人教版九年级上册数学 一元二次方程专题练习(word版

合集下载

人教版九年级上册数学 21.3 实际问题与一元二次方程(传播问题)专题练习(Word版,含答案)

人教版九年级上册数学 21.3 实际问题与一元二次方程(传播问题)专题练习(Word版,含答案)

人教版九年级上册数学21.3 实际问题与一元二次方程--传播问题专题练习一、单选题1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,设每个支干长出x 个小分支,则下列方程中正确的是( )A .2143x +=B .2143x x ++=C .243x x +=D .()2143x += 2.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有100人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确的是( ) A .x +x (1+x )=100B .1+x +x 2=100C .1+x +x (1+x )=100D .x (1+x )=1003.新冠病毒主要是经呼吸道飞沫传播的,在无防护下传播速度很快.已知有1个人患了新冠肺炎,经过两轮传染后共有169个人患了新冠肺炎,每轮传染中平均一个人传染m 人,则m 的值为( )A .11B .12C .13D .14 4.早期,甲肝流行,在一天内,一人能传染4人,若有三人患上甲肝,那么经过两天患上甲肝的人数为( )A .50B .75C .25D .70 5.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .x (x +1)=28B .12x (x ﹣1)=28 C .x (x ﹣1)=28 D .12x (x +1)=28 6.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑? A .-10 B .10 C .8 D .9 7.一个同学经过培训后会做某项实验,回到班级后第一节课他教会了若干个同学,第二节课会做的同学每人又教会了同样多的同学,这样全班共有36人会做这项实验,若设1人每次能教会x 名同学,则可列方程为( )A.x+(x+1)x=36B.(x+1)2=36C.1+x+x2=36D.x+(x+1)2=368.在一次同学聚会上,参加的每个人都与其他人握手一次,共握手95次,设参加这次同学聚会的有x人,可得方程()A.x(x﹣1)=190B.x(x﹣1)=380C.x(x﹣1)=95D.(x﹣1)2=380二、填空题9.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有100人患病,设每轮传染中平均一个人传染了x个人,则由题意列出方程___________________.10.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到200个红包,则可以列方程为__.11.有3人患了流感,经过两轮传染后共有192人患流感,设每轮传染中平均一个人传染了x人,则可列方程为____________.12.有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某城市里,通常情况下,每天一人能传染给若干人,现有一人患了这种疾病,两天后共有225人患上此病,则每天一人传染______人.13.某种植物的主干长出若干数目的支干,每个支干长出同样数量的小分支.若主干、支干和小分支的总数是73,设每个支干长出x个小分支,则可列方程为______.14.中秋节当天,小明将收到的一条短信发送给若干人,每个收到短信的人又给相同数量的人转发了这条短信,此时包括小明在内收到这条短信的人共有111人,则小明给_______人发了短信.15.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,两轮传播后,流感病人总数为288人,则每轮传播中平均一个病人传染的人数为______人.16.秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染的人数为________.三、解答题17.某种流感病毒,若有一人患了这种流感,则在每轮传染中一人将平均传染x人.(1)现有一人患上这种流感,求第一轮传染后患病的人数(用含x的代数式表示);(2)在进入第二轮传染前,有两位患者被及时隔高并治愈,问第二轮传染后患病的人数会有21人吗?18.某种病毒传播速度非常快,如果最初有两个人感染这种病毒,经两轮传播后,就有五十个人被感染,求每轮传播中平均一个人会传染给几个人?若病毒得不到有效控制,三轮传播后将有多少人被感染?19.新冠肺炎疫情在全球蔓延,造成了严重的人员伤亡和经济损失,其中一个原因是新冠肺炎病毒传播速度非常快.一个人如果感染某种病毒,经过了两轮的传播后被感染的总人数将达到64人.(1)求这种病毒每轮传播中一个人平均感染多少人?(2)按照上面的传播速度,如果传播得不到控制,经过三轮传播后一共有多少人被感染?20.为了宣传垃圾分类,小王写了一封倡议书,用微博转发的方式传播,他设计了如下的转发规则:将倡议书发表在自己的微博上,然后邀请x个好友转发,每个好友转发之后,又邀请x个互不相同的好友转发,已知经过两轮转发后,共有111个人参与了本次活动.(1)x的值是多少?(2)再经过几轮转发后,参与人数会超过10000人?参考答案:1.B2.C3.B4.B5.B6.C7.B8.A9.2(1)100x +=10.x (x ﹣1)=20011.()3333192x x x +++=12.1413.x 2+x +1=7314.1015.1116.1017.(1)(1)x +;(2)不会,18.每轮传播中平均一个人会传染给4个人,若病毒得不到有效控制,三轮传播后将有250人被感染19.(1)7人;(2)512人20.(1)10;(2)再经过两轮转发后,参与人数会超过10000人.。

