北京四中七年级下册期中数学试卷(解析版)

合集下载

2016西城区北京四中初一下学期期中数学答案

2016西城区北京四中初一下学期期中数学答案

4. ∘

∘50 − 25 = Fra bibliotek55.三角形的一个外角等于两个不相邻内角和
四、解答题(共26分)
21. 【答案】证明见解析.
22. 【答案】答案见解析.
23. 【答案】EF⊥BC ,证明见解析. 24. 【答案】(1)25∘ .
(2)∠A = ∠C ,证明见解析.
附加题:(共20分,计入总分)
25. 【答案】1.(1, 2) 2.(5, 336)
18. 【答案】x1 = 4 ,x2 = −6 .
康 智 爱
19. 【答案】(1) , , , . ′ A (0, √3)
′ B (2√3, √3)
′ C (√3, 0)
′ O (−√3, 0)
(2)6.
20. 【答案】1.两直线平线,内错角相等
2. ∘



180 − 60 − 70 = 50
3.三角形内角和是180∘
11. 【答案】135∘
12. 【答案】1.40∘ 2. ∘
140
13. 【答案】2 − √5
14. 【答案】1.9 2. ∘
360
15. 【答案】150∘
16. 【答案】1.π + 2π = 3π 2.−π + π = 0 3.1 × π = π 4.0 × π = 0
三、解答题(共20分)
17. 【答案】−2.7 .
5
26. 【答案】1.
2 12
2.
5 49
3.
20 120
4.
49
27. 【答案】1.540∘
2.2或7
康 智 爱
2015~2016学年北京西城区北京四中初一下学期期中数学试卷(含附加)

北京市第四中学2021-2022学年七年级下学期期中考试数学试题

北京市第四中学2021-2022学年七年级下学期期中考试数学试题

2021-2022学年北京四中七年级(下)期中数学试卷一、单项选择题(本大题共10小题,每小题3分,共30分。

在每道题给出的四个选项中,只有一个选项正确)1.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.2.在下列各数0,0.3,3π,,﹣2022,7.010100001…(两个1之间依次多一个0),中,无理数的个数是()A.1B.2C.3D.43.若代数式x﹣3在实数范围内有平方根,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x≠34.下列运算中,正确的是()A.=±3B.=2C.=2D.=﹣8 5.如图,一把长方形直尺沿直线断开并错位,点E,D,B,F同一条直线上,若∠CBD=55°,则∠EDA的度数是()A.145°B.125°C.100°D.556.下列四个命题,其中假命题是()A.点到直线的距离是指直线外一点到这条直线的垂线段的长度B.过直线外一点有且只有一条直线与已知直线平行C.相等的角是对顶角D.两条平行直线被第三条直线所截,同旁内角互补7.实数a,b在数轴上的对应点的位置如图所示,下列结论正确的是()A.a+b>0B.a3>b2C.<﹣1D.>8.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边对齐,则∠1的度数为()A.75°B.60°C.45°D.30°9.对任意两个实数a,b定义两种运算:a⊕b=a⊗b=并且定义运算顺序仍然是先做括号内的,例如(﹣2)⊕3=3,(﹣2)⊗3=﹣2,((﹣2)⊕3)⊗2=2.那么(⊕2)⊗等于()A.B.3C.2D.310.已知a,b为非零实数,下面四个不等式组中,解集有可能为﹣3<x<3的不等式组是()A.B.C.D.二、填空题(每小题2分,共16分)11.16的平方根是.12.实数a,b满足+(2a+b)2=0,则b的值为.13.如图,直线a∥b,AC分别交直线a、b于点B,C,AC⊥DC,若∠α=25°,那么∠β=.14.已知方程7x﹣3y=5,用含x的式子表示y,则y=.15.“如果a2>b2,那么a>b”是假命题,请举出一个反例,在你举出的反例中,a=,b=.16.如图a,ABCD是长方形纸带(AD∥BC),∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是.17.关于x的不等式组有且只有3个整数解,则k的取值范围是.18.小云计划户外徒步锻炼,每天有“低强度”“高强度”“休息”三种方案,下表对应了每天不同方案的徒步距离(单位:km).若选择“高强度”要求前一天必须“休息”(第一天可选择“高强度”).则小云5天户外徒步锻炼的最远距离为km.日期第1天第2天第3天第4天第5天低强度86654高强度121315128休息00000三、解答题(共54分,第19题16分,第21-23,25题每小题16分,第20,24,26题每小题16分)19.计算:(1)+|﹣|﹣()2;(2)+|1﹣|﹣;(3)解方程组:;(4)解不等式组:.20.作图并回答问题已知,如图,点P在∠AOB的边OA上.(1)过点P作OA边的垂线l;(2)过点P作OB边的垂线段PD;(3)过点O作PD的平行线交l于点E,比较OP,PD,OE三条线段的大小,并用“>”连接得,得此结论的依据是.(4)平移△POD得到△EFG,其中P点的对应点是点E.21.完成下面的证明:已知:如图,AC∥DE,CD平分∠ACB,EF平分∠DEB.求证:CD∥EF.证明:∵AC∥DE,∴∠ACB=∠()∵CD平分∠ACE,EF平分∠DEB,∴∠1=,∠2=.∴∠=∠.∴CD∥EF().22.在方程组中,若x,y满足x﹣y<0,求m的取值范围.23.如图,BD平分∠ABC,∠ADB=∠ABD.(1)求证:AD∥BC;(2)若CD⊥BD,∠ABC=α,求∠DCB的度数(用含α的代数式表示).24.利用方程(组)或不等式(组)解决问题:“四书五经”是《大学》、《中庸》、《论语》和《孟子》(四书)及《诗经》、《尚书》、《易经》、《礼记》、《春秋》(五经)的总称,这是一部被中国人读了几千年的教科书,包含了中国古代的政治理想和治国之道,是我们了解中国古代社会的一把钥匙某学校计划分阶段引导学生读这些书,先购买《论语》和《孟子》供学生阅读,已知用1300元购买《孟子》和《论语》各20本,《孟子》的单价比《论语》的单价少15元.(1)求购买《论语》和《孟子》这两种书的单价各是多少元?(2)学校为了丰富学生的课余生活,举行“书香阅读”活动,根据需要,学校决定再次购进两种书共50本,正逢书店“优惠促销”活动,《孟子》单价优惠4元,《论语》的单价打8折.如果此次学校购买书的总费用不超过1500元,且购买《论语》不少于38本,则有几种购买方案?为了节约资金,学校应选择哪种方案?为什么?25.(1)下面是小李探索的近似值的过程,请补充完整:我们知道面积是2的正方形的边长是,且>1,设=1+x,可画出如下示意图.由面积公式,可得x2+2x+1=2.略去x2,得方程2x+1=2.解得x=0.5,即≈.(2)容易知道1<<2,设=2﹣x,类比(1)的方法,探究的近似值.(画出示意图,标明数据,并写出求解过程)26.已知AB∥CD,点M、N分别在直线AB、CD上,∠AME与∠CNE的平分线所在的直线相交于点F.(1)如图1,点E、F都在直线AB、CD之间且∠MEN=70°时,∠MFN的度数为;(2)如图2,当点E在直线AB、CD之间,F在直线CD下方时,写出∠MEN与∠MFN 之间的数量关系,并证明;(3)如图3,当点E在直线AB上方,F在直线AB与CD之间时,直接写出∠MEN与∠MFN之间的数量关系.27.已知关于x、y的二元一次方程组.(1)若关于x、y的二元一次方程组的解为的解为,直接写出原方程组的解为.(2)若m+n=2,且x>y>0,求W=3x﹣2y的取值范围.28.对任意的实数m有如下规定:用[m]表示不小于m的最小整数,例如[]=3,[5]=5,[﹣1.3]=﹣1请回答下列问题:(1)①0≤[x]﹣x<l;②[x﹣2022]=[x]﹣2022;③[3x]=3[x];④[x]+[y]=[x+y];⑤若[x]=a(a为整数),则a﹣1<x≤a.以上五个命题中为真命题的是(填序号).(2)关于x的方程[x﹣1]=2x+1的解为.(3)某市出租车的起步价是13元(可行驶3千米),以后每多行1千米增加2.3元(不足1千米按1千米收费),现有某同学乘出租车从甲地到乙地共付费36元,如果他从甲地到乙地先步行800米,然后再乘坐出租车,车费也是36元若该同学乘坐出租车从甲地出发去往乙地,由于突发情况,在距离乙地1公里处掉头原路返回,那么该同学返回甲地后应付费元.。

2022年北京市西城区北京四中七下期中数学试卷(含答案)

2022年北京市西城区北京四中七下期中数学试卷(含答案)

