它是经济学的一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科。

11、计量经济学模型:揭示经济活动中各种因素之间的定量关系,用随机性的数学方程加以描述。

12、截面数据:是一批发生在同一时间截面上的数据。

13、回归分析:是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论,其目的在于通过后者的已知和设定值,去估计和(或)预测前者的(总体)均值。

14、随机误差项:观察值围绕它的期望值的离差就是随机误差项。

15、最佳线性无偏估计量(高斯-马尔可夫定理):普通最小二乘估计量具有线性性、无偏性和有效性等优良性质,是最佳线性无偏估计量,这就是著名的高斯-马尔可夫定理。

第九章 模型设定误差 《计量经济学》PPT课件

第九章    模型设定误差  《计量经济学》PPT课件
备择假设H1:无约束模型为真,即遗漏了变量。 排并列将,残对差排序序列后e残i按差照序遗列漏计解算释d变统量计X量3的:递增次序
n
(ei ei1)2
d i2 n
ei2
i 1
(9.3.2)
3. 给定显著性水平,查DW表,若统计量显示为正
自相关,则拒绝原假设,首先考虑存在模型设定
误差。
• 例9.1 我们来看一个教学例子。表9.1给出了一个 总成本(Y)和产出(X)的数据,现在来建立总成 本函数模型
• 对于模型一,DW=2.7002,n=10,k′=3,给定显著
性水平5%,查表得临界值为dL=0.525和dU=2.016。 DW落在[4-dU,4-dL]=[1.984,3.475]区域,表明残 差中不存在显著的正相关。从而可以判断模型没
有遗漏的变量。
(三)拉姆齐的RESET检验
拉姆齐(Ramsey)于1969年提出了回归设定误 差检验(regression specification error test, RESET),它是一般性设定误差检验(test for general mis-specification)。
(一)残差图示法
进行OLS回归,得到残差序列ei,并做其与时间t 或某解释变量X的散点图,从图形上来考察残差序 列ei是否有规律地变动,以此来判断模型是否有遗 漏变量或函数形式设定的错误。
(二)DW检验
确定模型存在遗漏有关变量(非纯自相关)还是 模型真的存在自相关(纯自相关)。
假如真实模型为:
Yi 1 2 X 2i 3 X3i ui(9.2.1)
RESET检验的具体步骤:
1. 对所选模型
u)
(9.2.14)
从而,在满足经典假定条件下

工业机器人性能测试方法的运动学模型误差灵敏度分析

工业机器人性能测试方法的运动学模型误差灵敏度分析

引用格式:吴晓亮, 王凌, 高雁凤, 等. 工业机器人性能测试方法的运动学模型误差灵敏度分析[J]. 中国测试,2023, 49(8): 134-142. WU Xiaoliang, WANG Ling, GAO Yanfeng, et al. Sensitivity analysis of performance tests for industrial robots to parameter errors of kinematic model[J]. China Measurement & Test, 2023, 49(8): 134-142. DOI: 10.11857/j.issn.1674-5124.2022030017工业机器人性能测试方法的运动学模型误差灵敏度分析吴晓亮, 王 凌, 高雁凤, 陈锡爱, 王斌锐(中国计量大学机电工程学院,浙江 杭州 310018)摘 要: 当前,少部分学者对工业机器人性能测试进行研究,行业领域也已颁布国家标准GB/T 12642—2013,但是对工业机器人性能测试方法的研究却仍然很不充分,评测方法的设计缺乏理论分析依据。

文章基于运动学模型,通过研究工业机器人关键性能测试方法对运动学模型参数误差的灵敏度,以及部分测试指标的灵敏度空间分布特性,从而分析机器人性能测试方法关键测试指标的适用性。