人教版九年级数学上册一元二次方程测试题(含答案)4页

人教版九年级数学上册一元二次方程测试题(含答案)4页

人教版九年级数学上册一元二次方程测试题(含答案)4页(1)x^2-9x+8=0答案:x1=8x2=1(2)x^2+6x-27=0答案:x1=3x2=-9(3)x^2-2x-80=0答案:x1=-8x2=10(4)x^2+10x-200=0答案:x1=-20x2=10(5)x^2-20x+96=0答案:x1=12x2=8(6)x^2+23x+76=0答案:x1=-19x2=-4(7)x^2-25x+154=0答案:x1=14x2=11(8)x^2-12x-108=0答案:x1=-6x2=18(9)x^2+4x-252=0答案:x1=14x2=-18(10)x^2-11x-102=0答案:x1=17x2=-6(11)x^2+15x-54=0答案:x1=-18x2=3(12)x^2+11x+18=0答案:x1=-2x2=-9(13)x^2-9x+20=0答案:x1=4x2=5(14)x^2+19x+90=0答案:x1=-10x2=-9(15)x^2-25x+156=0答案:x1=13x2=12(16)x^2-22x+57=0答案:x1=3x2=19(17)x^2-5x-176=0答案:x1=16x2=-11(18)x^2-26x+133=0答案:x1=7x2=19(19)x^2+10x-11=0答案:x1=-11x2=1(20)x^2-3x-304=0答案:x1=-16x2=19(22)x^2+13x-48=0答案:x1=3x2=-16(23)x^2+5x-176=0答案:x1=-16x2=11(24)x^2+28x+171=0答案:x1=-9x2=-19(25)x^2+14x+45=0答案:x1=-9x2=-5(26)x^2-9x-136=0答案:x1=-8x2=17(27)x^2-15x-76=0答案:x1=19x2=-4(28)x^2+23x+126=0答案:x1=-9x2=-14(29)x^2+9x-70=0答案:x1=-14x2=5(30)x^2-1x-56=0答案:x1=8x2=-7(31)x^2+7x-60=0答案:x1=5x2=-12(32)x^2+10x-39=0答案:x1=-13x2=3(33)x^2+19x+34=0答案:x1=-17x2=-2(34)x^2-6x-160=0答案:x1=16x2=-10(35)x^2-6x-55=0答案:x1=11x2=-5(36)x^2-7x-144=0答案:x1=-9x2=16(37)x^2+20x+51=0答案:x1=-3x2=-17(38)x^2-9x+14=0答案:x1=2x2=7(39)x^2-29x+208=0答案:x1=16x2=13(40)x^2+19x-20=0答案:x1=-20x2=1(41)x^2-13x-48=0答案:x1=16x2=-3(42)x^2+10x+24=0答案:x1=-6x2=-4(44)x^2-8x-209=0答案:x1=-11x2=19(45)x^2+23x+90=0答案:x1=-18x2=-5(46)x^2+7x+6=0答案:x1=-6x2=-1(47)x^2+16x+28=0答案:x1=-14x2=-2(48)x^2+5x-50=0答案:x1=-10x2=5(49)x^2+13x-14=0答案:x1=1x2=-14(50)x^2-23x+102=0答案:x1=17x2=6(51)x^2+5x-176=0答案:x1=-16x2=11(52)x^2-8x-20=0答案:x1=-2x2=10(53)x^2-16x+39=0答案:x1=3x2=13(54)x^2+32x+240=0答案:x1=-20x2=-12(55)x^2+34x+288