2022年北京市西城区北京四中七下期中数学试卷1.点(2,−1)在平面直角坐标系中所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.如图,直线a,b被直线c所截,则假命题是( )A.∠1与∠2是邻补角B.∠1与∠3是对顶角C.∠2与∠4是同位角D.∠3与∠4是内错角3.如图,AB∥ED,AG平分∠BAC,∠ECF=70∘,则∠BAG的度数是( )A.35∘B.45∘C.55∘D.65∘4.皮影戏是中国民间古老的传统艺术,如图就是皮影戏中孙悟空的一个形象,在下面的四个图形中,能由如图经过平移得到的图形是( )A.B.C.D.5.若下列各组值代表线段的长度,则不能构成三角形的是( )A.3,8,4B.4,9,6C.15,20,8D.9,15,86.若点A(m−2,m+1)在x轴上,则m的值为( )A.1B.2C.−1D.−27.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是( )A.a=−2B.a=−1C.a=1D.a=28.如图,有四条互相不平行的直线a,b,c,d所截出的七个角.关于这七个角的度数关系,正确的是( )A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180∘D.∠2+∠3+∠5=360∘9.红领巾公园健走步道环湖而建,以红军长征路为主题.右图是利用平面直角坐标系画出的健走步道路线上主要地点的大致分布图,这个坐标系分别以正东、正北方向为x轴、y轴的正方向,如果表示遵义的点的坐标为(−5,7),表示腊子口的点的坐标为(4,−1),那么这个平面直角坐标系原点所在位置是( )A.泸定桥B.瑞金C.包座D.湘江10.已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度,在平面直角坐标系内,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4⋯⋯依此运动规律,则经过第2022次运动后,动点P所在位置P2022的坐标是( )A.(2022,2022)B.(−1007,−1008)C.(−1007,−1007)D.(−673,−673)11.正多边形的一个外角等于20∘,则这个正多边形的边数是.12.线段AB平移后得到CD,已知A(2,3)的对应点为C(−1,4),则B(3,2)的对应点D的坐标为.13.在平面直角坐标系xOy中,点O(0,0),A(2,4),点B在坐标轴的负半轴上,若S△AOB=4,则点B的坐标为.14.一个三角形三个内角的度数之比为1:2:3,这个三角形一定是三角形(填“锐角”、“直角”或“钝角”).15.等腰△ABC周长为16cm,其中两边长的差为2cm,则腰长为cm.16.平面上的一个凸七边形ABCDEFG,从顶点A出发,需要连出条对角线,就能使得这个图形具有稳定性.17.△ABC中,∠A=40∘,高BE,CF所在直线交于点O,且点O不与点B,C重合,则∠BOC的大小为度.18.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1= 2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;按此规律继续下去,可得到△A n B n C n,记其面积为S n,则S1=,S n=.19.如图,∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,且∠1=∠3.求证AB∥DC.请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF,DE分别平分∠ABC与∠ADC,∴∠1=12∠ABC,∠2=12∠ADC().∵∠ABC=∠ADC,∴∠=∠.∵∠1=∠3,∴∠2=().∴AB∥CD().20.作图题.(要求:用直尺铅笔作图)如图,已知三角形ABC.(1) (1)作点A到BC的垂线段AD,垂足为D.(2)过B点作AC的垂线BE,垂足为E.(3)过C做AB的平行线MN.(2) 测量点C到AB的距离.(精确到mm)21.如图,四边形ABCD中,AB∥CD,点E,F分别在AD,BC边上,连接AC交EF于G,∠1=∠BAC.(1) 求证:EF∥CD.(2) 已知∠CAF=15∘,∠2=45∘,∠3=20∘,求∠B和∠ACD的度数.22.如图,将△ABC向右平移3个单位长度,然后再向上平移2个单位长度,可以得到△A1B1C1.(1) 画出平移后的△A1B1C1并写出△A1B1C1三个顶点的坐标.(在图中标出)(2) 计算△ABC的面积为.(3) 已知点P在x轴上,以A1,B1,P为顶点的三角形面积为4,P点的坐标为.23.已知:如图,△ABC中,AD⊥BC于点D,点E在AB上,EF⊥BC于点F,∠1=∠2,求证:DE∥AC.24.已知:如图,∠ACB=90∘,∠CAD=∠CDA,∠CBD=∠CDB.求∠ADB.25.如图1,直线a∥b,点A为直线a上的动点,点B为直线a,b之间的定点,点C为直线b上的定点.(1) 当点A运动到图1所示的位置时,容易发现∠ABC,∠DAB与∠BCE之间的数量关系为.(2) 如图2,当BA⊥BC时,作等边△BPQ,BM平分∠ABP,交直线a于点M,BN平分∠QBC,交直线b于点N,将△BPQ绕点B转动,且BC始终在∠PBQ的内部时,∠DMB+∠ENB的值是否发生变化?若不变,求其值,若变化,说明理由.(3) 点F为直线a上一点,且∠AFB=∠ABF,∠ABC的平分线交直线a于点G,当点A在的直线a上运动时(A,B,C三点不共线),在图3中画出满足条件的图形,并求∠FBG∠ECB 值.26.在平面直角坐标系中,我们定义,两个点之间的“直角距离”为这两个点的横坐标差的绝对值加上纵坐标差的绝对值.即在平面直角坐标系xOy中,任意两点A(x A,y A)与B(x B,y B)之间的“直角距离”表示为:D AB=∣x B−x A∣+∣y B−y A∣对于平面内的一个动点P,若D AP=D BP,则称动点P的轨迹为A,B两点的“等距线”.例如:已知点M(1,−2),点N(3,−5),则D MN=∣3−1∣+∣−5−(−2)∣=5.已知点A(1,0),点B(−1,4),C(1,3),D(−1,1).(1) 计算以下各点之间的直角距离:D AC=;D BC=;D AD=;D BD=.(2) 我们定义,到点A的直角距离为n的点组成的图形为“A−n等距图形”如图1中的正方形GHIJ为A−1等距图形.请在图1坐标系中画出A−3等距图形,A−4等距图形,B−3等距图形,B−4等距图形.(这样,我们发现点A和点B的等距线为图中的射线DF,线段CD及射线CE组成的折线.)(3) 试着在如图2坐标系中分别画出到A−5等距图形,A−6等距图形,E−5等距图形,E−6等距图形,并画出点A和点E的等距线.答案1. 【答案】D【解析】∵横坐标2>0,纵坐标−1<0,∴点(2,−1)在第四象限.2. 【答案】D【解析】∠3与∠4是同旁内角,不是内错角,故D选项是假命题.3. 【答案】A【解析】∵AB∥ED,∴∠ECF=∠BAC=70∘,又∵AG平分∠BAC,=35∘.∴∠BAG=70∘24. 【答案】D【解析】将一个图形沿着一定的方向移动一定的距离,叫做平移.根据平移不改变图形的形状、大小,只改变图形的位置可知答案选D.5. 【答案】A【解析】∵3+4<8,∴3,8,4不能构成三角形.6. 【答案】C【解析】x轴上的坐标性质,纵坐标为0,则m+1=0,m=−1.7. 【答案】A【解析】当a=−2时,a2>1,但a<1.8. 【答案】C【解析】因为四条互相不平行的直线a,b,c,d所截出的七个角,因为∠1=∠AOB,∠AOB=∠4+∠6=180∘,所以∠1+∠4+∠6=180∘.9. 【答案】B【解析】由题意可得,表示遵义与表示腊子口的点横坐标只差为9,由图可知,这两个点之间水平方向上的距离为9个方格,故每个格子的单位长度为1,又∵坐标分别以正东,正北方向为x轴,y轴正方向,∴平面直角坐标系坐标原点所在位置是瑞金.10. 【答案】B【解析】点P第一次上移1个单位,向右移2个单位至点P1(2,1),第二次向下移2个单位,向左移3个单位至点P2(−1,−1),第三次上移1个单位,向右移2个单位至点P3(1,0),第四次向下移2个单位,向左移3个单位至点P4(−2,−2),依次P5(0,−1),P6(−3,−3),P7(−1,−2),P8(−4,−4).发现第偶数个点,横纵坐标相同,即P2n(−n,−n),∴P2022=P2×1009(−1009,−1009),P2022(−1009,−1009)再向上移1个单位,向右移2个单位得到P2022(−1007,−1008).11. 【答案】18【解析】因为外角是20度,360÷20=18,则这个多边形是18边形.12. 【答案】(0,3)【解析】∵点A(2,3)向左平移3个单位再向上平移1个单位得到点C(−1,4),∴B(3,2)的对应的点D的坐标是(0,3).13. 【答案】(−2,0)或(0,−4)【解析】如图所示,过点A作AE⊥x轴于点E,AF⊥y轴于点F,点O(0,0),A(2,4),S△AOB=4,×BO×AE=4,当B在x轴负半轴时,12×BO×4=4,解得:BO=2,即12×BʹO×AF=4,当B在y轴负半轴时,12×BʹO×2=4,解得BʹO=4,即12∴点B的坐标为:(−2,0)或(0,−4).14. 【答案】直角【解析】设三角形的三个内角的度数之比为x,2x,3x,则x+2x+3x=180∘,解得x=30∘,则3x=90∘,∴这个三角形一定是直角三角形.或615. 【答案】143【解析】设腰为x cm,则第三边长为(x+2)cm或(x−2)cm,当第三边长为x+2cm时,2x+x+2=16,.解得x=143当第三边长为x−2cm时,2x+x−2=16,解得x=6,cm或6cm.∴腰长为14316. 【答案】4【解析】三角形具有稳定性,七边形,从点A出发,可以作7−3=4条对角线.17. 【答案】40或140【解析】①若O在△BAC内,∵BE⊥AC,CF⊥AB,∴∠AFC=90∘,∠AEB=90∘.∵∠A,∠AFC,∠AEB,∠EOF是四边形AEOF的内角,∴∠A+∠AFC+∠AEB+∠EOF=360∘.∵∠AFC=90∘,∠AEB=90∘,∠A=40∘,∠A+∠AFC+∠AEB+∠EOF=360∘,∴∠EOF=140∘,∴∠BOC=∠EOF=140∘.②若 O 在 △BAC 外,∵BD ,CE 是 △ABC 的高,∴∠AFC =90∘,∠AEB =90∘.∵∠A =40∘,∴∠ACF =50∘,∴∠ECO =50∘,∴∠BOC =40∘.综上可知,∠BOC 等于 40∘ 或 140∘.18. 【答案】 19 ; 19n【解析】连接 BC 1.∵C 1A =2CA ,∴S △ABC 1=2S △ABC ,同理:S △A 1B 1C 1=2S △ABC 1=4S △ABC ,∴S △A 1AC 1=6S △ABC ,同理:S △A 1BB 1=S △CB 1C 1=6S △ABC ,∴S △A 1B 1C 1=19S △ABC .即 S 1=19S 0,∵S 0=S △ABC =1,∴S 1=19.同理:S 2=19S 1=192S 0,S 3=193S 0,∴S n =19n S 0=19n .19. 【答案】角平分线定义;1;2;∠3;等量代换;内错角相等,两直线平行20. 【答案】(1) 如图:(2) 测量点 C 到 AB 的距离为 45 mm .21. 【答案】(1) 如图.∵∠1=∠BAC,∴AB∥EF,∵AB∥CD,∴EF∥CD.(2) ∵EF∥CD,∴∠B+∠BFE=180∘,∵∠BFE=∠2+∠3=65∘,∴∠B=115∘,∵∠1是△AGF的外角,∴∠1=∠3+∠GAF=35∘,∵EF∥CD,∴∠ACD=∠1=35∘.22. 【答案】(1) 如图:A1(0,4),B1(2,0),C1(4,1)(2) 5(3) (0,0)或(4,0)【解析】(2) S△ABC=4×4−12×4×2−12×2×1−12×4×3 =16−4−1−6= 5.即△ABC的面积为5.(3) ∵S△A1B1P =12×B1P×y A1,∴A=12×4×B1P,∴B1P=2,∵B1(2,0),∴P1(0,0)或P2(4,0).23. 【答案】∵AD⊥BC于点D,EF⊥BC于点F,∴AD∥EF,∴∠1=∠3.∵∠1=∠2,∴∠2=∠3,∴DE∥AC.24. 【答案】∵∠CAD=∠CDA,∴AC=CD,∵∠CBD=∠CDB,∴BC=CD,∴AC=BC,∵∠ACB=90∘,∴∠CAB=∠CBA=45∘,∴∠ADB=180∘−∠DBA−∠DAB=180∘−(∠ABC+∠DBC)−(∠CAB−∠CAD)=180∘−(45∘+∠DBC)−(45∘−∠CAD)=180∘−45∘−∠DBC−45∘+∠CAD=90∘−(∠DBC−∠CAD)=90∘−(∠CDB−∠CDA)=90∘−∠ADB,∴2∠ADB=90∘,∴∠ADB=45∘.25. 【答案】(1) ∠ABC=∠DAB+∠BCE(2) ∵BM平分∠ABP,BN平分∠QBC,∴设∠ABM=∠PBM=x,∠QBN=∠CBN=y,∵△BPQ是等边三角形,∴∠PBQ=60∘,∴∠PBC=∠PBQ−∠CBQ=60∘−2x,∵AB⊥BC,∴∠ABC=90∘,∴∠PBC=∠ABC−∠ABP=90∘−2y,∴60−2x=90∘−2y,∴y−x=15∘,由(1)结论可得∠DMB+∠ENB=∠MBN,∵∠MBN=∠MBP+∠PBC+∠CBN=60+y−x=75∘,∴∠DMB+∠ENB=75∘,故∠DMB+∠ENB值不发生变化,值为75∘.(3) ∵∠ABF=∠AFB,∴设∠ABF=∠AFB=α,∵BG平分∠ABC,∴设∠ABG=∠GBC=β,∵∠FBG=∠ABG−∠ABF,∴∠FBG=β−α,根据(1)中结论∠DAB+∠ECB=∠ABC,∵∠ABC=2∠ABG+2β,∠DAB=∠ABF+∠AFB=2α,∴∠ECB=∠ABC−∠PAB=2β−2α=2(β−α),∴∠ECB=2∠FBG,∴∠FBG∠ECB =12.【解析】(1) 过点B作BE∥a(如图1).∵a∥b,∴BE∥b,∴∠1=∠2,∠3=∠4,∵∠ABC=∠2+∠3,∴∠ABC=∠1+∠4,即∠ABC=∠DAB+∠BCE.26. 【答案】(1) 3;3;3;3(2) 由定义,A−3等距图形,A−4等距图形,B−3等距图形,B−4等距图形,如图3所示:(3) A−5等距图形,A−6等距图形,E−5等距图形,E−6等距图形,如图4所示:由图可知,点A和点E的等距线即为线段MN,及射线MP和射线NQ.【解析】(1) D AC=∣1−1∣+∣3−0∣=3;D BC=∣1−(−1)∣+∣3−4∣=3;D AD=∣−1−1∣+∣1−0∣=3;D BD=∣−1−(−1)∣+∣1−4∣=3.。