数据结果表明:位置准确度相对于运动学模型参数误差的灵敏度均不为零;姿态准确度和位姿重复性测试方法存在不足。

在主要考虑运动学模型几何参数误差的情况下:工业机器人位置准确度测试也是十分必要的,现有国家标准中的姿态准确度和姿态重复性评价工业机器人具有局限性。

文章的研究有助于改进工业机器人性能评测方法,也能够帮助机器人制造企业分析和提高机器人运动性能。

关键词: 工业机器人; 性能测试方法; 运动学模型; 灵敏度分析中图分类号: TP242.2;TB9文献标志码: A文章编号: 1674–5124(2023)08–0134–09Sensitivity analysis of performance tests for industrial robots toparameter errors of kinematic modelWU Xiaoliang, WANG Ling, GAO Yanfeng, CHEN Xiai, WANG Binrui(College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China)Abstract : At present, a small number of scholars have studied the performance test of industrial robots, and the national standard GB/T 12642—2013 has been issued in the industry. However, the research on the performance test method of industrial robots is still insufficient, and the design of evaluation method is lack of theoretical analysis basis. Based on the kinematics model, this paper studies the sensitivity of the key performance test method of industrial robot to the parameter error of kinematics model and the sensitivity spatial distribution characteristics of some test indexes, so as to analyze the applicability of the key test indexes of robot performance test method. The results show that the sensitivity of position accuracy to the parameter error of kinematic model is not zero. The attitude accuracy and pose repeatability test methods are insufficient.When the geometric parameter error of kinematic model is mainly considered, the position accuracy test of收稿日期: 2022-03-03;收到修改稿日期: 2022-05-06基金项目: 国家重点研发计划项目(2018YFB2101004);浙江省公益技术应用研究分析测试项目(LGC21F030001)作者简介: 吴晓亮(1997-),男,安徽合肥市人,硕士研究生,专业方向为机器人技术及应用。

模型设定偏误问题

模型设定偏误问题

变换变量
对某些变量进行适当的变换,可能有助于消 除模型设定偏误。
使用其他模型
如果一种模型无法充分拟合数据,可以尝试 使用其他模型。
模型设定偏误的修正方法
手动修正
01
根据专业知识或数据特点,手动调整模型的结构或参数,以消
除模型设定偏误。
自动修正
02
利用软件提供的自动修正功能,如一些统计软件中的“自动选
要点三
例子
考虑一个简单的线性回归模型,其中被 解释变量是家庭收入(Y),解释变量 是教育程度(X1)和工作经验(X2)。 如果遗漏了职业类型(X3)这一重要 解释变量,那么模型将无法准确估计 X1和X2对Y的影响,导致估计结果出 现偏差。
测量误差偏误
总结词
详细描述
例子
测量误差偏误是计结果出现偏差。
常见的模型设定偏误类型
遗漏变量偏误
要点一
总结词
遗漏变量偏误是指模型中未能包含对 被解释变量有重要影响的解释变量, 导致估计结果出现偏差。
要点二
详细描述
在经济学和其他社会科学领域,模型 中往往包含许多解释变量,但受限于 数据可得性和模型复杂度等因素,一 些重要的解释变量可能被遗漏。这会 导致模型无法准确捕捉到所有影响被 解释变量的因素,从而产生偏误。
联立性偏误
总结词
联立性偏误是指模型中解释变量 之间存在相关性,导致估计结果 出现偏差。
详细描述
例子
在多元回归模型中,如果解释变 量之间存在相关性,会导致多重 共线性问题,使得模型无法准确 估计每个解释变量的效应。这会 导致估计结果的不稳定性和偏误。
考虑一个包含三个解释变量的多 元线性回归模型,其中被解释变 量是消费支出(Y)。如果两个解 释变量X1和X2之间存在高度相关 性,那么模型在估计X1和X2对Y 的影响时会出现偏误,导致估计 结果的不准确。

第十章 计量经济学-模型设定.

第十章 计量经济学-模型设定.

对多元回归,非线性函数可能是关于若干个 或全部解释变量的非线性,这时可按遗漏变量的 程序进行检验。 例如,估计 Y=0+1X1+2X2+
但却怀疑真实的函数形式是非线性的。 这时,只需以估计出的Ŷ的若干次幂为“替代” 变量,进行类似于如下模型的估计
ˆ2 Y ˆ3 Y 0 1 X1 2 X 2 1Y 2
2.39 9.52
• 由所得系数可以看出,两种情况下均造成高估所保留变量的参数, 据此做分析可能导致得出错误的结论。 • 两个参数所处的区间应该分别为0 1 0.454 和 0 2 0.051
关于遗漏必要的解释变量的总结
• 遗漏必要的解释变量是一种严重的错误,必须 注意避免。 • 对别人的研究成果做评价时,是否存在遗漏必 要解释变量的错误是需要考察的最重要的一个 方面。
例如,先估计 Y=0+ 1X1+v 得 ˆ ˆ0 ˆ1 X 1 Y
ˆ2 Y ˆ3 Y 0 1 X 1 1Y 2
再根据增加解释变量的F检验来判断是否增加这 些“替代”变量。 若仅增加一个“替代”变量,也可通过t检验来 判断。
RESET检验也可用来检验函数形式设定偏误的 问题。
ˆ ) 2 Var( 1
ˆ1 ) Var(
2 x 1i
2
x
2 1i
x ( x1i x2i )
2 2i
x
2 2i
2