=0答案:x1=-18x2=-16(56)x^2+22x+105=0答案:x1=-7x2=-15(57)x^2+19x-20=0答案:x1=-20x2=1(58)x^2-7x+6=0答案:x1=6x2=1(59)x^2+4x-221=0答案:x1=13x2=-17(60)x^2+6x-91=0答案:x1=-13x2=7(61)x^2+8x+12=0答案:x1=-2x2=-6(62)x^2+7x-120=0答案:x1=-15x2=8(63)x^2-18x+17=0答案:x1=17x2=1(64)x^2+7x-170=0答案:x1=-17x2=10(65)x^2+6x+8=0答案:x1=-4x2=-2(66)x^2+13x+12=0答案:x1=-1x2=-12(67)x^2+24x+119=0答案:x1=-7x2=-17(68)x^2+11x-42=0答案:x1=3x2=-14(69)x^20x-289=0答案:x1=17x2=-17(70)x^2+13x+30=0答案:x1=-3x2=-10(71)x^2-24x+140=0答案:x1=14x2=10(72)x^2+4x-60=0答案:x1=-10x2=6(73)x^2+27x+170=0答案:x1=-10x2=-17(74)x^2+27x+152=0答案:x1=-19x2=-8(75)x^2-2x-99=0答案:x1=11x2=-9(76)x^2+12x+11=0答案:x1=-11x2=-1(77)x^2+17x+70=0答案:x1=-10x2=-7(78)x^2+20x+19=0答案:x1=-19x2=-1(79)x^2-2x-168=0答案:x1=-12x2=14(80)x^2-13x+30=0答案:x1=3x2=10(81)x^2-10x-119=0答案:x1=17x2=-7(82)x^2+16x-17=0答案:x1=1x2=-17(83)x^2-1x-20=0答案:x1=5x2=-4(84)x^2-2x-288=0答案:x1=18x2=-16(85)x^2-20x+64=0答案:x1=16x2=4(86)x^2+22x+105=0答案:x1=-7x2=-15(88)x^2-4x-285=0答案:x1=19x2=-15(89)x^2+26x+133=0答案:x1=-19x2=-7(90)x^2-17x+16=0答案:x1=1x2=16(91)x^2+3x-4=0答案:x1=1x2=-4(92)x^2-14x+48=0答案:x1=6x2=8(93)x^2-12x-133=0答案:x1=19x2=-7(94)x^2+5x+4=0答案:x1=-1x2=-4(95)x^2+6x-91=0答案:x1=7x2=-13(96)x^2+3x-4=0答案:x1=-4x2=1(97)x^2-13x+12=0答案:x1=12x2=1(98)x^2+7x-44=0答案:x1=-11x2=4(99)x^2-6x-7=0答案:x1=-1x2=7 (100)x^2-9x-90=0答案:x1=15x2=-6 (101)x^2+17x+72=0答案:x1=-8x2=-9 (102)x^2+13x-14=0答案:x1=-14x2=1 (103)x^2+9x-36=0答案:x1=-12x2=3 (104)x^2-9x-90=0答案:x1=-6x2=15 (105)x^2+14x+13=0答案:x1=-1x2=-13 (106)x^2-16x+63=0答案:x1=7x2=9 (107)x^2-15x+44=0答案:x1=4x2=11 (108)x^2+2x-168=0答案:x1=-14x2=12(110)x^2-6x-55=0答案:x1=11x2=-5 (111)x^2+18x+32=0答案:x1=-2x2=-16。