七下期中数学北京市四中含答案

七下期中数学北京市四中含答案

2008-2009学年北京市四中七年级(下)期中数学试卷一、选择题(每题3分,共30分)3.(3分)在方程组,,,,,中,是二元一次方程组的5.(3分)已知△ABC的三个内角,∠A、∠B、∠C满足关系式∠B+∠C=∠A,则此三角形()6.(3分)已知都满足方程y=kx﹣b,则k、b的值分别为()8.(3分)(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()9.(3分)(2008•怀化)如图,AB∥CD,∠1=105°,∠EAB=65°,则∠E的度数是()10.(3分)如图所示,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点即正方形的顶点,在这个4×4的方格纸中,找出格点C,使△ABC的面积为1个平方单位的三角形的个数是()二、填空题(每题3分,共30分)11.(3分)已知二元一次方程,用含x的代数式表示y,则y=_________.12.(3分)如图,直线AB、CD与直线EF相交于E、F,∠1=104°,当∠2=_________°时,能使AB∥CD.13.(3分)已知等腰三角形的一边为7cm,一边为5cm,则它的周长是_________cm.14.(3分)已知方程组的解是,则(a+b)(a﹣b)的值是_________.15.(3分)若图中的有序数对(4,1)对应字母D,有一个英文单词的字母顺序对应图中的有序数对为(1,1)、(2,3)、(2,3)、(5,2)、(5,1);则这个英文单词是_________.(大小写均可)16.(3分)在平面直角坐标系内,将点P(﹣3,4)先向下平移4个单位,再向左平移2个单位后得到点Q,则点Q的坐标是_________.17.(3分)如图,折叠宽度相等的长方形纸条,若∠1=62°,则∠2=_________度.18.(3分)一副三角板如图所示叠放在一起,则图中∠α是_________°.19.(3分)点P到x轴的距离为5,到y轴的距离为4,点P的坐标是_________.20.(3分)如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正十边形“扩展”而来的多边形的边数为_________.三、解答题(共40分)21.(6分)解下列二元一次方程组(1);(2).22.(6分)如图,四边形ABCD是一位师傅用地板砖铺设地板尚未完工的地板图形,为了节省材料,他准备在剩余的六块砖中(如图22﹣2所示①②③④⑤⑥)挑选若干块进行铺设,请你在下列网格纸上帮他设计3种不同的铺法示意图.(在图上画出分割线,标上地砖序号即可).23.(5分)已知:如图,AB∥CD,求图形中的x的值.24.(5分)(2004•绍兴)某学校初三(1)班的一个综合实践活动小组去A、B两个超市调查去年和今年“五•一”期间的销售情况,如图是调查后,小敏与其他两位同学进行交流的情景.根据他们的对话,请分别求出A、B两个超市今年“五•一”期间的销售额.25.(5分)如图,△AOB是由△A1O1B1平移后得到的,已知点A的坐标为(2,﹣2),点B的坐标为(﹣4,2),若点A1的坐标为(3,﹣1).求:①O1的坐标为_________.B1的坐标为_________.②△AOB的面积为_________.填上正确答案即可.26.(5分)如图,在B处测得C在B的北偏东75°方向上,在A处测得B在A的南偏西30°方向上,C在A的南偏东25°方向上,那么从C处看A,B两处的视角∠ACB是多少度?27.(5分)请你阅读下列信息,并回答问题:(1)读一读:国际象棋、中国象棋和围棋号称世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.(2)想一想:在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,请用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.答:_________.(3)做一做:如图丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互不受对方控制(在图丙中的某四个小方格中标出字母Q即可).28.(5分)如图,AE、OB、OC分别平分∠BAC、∠ABC、∠ACB,OD⊥BC,求证:∠1=∠2.附加题(1)一幅图案,在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是_________.(2)从下列图中选择四个拼图板,可拼成一个矩形,正确的选择方案为_________.(填写拼图板的代码即可).(3)已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.2008-2009学年北京市四中七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)3.(3分)在方程组,,,,,中,是二元一次方程组的5.(3分)已知△ABC的三个内角,∠A、∠B、∠C满足关系式∠B+∠C=∠A,则此三角形()∠C=∠A+6.(3分)已知都满足方程y=kx﹣b,则k、b的值分别为()都满足方程代入得:8.(3分)(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()9.(3分)(2008•怀化)如图,AB∥CD,∠1=105°,∠EAB=65°,则∠E的度数是()10.(3分)如图所示,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点即正方形的顶点,在这个4×4的方格纸中,找出格点C,使△ABC的面积为1个平方单位的三角形的个数是()二、填空题(每题3分,共30分)11.(3分)已知二元一次方程,用含x的代数式表示y,则y=7x﹣10.12.(3分)如图,直线AB、CD与直线EF相交于E、F,∠1=104°,当∠2=76°时,能使AB∥CD.13.(3分)已知等腰三角形的一边为7cm,一边为5cm,则它的周长是19或17cm.14.(3分)已知方程组的解是,则(a+b)(a﹣b)的值是19.代入原方程组得,再根据系数特点将两式加减,直接得到(代入原方程组得代入原方程,就可得到关于15.(3分)若图中的有序数对(4,1)对应字母D,有一个英文单词的字母顺序对应图中的有序数对为(1,1)、(2,3)、(2,3)、(5,2)、(5,1);则这个英文单词是apple.(大小写均可)16.(3分)在平面直角坐标系内,将点P(﹣3,4)先向下平移4个单位,再向左平移2个单位后得到点Q,则点Q的坐标是(﹣5,0).17.(3分)如图,折叠宽度相等的长方形纸条,若∠1=62°,则∠2=56度.18.(3分)一副三角板如图所示叠放在一起,则图中∠α是75°.19.(3分)点P到x轴的距离为5,到y轴的距离为4,点P的坐标是(4,5)或(4,﹣5)或(﹣4,5)或(﹣4,﹣5).20.(3分)如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正十边形“扩展”而来的多边形的边数为110.三、解答题(共40分)21.(6分)解下列二元一次方程组(1);(2).),代入=.所以方程组的解为②所以方程组的解为22.(6分)如图,四边形ABCD是一位师傅用地板砖铺设地板尚未完工的地板图形,为了节省材料,他准备在剩余的六块砖中(如图22﹣2所示①②③④⑤⑥)挑选若干块进行铺设,请你在下列网格纸上帮他设计3种不同的铺法示意图.(在图上画出分割线,标上地砖序号即可).23.(5分)已知:如图,AB∥CD,求图形中的x的值.24.(5分)(2004•绍兴)某学校初三(1)班的一个综合实践活动小组去A、B两个超市调查去年和今年“五•一”期间的销售情况,如图是调查后,小敏与其他两位同学进行交流的情景.根据他们的对话,请分别求出A、B两个超市今年“五•一”期间的销售额.由题意得:.25.(5分)如图,△AOB是由△A1O1B1平移后得到的,已知点A的坐标为(2,﹣2),点B的坐标为(﹣4,2),若点A1的坐标为(3,﹣1).求:①O1的坐标为(1,1).B1的坐标为(﹣3,3).②△AOB的面积为2.填上正确答案即可.的面积为×26.(5分)如图,在B处测得C在B的北偏东75°方向上,在A处测得B在A的南偏西30°方向上,C在A的南偏东25°方向上,那么从C处看A,B两处的视角∠ACB是多少度?27.(5分)请你阅读下列信息,并回答问题:(1)读一读:国际象棋、中国象棋和围棋号称世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.(2)想一想:在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,请用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.答:(1,1),(3,1),(4,2),(4,4).(3)做一做:如图丙也是一个4×4的小方格棋盘,请在这个棋盘中放入四个“皇后Q”,使这四个“皇后Q”之间互不受对方控制(在图丙中的某四个小方格中标出字母Q即可).28.(5分)如图,AE、OB、OC分别平分∠BAC、∠ABC、∠ACB,OD⊥BC,求证:∠1=∠2.∠ABC+∠BAC=∠∠附加题(1)一幅图案,在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是12.(2)从下列图中选择四个拼图板,可拼成一个矩形,正确的选择方案为①②③④.(填写拼图板的代码即可).(3)已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.。

2020-2021北京市北京四中七年级数学下期中模拟试题(带答案)

2020-2021北京市北京四中七年级数学下期中模拟试题(带答案)