2 2 x ( 1 r 1i x1x2 )
2
如果X2与X1相关,显然有 如果X2与X1不相关,也有
ˆ) ˆ1 ) Var( Var( 1 ˆ) ˆ1 ) Var( Var( 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

误差项非正态分布
假定3和4在联立 方程模型中讨论
对假定5我们做简 单讨论
假定7影响参数估 计的无偏性,暂不 讨论
假定10对于大样 本数据不是必需的 假定。
本讲主要考虑放 宽了其余假定后面 临的问题
2020/3/5
4
微数缺测性
o 从理论上讲,样本容量n和解释变量数目k必须满足n>k+2, 才能进行OLS估计和假设检验。但事实上,即便n满足上 述条件,但如果样本很小,那么虽然能够进行估计和检验, 也很难通过t 检验。
第三部分 实践中的回归分析
一、引言:放宽经典模型的假设 二、模型设定误差 三、多重共线性 四、异方差性 五、序列相关性
前面讨论了满足经济假设的回归模型,但是大多数 经济模型是很难严格满足这些经典假设的。这就极大地 限制了经典回归分析的应用范围。因此,我们有必要 研究在放宽这些经典假设的条件下,是否有可能得到回 归系数较好的估计值?如果有可能,其方法是什么?
一般来说,遗漏相关变量的后果要严重一些,因为它 损失了无偏性。特别是当样本比较大时,包含不相关变 量带来的自由度减少不太严重,因而包含不相关变量的 影响要小一些。
2020/3/5
10
遗漏相关变量的影响
证明见古扎拉蒂(1995)或平狄克等(1998)
对于Yi 0 1 X1i 2 X 2i ui
d .如果通过假设检验,则可以拒绝原假设,即存在设定误差
2020/3/5
20
o Eviews等计量经济学软件会给出每个回归方程的Ramsey RESET统计量,从而判断是否存在设定误差
o 通过RESET可以判断是否存在设定误差,但无法得知正确的 模型应该如何设定
2020/3/5
21
判断回归模型预测效果的指标
2020/3/5
23
测量误差的影响
o 因变量存在测量误差:回归系数的OLS估计量是无偏的, 方差估计也是无偏的,但OLS估计量不是有效的
o 自变量存在测量误差:回归系数的OLS估计量是有偏的、 非一致的
测量误差的诊断和助理
o 诊断是否存在测量误差需要应用豪斯曼检验(Hausman Test),对测量误差进行纠正则应该使用工具变量法(参 看:平狄克等,1998)
对于给定一组数据,每个参数只能有一个估计值。
2020/3/5
7
3、拟和优度(goodness of fit)
回归分析的 基本思想是用模型中的解释变量来尽可能 的去解释被解释变量。校正后拟合优度越高,模型越好。
4、理论一致性(theoretical consistency) 无论模型的拟合优度有多高,若模型中存在一个和多个系数
1.什么是设定误差(specification error)
o 经典正态线性模型假定模型的设定是正确的,但一般情况 下建立的模型很可能是不正确的,这种情况称为设定误差。
好模型的标准
1、简约性(parsimony) 一定程度的抽象或简化是不可避免的,简单优于复杂。
2、可识别性(identifiability)
o 如果要对两个回归模型的预测效果做出比较,不能对R2进行 比较
o Eviews等计量经济学软件会给出每个回归方程的赤池信息准 则AIC(Akaike information criterion)和施瓦兹信息准则 SC(Schwarz criterion),这两个指标越低的回归方程预测 效果越好
2020/3/5
o 关于误差项的假定
2020/3/5
8对于给定的X,误差项方差相等
9对于给定的X,误差项之间不存在序列相关
10误差项服从正态分布
3
放宽的假定
相应的问题
假定1、2 模型设定问题
假定3、4 随机解释变量
假定5
过度决定(微数缺测性)
假定6
多重共线性
假定7
误差项均值非零
假定8
异方差性
假定9
序列相关
假定10
图示:一元回归模型中,真实模型呈幂函数形式,但 却选取了线性函数进行回归。
2020/3/5
15
其他:
如果R2较低,或者系数估计值的符号与预期相反, 或者有很多t值不显著,或者d统计量偏小。就有可能是 因为遗漏了某个相关变量,或者采用了错误函数形式。
特别是,d统计量偏小很可能不是因为序列相关,而 是因为遗漏了某个相关变量。因此,如果加入某些变量后 d统计量接近2,那么就应该把这些变量包含在模型中。
模 型 三 :IMPORTt 0 1PDIt 2Tt 3Tt 2 ut
n 20, k 3, d 2.098
2020/3/5
17
包含无关变量
o 如果不知道某个变量是否应包含在模型中,可将该变量加 入模型进行回归并作t 检验,如果不显著,该变量很可能是 多余的。