2020-2021北京市北京四中七年级数学下期中模拟试题(带答案)一、选择题1.若点(),P a b 在第四象限,则( )A .0a >,0b >B .0a <,0b <C .0a <,0b >D .0a >,0b <2.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为A .8374x y x y +=⎧⎨+=⎩B .8374y x y x -=-⎧⎨-=-⎩C .8374x y x y -=⎧⎨-=-⎩D .8374x y x y +=⎧⎨-=⎩3.下列图形中,1∠和2∠的位置关系不属于同位角的是( )A .B .C .D .4.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .5.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==6.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°7.如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC 沿着直线BC 的方向平移2.5cm 后得到DEF ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个8.把一张50元的人民币换成10元或5元的人民币,共有( )A .4种换法B .5种换法C .6种换法D .7种换法 9.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50° 10.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45°11.如果a >b ,那么下列各式中正确的是( )A .a ﹣2<b ﹣2B .22a bC .﹣2a <﹣2bD .﹣a >﹣b12.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的12二、填空题13.命题“对顶角相等”的逆命题是_______.14.如图4,将∆ABC 沿直线AB 向右平移后到达∆BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为 .15.如图,数轴上表示1、3的对应点分别为点A 、点B ,若点A 是BC 的中点,则点C 表示的数为______.16.如图,有一块长为32 m 、宽为24 m 的长方形草坪,其中有两条直道将草坪分为四块,则分成的四块草坪的总面积是________m 2.17.已知△ABC 中,AB =AC ,求证:∠B <90°.用反证法证明,第一步是假设_________.18.若点P (a +3,2a +4)在y 轴上,则点P 到x 轴的距离为________.19.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.20.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______. 三、解答题21.某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)求本次接受随机抽样调查的学生人数及图①中m 的值;(2)本次调查获取的样本数据的平均数是 ,众数是 ,中位数是 ; (3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.甲、乙两名同学在解方程组5{213mx y x ny +=-=时,甲解题时看错了m ,解得7{22x y ==- ;乙解题时看错了n ,解得3{7x y ==-.请你以上两种结果,求出原方程组的正确解. 23.如图,∠1=70°,∠2=110°,∠C=∠D ,试探索∠A 与∠F 有怎样的数量关系,并说明理由.24.如图,已知//AB CD ,//AB EG .(1)求证:360BED B D ++=︒∠∠∠.(2)若145D ∠=︒,EF 平分BED ∠,20GEF ∠=︒,求B .25.(1)请写出图形平移的两个特征或性质,①______________________________.②______________________________.(2)如图,平移扇形OAB ,使扇形上的点C 移动到点C ',画出平移后的扇形O A B '''.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】由点P (a ,b )在第四象限内,得a >0,b <0,故选:D .【点睛】此题考查各象限内点的坐标,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.C解析:C【解析】【分析】设有x 人,物品价值y 钱,根据题意相等关系:(1)8×人数-3=物品价值;(2)7×人数+4=物品价值,据此可列方程组.【详解】解:设有x 人,物品价格为y 钱,根据题意:8374x y x y -=⎧⎨-=-⎩故选C .【点睛】此题主要考查列方程组解应用题,找出题目中的等量关系,列出相应的方程组是解题的关键.3.D解析:D【解析】【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:A .根据根据同位角的特征得,∠1和∠2是同位角.B .根据根据同位角的特征得,∠1和∠2是同位角.C .根据根据同位角的特征得,∠1和∠2是同位角.D .由图可得,∠1和∠2不是同位角.故选:D .【点睛】本题主要考查了同位角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.4.D解析:D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.5.A解析:A【解析】【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】设索长为x 尺,竿子长为y 尺, 根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩. 故选A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.7.D解析:D【解析】【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小可对①②③进行判断;根据∠BAC=90°及平移的性质可对④进行判断,综上即可得答案.【详解】∵△ABC沿着直线BC的方向平移2.5cm后得到△DEF,∴AB//DE,AC//DF,AD//CF,CF=AD=2.5cm,故①②③正确.∵∠BAC=90°,∴AB⊥AC,∵AB//DE∴⊥,故④正确.DE AC综上所述:之前的结论有:①②③④,共4个,故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.8.C解析:C【解析】【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.由于10元和5元的数量都是未知量,可设出10元和5元的数量.本题中等量关系为:10元的总面值+5元的总面值=50元.【详解】设10元的数量为x,5元的数量为y.则1055000x yx y⎧⎨≥≥⎩+=,,解得10xy⎧⎨⎩==,18xy⎧⎨⎩==,26xy⎧⎨⎩==,34xy⎧⎨⎩==,42xy⎧⎨⎩==,5xy⎧⎨⎩==.所以共有6种换法.故选C.【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.9.B解析:B【解析】【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等.【详解】解:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,可以得到∠1=∠2.因此,第一次与第二次拐的方向不相同,角度要相同,故只有B选项符合,故选B.【点睛】此题主要考查了平行线的性质,注意要想两次拐弯后,仍在原来的方向上平行前进,则拐的方向应相反,角度应相等.10.B解析:B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.11.C解析:C【解析】A.不等式的两边都减2,不等号的方向不变,故A错误;B.不等式的两边都除以2,不等号的方向不变,故B错误;C.不等式的两边都乘以−2,不等号的方向改变,故C正确;D.不等式的两边都乘以−1,不等号的方向改变,故D错误.故选C.12.B解析:B【解析】【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选:B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.二、填空题13.如果两个角相等那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题【详解】∵原命题的条件是:如果两个角是对顶角结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两解析:如果两个角相等,那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题.【详解】∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等,那么这两个角是对顶角,简化后即为:相等的角是对顶角.【点睛】考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.14.【解析】∵将△ABC沿直线AB向右平移后到达△BDE的位置∴AC∥BE∴∠CAB=∠EBD=50°∵∠ABC=100°∴∠CBE的度数为:180°-50°-100°=30°解析:30︒【解析】∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°,∵∠ABC=100°,∴∠CBE的度数为:180°-50°-100°=30°.15.2﹣【解析】【分析】设点C表示的数是x再根据中点坐标公式即可得出x 的值【详解】解:设点C表示的数是x∵数轴上表示1的对应点分别为点A点B点A是BC的中点∴=1解得x=2﹣故答案为2﹣【点评】本题考查解析:2【解析】【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上表示1的对应点分别为点A、点B,点A是BC的中点,=1,解得x=2故答案为2【点评】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.16.【解析】【分析】【详解】解:如图两条直道分成的四块草坪分别为甲乙丙丁把丙和丁都向左平移2米然后再把乙和丁都向上平移2米组成一个长方形长为32-2=30米宽为24-2=22米所以四块草坪的总面积是30解析:【解析】【分析】【详解】解:如图,两条直道分成的四块草坪分别为甲、乙、丙、丁,把丙和丁都向左平移2米,然后再把乙和丁都向上平移2米,组成一个长方形,长为32-2=30米,宽为24-2=22米,所以四块草坪的总面积是30×22=660(㎡).故答案为:660.【点睛】本题考查了平移的应用,将草坪平移组成一个长方形是解决此题的关键.17.∠B≥90°【解析】【分析】熟记反证法的步骤直接填空即可【详解】解:用反证法证明:第一步是:假设∠B≥90°故答案是:∠B≥90°【点睛】考查反证法解题关键要懂得反证法的意义及步骤反证法的步骤是:(解析:∠B≥90°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】解:用反证法证明:第一步是:假设∠B≥90°.故答案是:∠B≥90°.【点睛】考查反证法,解题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.18.2【解析】【分析】点在y轴上则横坐标为0可求得a的值然后再判断点到x轴的距离即可【详解】∵点P(a+32a+4)在y轴上∴a+3=0解得:a=-3∴P(0-2)∴点P到x轴的距离为:2故答案为:2【解析:2【解析】【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.19.π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周说明OO′之间的距离为圆的周长=π由此即可确定O′点对应的数【详解】因为圆的周长为π•d=1×π=π所以圆解析:π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.20.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-4 解析:8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式,∴x2+(m-2)x+9=(x±3)2.而(x±3)2=x2±6x+9,∴m-2=±6,∴m=8或m=-4.故答案为8或-4.三、解答题21.(1)50、32;(2)16,10,15;(3)608人.【解析】【分析】(1)由5元的人数及其所占百分比可得总人数,用10元人数除以总人数可得m的值;(2)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计图中的数据可以估计该校本次活动捐款金额为10元的学生人数.【详解】÷=人,解:(1)本次接受随机抽样调查的学生人数为48%5016⨯=,100%32%∴=,m32故答案为:50、32;⨯=,(2)15元的人数为5024%12本次调查获取的样本数据的平均数是:1(45161012151020830)1650(元),本次调查获取的样本数据的众数是:10元,本次调查获取的样本数据的中位数是:15元;(3)估计该校本次活动捐款金额为10元的学生人数为190032%608⨯=人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.22.n = 3 , m = 4, 2{3x y ==-【解析】试题分析: 由题意可知722x y ⎧=⎪⎨⎪=-⎩是方程213x ny -=的解,由此即可求得n 的值;37x y =⎧⎨=-⎩是方程5mx y +=的解,由此看求得m 的值;这样即可得到正确的原方程组,再解方程组,即可求得原方程组的正确解;试题解析: 由题意可知722x y ⎧=⎪⎨⎪=-⎩是方程213x ny -=的解, ∴72(2)132n ⨯--=,解得n=3; 37x y =⎧⎨=-⎩是方程5mx y +=的解, ∴375m -=,解得m=4;∴原方程组为:452313x y x y +=⎧⎨-=⎩,解此方程组得23x y =⎧⎨=-⎩, ∴m=4,n=3,原方程组的解为:23x y =⎧⎨=-⎩. 点睛:在本题中“甲、乙两名同学在解方程组5213mx y x ny +=⎧⎨-=⎩时,甲解题时看错了m ,解得722x y ⎧=⎪⎨⎪=-⎩ ”这句话的含义是:“722x y ⎧=⎪⎨⎪=-⎩”是关于x y 、的二元一次方程“213x ny -=”的解.23.见解析【解析】分析:要找∠A 与∠F 的数量关系,根据平行线的判定,由已知可得∠1+∠2=180°,则CE ∥BD ;根据平行线的性质,可得∠C =∠ABD ,结合已知条件,得∠ABD =∠D ,根据平行线的判定,得AC ∥DF ,从而求得结论.详解:∠A =∠F . 理由如下:∵∠1=70°,∠2=110°,∴∠1+∠2=180°,∴CE ∥DB ,∴∠C =∠ABD .∵∠C =∠D ,∴∠ABD =∠D ,∴AC ∥DF ,∴∠A =∠F .点睛:本题主要考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.24.(1)见解析 (2)105°【解析】【分析】(1)由平行公理的推论可得////AB EG CD ,由平行线的性质可求解;(2)由角的数量关系可得55DEF ∠=︒,由角平分线的性质可得110BED ∠=︒,即可求B 的度数.【详解】(1)证明://AB CD ,//AB EG ,∴//CD EG .∴180D DEG ︒∠+∠=.∵//AB EG ,∴180B BEG ︒∠+∠=.∴360B D DEG BEG ∠+∠+∠+∠=︒即360B D BED ∠+∠+∠=︒.(2)由(1)可知180D DEG ︒∠+∠=.∴180********DEG D ∠︒︒︒=-∠=-=︒.∵20GEF ∠=︒,∴352055DEF DEG GEF ∠=∠+∠=︒+︒=︒.∵EF 平分BED ∠,∴2255110BED DEF ∠=∠=⨯︒=︒.由(1)可知360B D BED ∠+∠+∠=︒,∴360360145110105B D BED ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了平行线的性质,角平分线的定义,熟练运用平行线的性质是本题的关键.25.(1)见解析 (2)见解析【解析】【分析】(1)根据平移的性质解答即可;(2)将图形的各个顶点按平移条件找出它的对应点,顺次连接,即得到平移后的图形.【详解】(1)①平移不改变图形的形状和大小,②一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一直线上)且相等;'''即为所求:(2)如图所示,扇形O A B【点睛】本题考查了图形的平移,解题的关键是作各个关键点的对应点.。

2017-2018学年北京四中七年级下学期期中考试数学试卷(含答案)