,b21是X
2对X

1








率系


可 见 :(1) 0和1可 能 是 有 偏 的
(2)
E[
var(1
)]肯





1




还有:(3) 0和1也是不一致的.
2020/3/5
11
3.设定误差的诊断和处理
遗漏相关变量和采用错误的函数形式
o 根据设定好的模型进行OLS估计,对结果进行判断 a. 残差图 b. R2和调整的R2 c. 与预期相比,系数估计值的符号 d. 回归系数的t值 e. 德宾-沃森d统计量
PC: 当 前 消 费 ;PI: 永 久 性 收 入 但 利 用 了 可 观 测 变 量Ii PIi ei作 为 解 释 变 量
若 模 型 为 :PCi 0 1PIi ui
但 利 用 了Ii PIi ei作 为 解 释 变 量, Ci PCi vi为 被 解 释 变 量
估计并检验其参数是否显著不为零即可;
问题是不知道遗漏了哪个变量,需寻找一个替代变量Z, 来进行上述检验。
2020/3/5
19
RESET检验中,采用所设定模型中被解释变量Y的估计 值Ŷ的若干次幂来充当该“替代”变量。
对于Yi 0 1 X1i k X ki ui (1)
2020/3/5
12
a.残差图示法
2020/3/5
13
• 残差序列变化图
(a)趋势变化 :
模型设定时可能遗漏 了一随着时间的推移 而持续上升的变量
(b)循环变化:模
型设定时可能遗漏了一 随着时间的推移而呈现 循环变化的变量
2020/3/5
14
• 模型函数形式设定偏误时残差序列呈现正负 交替变化
如 果 模 型 设 定 为 :Yi

0
1 X1i

v

i






E(1 ) 1 2b21

E(0 ) 0 2 ( X 2 b21 X1 )

E[var(1 )]

var(1 )


2 2
(n 2)
( X2i X2 )2 ( X1i X1 )2
2020/3/5
9
2.设定误差的影响
1) 遗漏相关变量:回归系数的OLS估计量可能是有偏的、非 一致的;系数的方差估计也是有偏的
2) 包含无关变量:回归系数的OLS估计量是无偏的,方差估 计也是无偏的,但不是最小方差,因而OLS估计量不是有 效的
3) 错误的函数形式:回归系数的OLS估计量可能是有偏的
2020/3/5
24


Var( j )

2
TSS j
1

(
1

R
2 j

);SE( j
)


Var( j )
如果样本容量越小,则X
的变异性就越小,
j

从而TSS j就越小,即Var( j )越大。
2020/3/5
5
二、模型设定误差
1. 什么是设定误差 2. 设定误差的影响 3. 设定误差的诊断和处理 4. 测量误差
o 如果不知道某些变量是否应包含在模型中,可将该变量加 入模型进行回归,并对这些变量的系数做联合F检验(对 于线性约束的检验),如果不显著,这些变量很可能是多 余的。
注意:如果根据理论分析,某些变量必须包括在模型中, 那么即便这些变量的回归系数不显著,也应该把他们保 留在模型中。
2020/3/5
18
一般情况下设定误差的检验(RESET)
o 回归设定误差检验(regression specification error test)
更准确更常用的判定方法是拉姆齐(Ramsey)于1969年提出 的所谓RESET 检验(regression error specification test)。
基本思想: 如果事先知道遗漏了哪个变量,只需将此变量引入模型,
假 若 正 确 的 模 型 为 :IMPORTt 0 1PDIt 2Tt ut
那 么 以 下 几 种 情 况 属 于设 定 误 差 :
a.遗 漏 相 关 变 量 :IMPORTt 0 1PDIt ut b.包 含 无 关 变 量 :IMPORTt 0 1PDIt 2Tt 3Tt 2 ut c.错 误 的 函 数 形 式l:n IMPORTt 0 1 ln PDIt 2Tt ut
2020/3/5
16
例题 美国居民对进口商品的消费支出与可支配收入的关系
模 型 一 :IMPORTt 0 1PDIt ut
相关文档
最新文档