2017-2018学年北京四中七年级下学期期中考试数学试卷(含答案)

北京四中2017-2018学年下学期初中七年级期中考试数学试卷一、选择题(每题3分)1. 9的平方根是()A. B. C. D. 32. 平面直角坐标系中,点(-1,3)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 若,则下列不等式中错误的是()A. B. C. D.4. 不等式的解集在数轴上表示正确的是()A. AB. BC. CD. D5. 在下列实数中,无理数是()A. B. C. D.6. 关于的叙述正确的是()A. 在数轴上不存在表示的点B.C. D. 与最接近的整数是37. 如图,点E在AC的延长线上,下列条件中能判断AB//CD的条件是()A. B. C. D.8. 如图,直线,点B在直线b上,且,,那么的度数是()学,科,网...学,科,网...A. B. C. D.9. 在一次科技知识竞赛中,共有20道选择题,每道题的四个选项中,有且只有一个答案正确,选对得10分,不选或错选倒扣5分,如果得分不低于90分才能得奖,那么要得奖至少应选对的题数是()A. 13B. 14C. 15D. 1610. 运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A. B. C. D.二、填空题(每题2分)11. 把命题“对顶角相等”改写为“如果……,那么……”的形式:___________。

12. x的与3的差是负数,用不等式表示为____________。

13. 平面直角坐标系中,若点P(2-m,3m)在x轴上,则m的值为_______。

14. 估计与0.5的大小关系是:______0.5(填“>”、“=”、“<”)15. 不等式的解集是_________。

16. 在实数范围内规定新运算“”,其规则是:,已知不等式的解集在数轴上如下图表示,则k的值是_______。

17. 如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含角的直角三角板的斜边与纸条一边重合,含角的三角板的一个顶点在纸条的另一边上,则的度数是__________。

北京四中初一下期中考试数学试卷及答案

北京四中初一下期中考试数学试卷及答案

54D3E21C B A数 学 试 卷(考试时间100分钟,试卷满分120分)班级 学号_________ 姓名 分数__________ 一.选择题:(每题3分,共30分) 1.2的平方根是( ) A .4BC.D.2.以下列各组线段为边,能组成三角形的是( )A .1cm , 2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD . 2cm , 3cm ,6cm3.平面直角坐标系中, 点(1,-2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.若23132a b a b +->+,则a b ,的大小关系为 ( ) A .a b < B .a b > C .a b = D .不能确定 5.如图,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是( ) A .α的余角只有∠BB .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补6.如图,直线AB 与直线CD 相交于点O ,E 是∠已知OE ⊥AB ,︒=∠45BOD ,则COE ∠的度数是( ) A 、︒125 B 、︒135 C 、︒145 D 、︒1557.如图,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B .A.1B.2C.3D.48.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确的是( )A .362100x y x y +=⎧⎨+=⎩B .3642100x y x y +=⎧⎨+=⎩C .3624100x y x y +=⎧⎨+=⎩D .3622100x y x y +=⎧⎨+=⎩9.下列四个命题,真命题的个数为( )(1) 坐标平面内的点与有序实数对一一对应,第5题 B第7题(2) 若a >0,b 不大于0,则P (-a ,b)在第三象限内 (3) 在x 轴上的点,其纵坐标都为0(4)当m≠0时,点P (m 2,-m )在第四象限内 A. 1 B. 2 C .3 D. 410. 如果不等式组 ⎩⎪⎨⎪⎧1<x ≤2x >-m 有解,那么m 的取值范围是( )A .m >1B .m ≤2C .1<m ≤2D .m >-2二.填空题(每空2分,共28分)11.如图,直线a b ,被直线c 所截,若a b ∥,160∠=°,则2∠= °. 12.比较大小:.13. 等腰三角形一边等于4,另一边等于2,则周长是 . 14. 关于x 的不等式23x a -≤-的解集如图所示, 则a 的值是 .15.在长为a m ,宽为b m 的一块草坪上修了一条1m宽的笔直小路,则余下草坪的面积可表示为 m 2;现为了增加美感,把这条小路改为宽恒为1m 的弯曲小路(如图),则此时余下草坪的面积为m 2.16. 如果点)2,(x x 到x 轴的距离为4,则这点的坐标是 .17. 已知a 是10的整数部分,b 是它的小数部分,则23)3b ()a (++-= . 18.已知点M (3a -8, a -1).(1) 若点M 在第二、四象限角平分线上, 则点M 的坐标为 ______________; (2) 若点M 在第二象限, 并且a 为整数, 则点M 的坐标为 _________________; (3) 若N 点坐标为 (3, -6), 并且直线MN ∥x 轴, 则点M 的坐标为 ___________ .19.如图,已知,AB //CD ,B 是AOC ∠的角平分线OE 的反向延长线与直线AB 的交点,若75,A C ︒∠+∠=7.5,ABE ︒∠= 则C ∠= °.20.如图,在平面直角坐标系中,有若干个横坐标和纵坐标都是整数的点,其顺序排列规律如下:(1,0),(2,0),(2,1),ab第14题第19题(3,2),(3,1),(3,0),…,根据这个规律探究可得,第100个点的坐标为__________;第2013个点的坐标为__________. 三、解答题(共10题,共计42分)21. (4分)计算 ()23722764---+22.(3分)求不等式的非正整数....解:372211+-≥++x x23.(4分)解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x x x --⎧⎪⎨--<⎪⎩≤,① ②24.(4分)完成下面的证明:已知,如图, AB ∥CD ∥GH ,EG 平分∠BEF ,A E B1FG 平分∠EFD ,求证:∠EGF=90° 证明:∵HG ∥AB ,HG ∥CD (已知) ; ∴∠1=∠3∴∠2=∠4( ). ∵AB ∥CD(已知);∴∠BEF+___________=180°( ). 又∵EG 平分∠BEF , FG 平分∠EFD(已知) ∴∠1=21∠_____________ ∠2=21∠_____________( ). ∴∠1+∠2=21(___________+______________). ∴∠1+∠2=90°; ∴∠3+∠4=90°,即∠EGF=90°.25.(3分)已知实数x 、y220x y -+=,求y x 58+的平方根.26.(4分) 已知: 如图, ∠C = ∠1, ∠2和∠D 互余, BE ⊥FD 于G .求证: CD AB //.27.(4分)已知在平面直角坐标系中,△ABC 的三个顶点坐标分别为:A (1,4),B (1,1),C (3,2).AF BCE DG21(1)将△ABC先向左平移3个单位长度,再向下平移4个单位长度得到△A1B1C1,请写出A1,B1,C1三个点的坐标,并在图上画出△A1B1C1;(2)求△A1B1C1的面积.28.(5分)如图,在△ABC中,∠B=∠C,∠BAD=40°,且∠ADE=∠AED,求∠CDE的度数.,两29.(5分)某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有A B 种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台B 型设备少6万元. (1)求a b ,的值.(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理的污水量不低于2040吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案.30.(6分)对于长方形OABC ,OC AB //, BC AO //, O 为平面直角坐标系的原点,OA =5,OC =3,点B 在第三象限. (1)求点B 的坐标;(2)如图1,若过点B 的直线BP 与长方形OABC 的边交于点P ,且将长方形OABC 的面积分为1:4两部分,求点P 的坐标;(3)如图2,M为x轴负半轴上一点,且∠CBM=∠CMB,N是x轴正半轴上一动点,∠MCN的平分线CD交BM的延长线于点D,在点N运动的过程中,DCNM∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.附加题(共20分,第1、2题各5分,第3题4分、第4题6分)1.已知n、k均为正整数,且满足815<nn+k<713,则n的最小值为_________.图1 图22. 如图,平面直角坐标系内,AC BC =,M 为AC 上一点,BM 平分ABC ∆的周长,若6AB =,3.6BMC S ∆=,则点A 的坐标为 .3. 如图,直线a ∥b ,︒∠∠∠∠>3-2=2-1=d 0.其中390︒∠<,1=50︒∠.求4∠ 度数最大可能的整数值.4. 如图,A 和B 两个小机器人,自甲处同时出发相背而行,绕直径为整数米的圆周上运动,15分钟内相遇7次,如果A 的速度每分钟增加6米,则A 和B 在15分钟内相遇9次,问圆周直径至多是多少米?至少是多少米?(取314.π=)数学试卷答案一. 选择题(每小题3分,共30分)b二.填空题(每空2分,共28分) 11.60 12.>13.10 14.1 15.a(b-1) a(b-1)16. (2,4) 或(-2,-4) 17.-1718.(1) )45,45(- (2) (-2,1) (3) (-23,-6) 19.4020. (14,8) (63,3)三.解答题(共42分)21. (4分) ()23722764---+|7|238---= 21-= 22.(3分))7(212)1(36+-≥++x x14212336--≥++x x 115-≥x511-≥x 非正整数解 -2,-1,023. (4分) 解: 由 得,2-≥x ,由 得, 21-<x 不等式组的解集为 212--<≤x 24. (4分) 两直线平行,内错角相等∠EFD 两直线平行,同旁内角互补 ∠BEF∠EFD 角平分线的定义 ∠BEF ∠EFD-2-225. (3分) 解:由题意得,⎩⎨⎧=+-=--0220132y x y x ,解得 ⎩⎨⎧==58y x1658=+y x 所以 y x 58+ 的平方根为 4±. 26. (4分) 证明:G FD BE 于点⊥90=∠∴BGE 901=∠+∠∴D 又互余和D ∠∠221∠=∠∴ (同角的余角相等) 又1∠=∠C 2∠=∠∴CCD AB //∴ (内错角相等,两直线平行) 27. (4分) (1) )0,2(1-A )3,2(1--B )2,0(1-C(2) 328. (5分)20=∠CDE 29.(5分) 解:(1)由题意得,⎩⎨⎧-==-6322b a b a ,解得 ⎩⎨⎧==1012b a .(2)设买x 台A 型,则买 (10-x)台B 型,有 105)10(1012≤-+x x 解得 25≤x 答:可买10台B 型;或 1台A 型,9台B 型;或2台A 型,8台B 型. (3) 设买x 台A 型,则由题意可得2040)10(200240≥-+x x 解得 1≥x当x=1时,花费 102910112=⨯+⨯ (万元) 当x=2时,花费 104810212=⨯+⨯ (万元) 答:买1台A 型,9台B 型设备时最省钱. 30.(6分) (1) (-5,-3)(2) 当点P 在x 轴上时,设P(x,0),则有x<0且3|5|21353|5|214⋅+⋅-⨯=⋅+⋅⨯x x 解得 3-=x)0,3(-∴P当点P 在y 轴上时,设P(0,y),则有y<0且5|3|21355|3|214⋅+⋅-⨯=⋅+⋅⨯y y 解得 59-=y )59,0(-∴P ∴P(-3,0)或)59,0(-P (3) 不变. 设x CMB CBM =∠=∠,y DCN MCD =∠=∠,则y x CNM y x D 22,-=∠-=∠21=∠∠∴CNM D 附加题(共20分)1.(5分)152.(5分) (0,2.4)3.(4分) 解:∵∠4-∠3=∠3-∠2,∴∠4=2∠3-∠2,又∵∠3-∠2=∠2-∠1,∠1=50°,∴2∠2=∠3+50°,∴2∠4=4∠3-2∠2=4∠3-∠3-50°=3∠3-50°,4. (6分)解:设圆的直径为d ,A 和B 的速度和是每分钟v 米,则d v d ππ8157<≤ ①d v d ππ10)6(159<+≤ ②②-① 得d d ππ3615<⨯<ππ9030<<d 28.6624d 9.55414<<29d 9<< 答:圆周直径至多是28米,至少是10米.87D Dvππ>=≥① 如果A 的速度每分钟增加6米,A 加速后的两个机器人的速度和是每分钟v+6米,则A 和B 在15分钟内相遇9次,用数学语言可以描述为1515(6)109v D D ππ+>=≥②。

2019-2020学年北京四中广外校区七年级(下)期中数学试卷含参考答案及试题解析

2019-2020学年北京四中广外校区七年级(下)期中数学试卷含参考答案及试题解析

2019-2020学年北京四中广外校区七年级(下)期中数学试卷一、选择题(每题4分,共40分)1.(4分)36的平方根是()A.18B.6C.±6D.±182.(4分)下列各数中的无理数是()A.B.4.2C.0.1010010001…D.3.(4分)已知a>b,则下列不等式一定成立的是()A.a﹣5>b﹣5B.﹣2a>﹣2b C.2a﹣1<2b﹣1D.4.(4分)平面直角坐标系中,点(﹣7,3)在()A.第一象限B.第二象限C.第三象限D.第四象限5.(4分)利用数轴确定不等式组的解集,正确的是()A.B.C.D.6.(4分)如果点A(﹣5,﹣9),则A到x轴的距离是()A.﹣5B.﹣9C.5D.97.(4分)如图,把图①中的△ABC经过一定的变换得到图②中的△A′B′C′,如果图①中△ABC上点P的坐标为(a,b),那么这个点在图②中的对应点P′的坐标为()A.(a+2,b+3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a﹣2,b﹣3)8.(4分)一个正方形的面积是19,则它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.(4分)下列运算正确的是()A.=±3B.=C.=﹣4D.|﹣2|=2﹣10.(4分)数轴上表示1,的点分别为A,B,点A是BC的中点,则点C所表示的数是()A.﹣1B.1﹣C.2﹣D.﹣2二、填空题(每题2分,共16分)11.(2分)的相反数是.12.(2分)x的5倍与7的和是负数,用不等式表示为.13.(2分)若点A和点B(6,2)关于y轴对称,则A点坐标为.14.(2分)若不等式(m﹣2)x>m﹣2的解集是x<1,则m的取值范围是.15.(2分)若=2,y3=﹣27,则x+y=.16.(2分)已知P点坐标为(4﹣a,3a+9),且点P在x轴上,则点P的坐标是.17.(2分)已知(a﹣3)2+|b﹣4|=0,则a+的值是.18.(2分)若不等式2(x+5)>3的最小整数解是方程2x﹣a=3的解,则a的值为.三、解答题(第1题,第2题各4分,第3,4,5,6题各5分,第7题6分,第8题10分,共44分)19.(4分)解方程:(2x﹣3)2=25.20.(5分)计算:﹣+.21.(5分)计算:×﹣+|﹣2|.22.(5分)解不等式3(x+2)﹣9≥﹣2(x﹣1),并把解集表示在数轴上.23.(5分)解不等式:﹣≤1,并把它的解集在数轴上表示出来.24.(5分).25.(5分)解不等式组:,并写出该不等式组的整数解.26.(10分)已知△A'B'C'是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如表所示:△ABC A(a,1)B(3,3)C(2,﹣1)△A’B’C’A’(4,4)B’(9,b)C’(c,2)(1)观察表中各对应点坐标的变化,并填空:a=;b=;c=.(2)在平面直角坐标系中画出△ABC及平移后的△A'B'C';(3)直接写出△A'B'C'的面积是.27.(10分)在平面直角坐标系xOy中,对任意两点A(x A,y B)与B(x B,y B)的“识别距离”,给出如下定义:若|x A﹣x B|≥|y A﹣y B|,则点A(x A,y A)与B(x B,y B)的“识别距离”D AB=|x A﹣x B|;若|x A﹣x B|<|y A﹣y B|,则A(x A,y A)与B(x B,y B)的“识别距离”D AB=|y A﹣y B|;即D AB=max{|x A﹣x B|,|y A﹣y B|}.已知点A(1,0),点B(﹣1,4),(1)A、B两点之间的识别距离D AB=.(2)在图1中的平面直角坐标系中描出到点A的识别距离为2的点.(3)如图2,点C,点D,和点E分别是直线m,直线n,和直线p上的点,若点C、D、E到点A的识别距离最小,求出C、D、E的坐标.28.(10分)旅游团一行60人到一旅馆住宿,旅游馆的客房有三人间、二人间、单人间三种,其中三人间的每人每天20元,二人间的每人每天30元,单人间的每天50元,如果旅游团共住满了30间客房,问三种客房各住几间,共几种安排方案?怎样安排住宿消费最低,最低消费是多少?2019-2020学年北京四中广外校区七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)36的平方根是()A.18B.6C.±6D.±18【考点】平方根.【分析】根据平方根的定义解答即可.【解答】解:∵(±6)2=36,∴36的平方根为±6,故选:C.【点评】本题考查了平方根的概念.解题的关键是掌握一个正数有两个平方根,它们互为相反数.2.(4分)下列各数中的无理数是()A.B.4.2C.0.1010010001…D.【考点】立方根;无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是分数,属于有理数;是循环小数,属于有理数;0.1010010001…是无理数;,是整数,属于有理数.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(4分)已知a>b,则下列不等式一定成立的是()A.a﹣5>b﹣5B.﹣2a>﹣2b C.2a﹣1<2b﹣1D.【考点】不等式的性质.【分析】根据不等式的性质逐个判断即可.【解答】解:A、∵a>b,∴a﹣5>b﹣5,故本选项符合题意;B、∵a>b,∴﹣2a<﹣2b,故本选项不符合题意;C、∵a>b,∴2a>2b,∴2a﹣1>2b﹣1,故本选项不符合题意;D、∵a>b,∴>,故本选项不符合题意;故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.4.(4分)平面直角坐标系中,点(﹣7,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用第二象限内点的坐标特点得出答案.【解答】解:点(﹣7,3)在第二象限.故选:B.【点评】此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.5.(4分)利用数轴确定不等式组的解集,正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得x≤1,故不等式组的解集为:﹣3<x≤1.在数轴上表示为:.故选:A.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.6.(4分)如果点A(﹣5,﹣9),则A到x轴的距离是()A.﹣5B.﹣9C.5D.9【考点】点的坐标.【分析】根据到x轴的距离等于纵坐标的绝对值进行计算即可.【解答】解:点A(﹣5,﹣9),则A到x轴的距离是|﹣9|=9,故选:D.【点评】此题主要考查了点的坐标,画出坐标系可直观得到答案.7.(4分)如图,把图①中的△ABC经过一定的变换得到图②中的△A′B′C′,如果图①中△ABC上点P的坐标为(a,b),那么这个点在图②中的对应点P′的坐标为()A.(a+2,b+3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a﹣2,b﹣3)【考点】坐标与图形变化﹣平移.【分析】根据图形可得平移方法,再根据平移方法可得P′的坐标.【解答】解:根据图可得△ABC向上平移了2个单位,向右平移了3个单位,因此点P的坐标为(a,b)变为点P′的坐标为(a+3,b+2),故选:C.【点评】此题主要考查了坐标与图形的变化,关键是掌握在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.8.(4分)一个正方形的面积是19,则它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【考点】估算无理数的大小.【分析】根据无理数的估计解答即可.【解答】解:∵16<19<25,∴,故选:C.【点评】本题主要考查的是估算无理数的大小,熟练掌握算术平方根的性质是解题的关键.9.(4分)下列运算正确的是()A.=±3B.=C.=﹣4D.|﹣2|=2﹣【考点】算术平方根;立方根;实数的性质.【分析】根据算术平方根,立方根,绝对值的性质即可求解.【解答】解:A、=3,故本选项错误;B、=﹣,故本选项错误;C、=﹣4,故本选项正确;D、|﹣2|=﹣2,故本选项错误.故选:C.【点评】考查了实数的性质,算术平方根,立方根,绝对值,是基础图象,比较简单.10.(4分)数轴上表示1,的点分别为A,B,点A是BC的中点,则点C所表示的数是()A.﹣1B.1﹣C.2﹣D.﹣2【考点】实数与数轴.【分析】首先根据数轴上1,的对应点分别是点A和点B,可以求出线段AB的长度,然后根据中点的性质即可解答.【解答】解:∵数轴上1,的对应点分别是点A和点B,∴AB=﹣1,∵A是线段BC的中点,∴CA=AB,∴点C的坐标为:1﹣(﹣1)=2﹣.故选:C.【点评】本题考查了实数与数轴,用到的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.二、填空题(每题2分,共16分)11.(2分)的相反数是﹣.【考点】实数的性质.【分析】直接根据相反数的定义进行解答即可.【解答】解:∵与﹣是只有符号不同的两个数,∴的相反数是﹣.故答案为:﹣.【点评】本题考查的是上实数的性质,即只有符号不同的两个数叫互为相反数.12.(2分)x的5倍与7的和是负数,用不等式表示为5x+7<0.【考点】由实际问题抽象出一元一次不等式.【分析】由x的5倍与7的和是负数,即可得出关于x的一元一次不等式,此题得解.【解答】解:依题意,得:5x+7<0.故答案为:5x+7<0.【点评】本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.13.(2分)若点A和点B(6,2)关于y轴对称,则A点坐标为(﹣6,2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:由点A和点B(6,2)关于y轴对称,则A点坐标是(﹣6,2),故答案为:(﹣6,2).【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反.14.(2分)若不等式(m﹣2)x>m﹣2的解集是x<1,则m的取值范围是m<2.【考点】解一元一次不等式.【分析】由不等式的性质先求出原不等式的解集,再根据已知条件即可求得m的取值范围.【解答】解:原不等式系数化1得,x>,又∵不等式的解集为x<1,∴m﹣2<0,即m<2.【点评】当未知数的系数是负数时,两边同除以未知数的系数需改变不等号的方向.同理,当不等号的方向改变后,也可以知道不等式两边除以的是一个负数.15.(2分)若=2,y3=﹣27,则x+y=1.【考点】算术平方根;立方根.【分析】根据算术平方根和立方根的知识点进行解答,若x3=a,则x=,x2=b(b ≥0)则x=±,算术平方根只能为正,据此得到答案.【解答】解:因为=2,y3=﹣27,所以x=4,y=﹣3,所以x+y=4+(﹣3)=1.故答案为:1.【点评】本题主要考查立方根和算术平方根的知识点,一个正数有两个平方根,它们互为相反数,正数是它的算术平方根;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根是0.16.(2分)已知P点坐标为(4﹣a,3a+9),且点P在x轴上,则点P的坐标是(7,0).【考点】点的坐标.【分析】直接利用x轴上点的坐标特点得出3a+9=0,求出a的值,进而得出答案.【解答】解:∵P点坐标为(4﹣a,3a+9),且点P在x轴上,∴3a+9=0,解得:a=﹣3,∴4﹣a=7,故点P的坐标是:(7,0).故答案为:(7,0).【点评】此题主要考查了点的坐标,正确得出a的值是解题关键.17.(2分)已知(a﹣3)2+|b﹣4|=0,则a+的值是5.【考点】非负数的性质:绝对值;非负数的性质:偶次方;二次根式的化简求值.【分析】根据题意求出a与b的值,然后将a与b代入原式即可求出答案.【解答】解:由题意可知:a﹣3=0,b﹣4=0,∴a=3,b=4,∴原式=3+2=5,故答案为:5.【点评】本题考查实数的运算,解题的关键是正确求出a与b的值,本题属于基础题型.18.(2分)若不等式2(x+5)>3的最小整数解是方程2x﹣a=3的解,则a的值为﹣9.【考点】一元一次方程的解;一元一次不等式的整数解.【分析】根据一元一次不等式的解法以及一元一次方程的解法即可求出答案.【解答】解:∵2(x+5)>3,∴2x+10>3,∴2x>﹣7,∴x>,∴x的最小整数为﹣3,∴﹣3×2﹣a=3,∴a=﹣9,故答案为:﹣9【点评】本题考查一元一次不等式,解题的关键是熟练运用一元一次方程以及一元一次不等式的解法,本题属于基础题型.三、解答题(第1题,第2题各4分,第3,4,5,6题各5分,第7题6分,第8题10分,共44分)19.(4分)解方程:(2x﹣3)2=25.【考点】解一元二次方程﹣直接开平方法.【分析】首先两边直接开平方可得2x﹣3=±5,再解一元一次方程即可.【解答】解:两边直接开平方得:2x﹣3=±5,则2x﹣3=5,2x﹣3=﹣5,故x=4,x=﹣1.【点评】此题主要考查了直接开平方法解一元一次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.20.(5分)计算:﹣+.【考点】算术平方根;立方根;实数的运算.【分析】直接利用算术平方根和立方根的的定义计算得出答案.【解答】解:原式=7﹣10﹣2=﹣5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.21.(5分)计算:×﹣+|﹣2|.【考点】实数的运算.【分析】直接利用立方根以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=4×(﹣)﹣2+2﹣=﹣5﹣2+2﹣=﹣5﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(5分)解不等式3(x+2)﹣9≥﹣2(x﹣1),并把解集表示在数轴上.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:3x+6﹣9≥﹣2x+2.3x+2x≥2﹣6+9,5x≥5,x≥1,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.23.(5分)解不等式:﹣≤1,并把它的解集在数轴上表示出来.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:3(x+1)﹣(4x+1)≤6,3x+3﹣4x﹣1≤6,3x﹣4x≤6﹣3+1,﹣x≤4,x≥﹣4,将它的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.24.(5分).【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>2,由②得,x>3,故此不等式组的解集为:x>3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.(5分)解不等式组:,并写出该不等式组的整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:,∵解不等式①得:x,解不等式②得:x≤4,∴不等式组的解集为﹣<x≤4,∴不等式组的所有整数解为﹣2,﹣1,0,1,2,3,4.【点评】本题考查了解一元一次不等式组,一元一次不等式组的整数解,解此题的关键是能根据不等式的解集求出不等式组的解集.26.(10分)已知△A'B'C'是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如表所示:△ABC A(a,1)B(3,3)C(2,﹣1)△A’B’C’A’(4,4)B’(9,b)C’(c,2)(1)观察表中各对应点坐标的变化,并填空:a=﹣2;b=6;c=8.(2)在平面直角坐标系中画出△ABC及平移后的△A'B'C';(3)直接写出△A'B'C'的面积是9.【考点】作图﹣平移变换.【分析】(1)利用点A与A′的纵坐标得到上下平移的方向与距离,利用B点和B′得到左右平移的方向与距离,然后利用此平移规律求a、b、c的值;(2)通过描点得到△ABC及△A'B'C';(3)用一个矩形的面积分别减去三个三角形的面积去计算△A'B'C'的面积.【解答】解:(1)a=4﹣(9﹣3)=﹣2;b=3+(4﹣1)=6;c=2+(9﹣3)=8;(2)如图,△ABC和△A'B'C'为所作;(3)△A'B'C'的面积=4×5﹣×4×1﹣×5×2﹣×2×4=9.故答案为﹣2,6,8;9.【点评】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.27.(10分)在平面直角坐标系xOy中,对任意两点A(x A,y B)与B(x B,y B)的“识别距离”,给出如下定义:若|x A﹣x B|≥|y A﹣y B|,则点A(x A,y A)与B(x B,y B)的“识别距离”D AB=|x A﹣x B|;若|x A﹣x B|<|y A﹣y B|,则A(x A,y A)与B(x B,y B)的“识别距离”D AB=|y A﹣y B|;即D AB=max{|x A﹣x B|,|y A﹣y B|}.已知点A(1,0),点B(﹣1,4),(1)A、B两点之间的识别距离D AB=4.(2)在图1中的平面直角坐标系中描出到点A的识别距离为2的点.(3)如图2,点C,点D,和点E分别是直线m,直线n,和直线p上的点,若点C、D、E到点A的识别距离最小,求出C、D、E的坐标.【考点】一次函数综合题.【分析】(1)根据“识别距离”的定义进行解答即可.(2)根据“识别距离”的定义即可确定:到点A的识别距离为2的点为如图1所示正方形.(3)分别求出直线m,直线n,和直线p的解析式,再依次根据定义和题意得:|x A﹣x B|=|y A﹣y B|,从而建立方程求解即可.【解答】解:(1)∵==2,==4,∴<,∴D AB=max{|x A﹣x B|,|y A﹣y B|}==4.故答案为:4.(2)如图1,四边形EFGH边上的所有点均为到点A的识别距离为2的点.(3)如图2,点C在直线m上,CQ⊥OA于Q,取点C与点A的“识别距离”的最小值时,根据运算定义:若|x A﹣x B|≥|y A﹣y B|,则点A(x A,y A)与B(x B,y B)的“识别距离”D AB=|x A﹣x B|;此时,|x A﹣x B|=|y A﹣y B|,即AQ=CQ,直线m经过原点O,设直线m解析式为y=kx,∵直线m经过(1,1),∴k=1∴直线m解析式为y=x,设点C(x C,y C),则y C=x C,根据识别距离的定义,得:1﹣x C=x C,解得:x C=,∴y C=,∴C(,);如图3,点D在直线n上,DQ⊥OA于Q,取点D与点A的“识别距离”的最小值时,根据运算定义:若|x A﹣x B|≥|y A﹣y B|,则点A(x A,y A)与B(x B,y B)的“识别距离”D AB=|x A﹣x B|;此时,|x A﹣x B|=|y A﹣y B|,即AQ=DQ,直线n经过(﹣2,1),(0,2),可求得直线n解析式为y=x+2,设D(x D,+2),则:1﹣x D=+2解得:x D=,∴y D=,∴D(,);如图4,直线p经过(1,﹣3),(2,﹣1),运用待定系数法可得:直线p解析式为:y =2x﹣5,设点E(x E,2x E﹣5),则:x E﹣1=0﹣(2x E﹣5),解得:x E=2,∴E(2,﹣1).综上所述,C(,),D(,),E(2,﹣1).【点评】本题考查了坐标与图形性质,一次函数图象与性质,待定系数法,新定义理解与应用等,解题时一定要准确理解新定义,读懂题目信息,正确运用“识别距离”是解题的关键.28.(10分)旅游团一行60人到一旅馆住宿,旅游馆的客房有三人间、二人间、单人间三种,其中三人间的每人每天20元,二人间的每人每天30元,单人间的每天50元,如果旅游团共住满了30间客房,问三种客房各住几间,共几种安排方案?怎样安排住宿消费最低,最低消费是多少?【考点】二元一次方程的应用;一次函数的应用.【分析】设安排住三人间x间,二人间y间,则住单人间(30﹣x﹣y)间,根据该旅游团共60人,即可得出关于x,y的二元一次方程,解之可得出y=30﹣2x,结合x,y均为非负整数,即可得出方案的个数,设住宿费用为w元,利用总费用=每人的费用×居住人数×房间数,即可得出w关于x的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:设安排住三人间x间,二人间y间,则住单人间(30﹣x﹣y)间,依题意得:3x+2y+30﹣x﹣y=60,∴y=30﹣2x.∵x,y均为非负整数,∴0≤x≤15(x为非负整数),∴共16种安排方案.设住宿费用为w元,则w=20×3x+30×2y+50(30﹣x﹣y)=﹣10x+1800,∵﹣10<0,∴w随x的增大而减小,∴当x=15时,w=﹣10×15+1800=1650(元).答:共16种安排方案,安排住三人间15间、单人间15间时消费最低,最低消费是1650元.【点评】本题考查了二元一次方程的应用以及一次函数的应用,根据各数量之间的关系,找出w关于x的函数关系式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(下)期中数学试卷一、细心填一填(每小题3分,共计30分)1.计算:x2•x3=;4a2b÷2ab=.2.如果x2+kx+1是一个完全平方式,那么k的值是.3.如图,两直线a,b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a,b的位置关系是.4.温家宝总理在十届全国人大四次会议上谈到解决关于“三农”问题时说,2006年中央财政用于“三农”的支出将达到33 970 000万元,这个数据用科学记数法可表示为万元.5.如图,AD是△ABC的中线,如果△ABC的面积是18cm2,则△ADC的面积是cm2.6.等腰三角形的一边长为10,另一边长为6,则它的周长是.7.如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是.8.现在规定两种新的运算“﹡”和“◎”:a﹡b=a2+b2;a◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(﹣1)][2◎(﹣1)]=.9.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是.10.用科学记数法表示0.0000907为.二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)11.下列四组线段中,能组成三角形的是()A.2cm,3cm,4cm B.3cm,4cm,7cm C.4cm,6cm,2cm D.7cm,10cm,2cm 12.下列运算正确的是()A.a5+a5=a10 B.a6×a4=a24C.a0÷a﹣1=a D.a4﹣a4=a013.如果一个等腰三角形的一边为4cm,另一边为5cm,则它的周长为()A.14 B.13 C.14或13 D.无法计算14.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°15.已知下列条件,不能作出唯一三角形的是()A.两边及其夹角 B.两角及其夹边C.三边 D.两边及除夹角外的另一个角16.观察一串数:0,2,4,6,…第n个数应为()A.2(n﹣1)B.2n﹣1 C.2(n+1) D.2n+117.下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2 D.(a+b)2=a2﹣2ab+b218.任何一个三角形的三个内角中至少有()A.一个角大于60°B.两个锐角C.一个钝角 D.一个直角19.三角形的三条高线的交点在三角形的一个顶点上,则此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形20.长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连结)三角形的个数为()A.1 B.2 C.3 D.4三、(21题20分.22、23题5分,24题10分,25,26题10分,共计60分)21.计算:①x2﹣(x+2)(x﹣2)②992﹣1③(2a+b)4÷(2a+b)2④(4a3b﹣6a2b2+2ab)÷2ab⑤[(x+1)(x+2)﹣2]÷x.22.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),再选取一个你喜欢的数代替x,并求原代数式的值.23.如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)理由是:.24.某种产品的商标如图所示,O是线段AC、BD的交点,并且AC=BD,AB=CD.小明认为图中的两个三角形全等,他的思考过程是:在△ABO和△DCO中你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并说明你的思考过程.25.如图所示,要想判断AB是否与CD平行,我们可以测量哪些角;请你写出三种方案,并说明理由.26.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是.(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)七年级(下)期中数学试卷参考答案与试题解析一、细心填一填(每小题3分,共计30分)1.计算:x2•x3=x5;4a2b÷2ab=2a.【考点】整式的除法;同底数幂的乘法.【分析】根据同底数幂相乘,底数不变指数相加;单项式的除法法则计算即可.【解答】解:x2•x3=x5;4a2b÷2ab=2a.故填2a.2.如果x2+kx+1是一个完全平方式,那么k的值是±2.【考点】完全平方式.【分析】这里首末两项是x和1这两个数的平方,那么中间一项为加上或减去x的系数和常数1的积的2倍,故k=±2.【解答】解:中间一项为加上或减去x的系数和常数1的积的2倍,∴k=±2.故答案为:k=±2.3.如图,两直线a,b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a,b的位置关系是平行.【考点】平行线的判定;对顶角、邻补角.【分析】因为∠2与∠3是邻补角,由已知便可求出∠3=∠1,利用同位角相等,两直线平行即可得出a,b的位置关系.【解答】解:∵∠2+∠3=180°,∠2=130°,∴∠3=50°,∵∠1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).4.温家宝总理在十届全国人大四次会议上谈到解决关于“三农”问题时说,2006年中央财政用于“三农”的支出将达到33 970 000万元,这个数据用科学记数法可表示为 3.397×107万元.【考点】科学记数法—表示较大的数.【分析】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动7位,应该为3.397×107.【解答】解:33 970 000万元=3.397×107万元.5.如图,AD是△ABC的中线,如果△ABC的面积是18cm2,则△ADC的面积是9cm2.【考点】三角形的面积.【分析】根据等底等高的两个三角形面积相等知,三角形的中线把三角形的面积分为相等的两部分,所以△ADC的面积是△ABC的面积的一半,即9cm2.【解答】解:S△ADC=S△ABC÷2=18÷2=9cm2.6.等腰三角形的一边长为10,另一边长为6,则它的周长是26或22.【考点】等腰三角形的性质.【分析】因为等腰三角形的底边和腰不确定,6可以为底边也可以为腰长,故分两种情况考虑:当6为腰时,根据等腰三角形的性质得另一腰也为6,底边为10,求出此时的周长;当6为底边时,10为腰长,根据等腰三角形的性质得另一腰也为10,求出此时的周长.【解答】解:若6为等腰三角形的腰长,则10为底边的长,此时等腰三角形的周长=6+6+10=22;若10cm为等腰三角形的腰长,则6cm为底边的长,此时等腰三角形的周长=10+6+10=26;则等腰三角形的周长为26或22.故答案为:26或22.7.如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是AC=AE(或BC=DE,∠E=∠C,∠B=∠D).【考点】全等三角形的判定.【分析】要使△ABC≌△ADE,已知有一对角与一对边相等,则可以根据三角形全等的判定方法添加合适的条件即可.【解答】解:∵∠BAC=∠DAE=90°,AB=AD,∴可添加AC=AE,利用SAS判定.故填AC=AE(或BC=DE,∠E=∠C,∠B=∠D).8.现在规定两种新的运算“﹡”和“◎”:a﹡b=a2+b2;a◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(﹣1)][2◎(﹣1)]=﹣20.【考点】有理数的混合运算.【分析】根据题意,把[2﹡(﹣1)][2◎(﹣1)]中[2﹡(﹣1)]代入到a﹡b=a2+b2中;把[2◎(﹣1)]代入到a◎b=2ab,求出结果即可.【解答】解:根据题意可知:[2﹡(﹣1)][2◎(﹣1)]=[22+(﹣1)2][2×2×(﹣1)]=5×(﹣4)=﹣20.9.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是三角形的稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性进行解答即可.【解答】解:这样做的依据是三角形的稳定性,故答案为:三角形的稳定性.10.用科学记数法表示0.0000907为9.07×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000907=9.07×10﹣5.故答案为:9.07×10﹣5.二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)11.下列四组线段中,能组成三角形的是()A.2cm,3cm,4cm B.3cm,4cm,7cm C.4cm,6cm,2cm D.7cm,10cm,2cm 【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能够组成三角形;B、3+4=7,不能组成三角形;C、4+2=6,不能组成三角形;D、7+2<10,不能组成三角形.故选A.12.下列运算正确的是()A.a5+a5=a10 B.a6×a4=a24C.a0÷a﹣1=a D.a4﹣a4=a0【考点】负整数指数幂;合并同类项;幂的乘方与积的乘方;零指数幂.【分析】根据同底数幂的乘法、除法法则及合并同类项法则计算.【解答】解:A、中a5+a5=2a5错误;B、中a6×a4=a10错误;C、正确;D、中a4﹣a4=0,错误;故选C.13.如果一个等腰三角形的一边为4cm,另一边为5cm,则它的周长为()A.14 B.13 C.14或13 D.无法计算【考点】等腰三角形的性质;三角形三边关系.【分析】本题应分为两种情况:①4为底,5为腰,②5为底,4为腰.注意还要考虑三角形的三边关系.【解答】解:∵等腰三角形的两边分别是4和5,∴应分为两种情况:①4为底,5为腰,4+5+5=14cm;②5为底,4为腰,则5+4+4=13cm;∴它的周长是13cm或14cm,故选C.14.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形的性质得到AB=BE=EC,∠ABC=∠DBE=∠C,根据直角三角形的判定得到∠A=90°,计算即可.【解答】解:∵△ADB≌△EDB≌△EDC,∴AB=BE=EC,∠ABC=∠DBE=∠C,∴∠A=90°,∴∠C=30°,故选:D.15.已知下列条件,不能作出唯一三角形的是()A.两边及其夹角 B.两角及其夹边C.三边 D.两边及除夹角外的另一个角【考点】作图—复杂作图.【分析】看是否符合所学的全等的公理或定理即可.【解答】解:A、B、C分别符合全等三角形的判定SAS、ASA、SSS,故能作出唯一三角形;D、已知两边及除夹角外的另一个角,不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形,错误;故选D.16.观察一串数:0,2,4,6,…第n个数应为()A.2(n﹣1)B.2n﹣1 C.2(n+1) D.2n+1【考点】规律型:数字的变化类.【分析】因为是从0开始的一串偶数,所以第n个数应为2(n﹣1).【解答】解:第n个数应为2(n﹣1).故选A.17.下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2 D.(a+b)2=a2﹣2ab+b2【考点】平方差公式;完全平方公式.【分析】利用两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选B.18.任何一个三角形的三个内角中至少有()A.一个角大于60°B.两个锐角C.一个钝角 D.一个直角【考点】三角形内角和定理.【分析】根据三角形的内角和是180°判断即可.【解答】解:根据三角形的内角和是180°,知:三个内角可以都是60°,排除A;三个内角可以都是锐角,排除C和D;三角形的三个内角中至少有两个锐角,不可能有两个钝角或两个直角.故选B.19.三角形的三条高线的交点在三角形的一个顶点上,则此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形【考点】三角形的角平分线、中线和高.【分析】根据直角三角形的高的交点是直角顶点解答.【解答】解:∵三角形的三条高线的交点在三角形的一个顶点上,∴此三角形是直角三角形.故选A.20.长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连结)三角形的个数为()A.1 B.2 C.3 D.4【考点】三角形三边关系.【分析】首先能够找到所有的情况,然后根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,得3,5,7;3,7,9;5,7,9都能组成三角形.故有3个.故选C.三、(21题20分.22、23题5分,24题10分,25,26题10分,共计60分)21.计算:①x2﹣(x+2)(x﹣2)②992﹣1③(2a+b)4÷(2a+b)2④(4a3b﹣6a2b2+2ab)÷2ab⑤[(x+1)(x+2)﹣2]÷x.【考点】整式的混合运算.【分析】①原式利用平方差公式化简,去括号合并即可得到结果;②原式利用平方差公式变形,计算即可得到结果;③原式利用同底数幂的除法法则计算即可得到结果;④原式利用多项式除以单项式法则计算即可得到结果;⑤原式中括号中利用多项式乘以多项式法则计算,再利用多项式除以单项式法则计算即可得到结果.【解答】解:①原式=x2﹣x2+4=4;②原式=(99+1)×(99﹣1)=100×98=9800;③原式=(2a+b)2=4a2+4ab+b2;④原式=2a2﹣3ab+1;⑤原式=(x2+3x)÷x=x+3.22.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),再选取一个你喜欢的数代替x,并求原代数式的值.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1)=4x2﹣4x+1﹣9x2+1+5x2﹣5x=﹣9x+2,当x=0时,原式=﹣9×0+2=2.23.如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)理由是:垂线段最短..【考点】作图—应用与设计作图.【分析】利用垂线段最短,过点M作河岸的垂线段即可.【解答】解:理由是:垂线段最短.作图24.某种产品的商标如图所示,O是线段AC、BD的交点,并且AC=BD,AB=CD.小明认为图中的两个三角形全等,他的思考过程是:在△ABO和△DCO中你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并说明你的思考过程.【考点】全等三角形的判定.【分析】因为AC、BD不属于某个三角形的一条边.所以不能运用相等这个条件.已有AB=CD,隐含对顶角相等,可利用SAS,或ASA,或AAS添加相应的条件来判断全等.【解答】解:小明的思考过程不正确添加的条件为:∠B=∠C(或∠A=∠D、或符合即可)在△ABO和△DCO中.25.如图所示,要想判断AB是否与CD平行,我们可以测量哪些角;请你写出三种方案,并说明理由.【考点】平行线的判定.【分析】判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此答题.【解答】解:(1)可以测量∠EAB与∠D,如果∠EAB=∠D,那么根据同位角相等,两直线平行,得出AB与CD平行.(2)可以测量∠BAC与∠C,如果∠BAC=∠C,那么根据内错角相等,两直线平行,得出AB与CD平行.(3)可以测量∠BAD与∠D,如果∠BAD+∠D=180°,那么根据同旁内角互补,两直线平行,得出AB与CD平行.26.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是a2﹣b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b).(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)【考点】平方差公式的几何背景.【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【解答】解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.3)×(10﹣0.3)=102﹣0.32=100﹣0.09=99.91;②解:原式=[2m+(n﹣p)]•[2m﹣(n﹣p)] =(2m)2﹣(n﹣p)2=4m2﹣n2+2np﹣p2.。

相关文档
最新文档