人教版九年级上册数学21.3实际问题与一元二次方程---传播问题专题训练(Word版含简单答案)

人教版九年级上册数学21.3实际问题与一元二次方程---传播问题专题训练(Word版含简单答案)

人教版九年级上册数学21.3 实际问题与一元二次方程---传播问题专题训练一、单选题1.有一个人患了流感,经过两轮后共有121个人患了流感,如果按照这样的传染速度,经过三轮传染后总共传染的人数是( )A .1331B .1000C .1728D .1111 2.电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x 台电脑,下列方程正确的是( ) A .x (x +1)=81B .1+x +x 2=81C .1+x +x (x +1)=81D .1+(x +1)2=813.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共91.若设主干长出x 个支干,则可列方程正确的是( ) A .(1+x )2=91 B .1+x +x 2=91 C .1+x 2=91 D .x +x 2=91 4.为庆祝建党100周年,九年级全体学生在国庆假期组织互赠纪念贺卡活动,共赠贺卡2020张,问该班共有多少名学生?设该班共有x 名学生,那么所列方程为( ) A .x 2=2020B .x (x +1)=2020C .12x (x ﹣1)=2020D .x (x ﹣1)=20205.一个小组有若干人,新年互送贺卡一张,若全组共送出贺卡56张,设这个小组有x 人.则( )A .()11562x x -=B .()11562x x +=C .()156x x -=D .()156x x += 6.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的分支,若主干、支干和小分支的总数是57,则每个支干长出( )根小分支A .5根B .6根C .7根D .8根 7.五一节日到来之际,班级同学之间相互赠送卡片,假设有n 个同学,卡片共有1980张,则根据题意可列的方程为( )A .(1)19802n n -=B .(1)1980n n -=C .(1)19802n n +=D .(1)1980n n += 8.某校初三年级举行班级篮球友谊赛,每两个班都要进行一场比赛,张老师告诉小丽总共要进行120场比赛,小丽想通过列方程求出参与比赛的班级数.设参与比赛的班级有x 个,则所列方程正确的是( )A .()1120x x +=B .()111202x x +=C .()1120x x -=D .()111202x x -=二、填空题9.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过________人.10.一个QQ 群里共有若干个好友,如果每个好友都分别给群里其他好友发送了一条消息,这样共有930条消息,则这个QQ 群里有______个好友.11.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x 名同学,根据题意,列出方程为___________. 12.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为________.13.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信,已知全公司共发出2450条短信,那么这个公司有_________员工人. 14.某种传染病,传播速度极快,通常情况下,每天一个人会传染给若干人.现有一人患病,开始两天共有225人患病,则一人平均传染______个人.15.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了______个人.16.肆虐的新冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x 人,依题意可列方程__________.三、解答题17.学校机房里有一台电脑感染了病毒,病毒通过局域网扩散,经过2轮扩散后共有64台电脑感染了病毒,请问每轮传染中平均一台电脑将病毒传染给了几台电脑?18.某班级的一个小组同学每两个都握手一次,共握手66次,求该小组共有多少人?19.为了宣传垃圾分类,小王写了一封倡议书,用微博转发的方式传播,他设计了如下的转发规则:将倡议书发表在自己的微博上,然后邀请x个好友转发,每个好友转发之后,又邀请x个互不相同的好友转发,已知经过两轮转发后,共有111个人参与了本次活动.(1)x的值是多少?(2)再经过几轮转发后,参与人数会超过10000人?20.有一人患了流感,经过两轮传染后共有144人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,三轮传染后,患流感的有多少人?参考答案:1.A2.C3.B4.D5.C6.C7.B8.D9.1110.3111.x(x-1)=105612.913.5014.14.15.1216.()2+=1225x17.每轮感染中平均每一台电脑会感染7台电脑.18.该小组共有12人19.(1)10;(2)再经过两轮转发后,参与人数会超过10000人.20.(1)11;(2)1728。

人教版数学九年级上册 一元二次方程综合测试卷(word含答案)

人教版数学九年级上册 一元二次方程综合测试卷(word含答案)

人教版数学九年级上册 一元二次方程综合测试卷(word 含答案)一、初三数学 一元二次方程易错题压轴题(难)1.如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒25OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析 【解析】 【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=结合图形分情况讨论即可得出符合条件的时长. 【详解】(1)由题意,A(0,2),B(-4,0),C(4,0), 设直线AC 的函数解析式为y=kx+b , 将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =-+, 当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1), 将点H 代入122y x =-+,得: 11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =. 根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4, 设直线AB 的函数解析式为y=mx+n , 将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩, ∴直线AC 的函数解析式为122y x =+, 当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3), 当点H 落在AB 边上时,将点H 代入122y x =+,得: 13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=, ∵169﹤9136,∴133﹤t ﹤5, 如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+, 解得:x=2t-10, ∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-, ∴点T 1(3,(7))2t t --, ∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -, 211(7)24BET S BE ET t ∆==-, 21(5)2ASGS AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-, 由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去), ∴143t =;(3)可能,35≤t≤1或t=4. ∵点D 为AC 的中点,且OA=2,OC=4, ∴点D (2,1),AC=255 易知M 点在水平方向以每秒是4个单位的速度运动; 当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇; 当12﹤t ﹤1时, 12+12÷(1+4)=35秒, ∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤; 当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处; 当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤ 当t=2时,点M 运动返回到点O 处停止运动,当 t=3时,点E 运动返回到点O 处, 当 t=4时,点F 运动返回到点O 处, 当35t ≤≤时,点M 都在正方形EFGH 内(含边界), 综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.2.如图,在平面直角坐标系中,()4,0A -,()0,4B ,四边形ABCO 为平行四边形,4,03D ⎛⎫- ⎪⎝⎭在x 轴上一定点,P 为x 轴上一动点,且点P 从原点O 出发,沿着x 轴正半轴方向以每秒43个单位长度运动,已知P 点运动时间为t . (1)点C 坐标为________,P 点坐标为________;(直接写出结果,可用t 表示) (2)当t 为何值时,BDP ∆为等腰三角形;(3)P 点在运动过程中,是否存在t ,使得ABD OBP ∠=∠,若存在,请求出t 的值,若不存在,请说明理由!【答案】(1)(4,4),(43t ,0);(2)1101-,4; (3)存在,3109t【解析】 【分析】(1)利用平行四边形的性质和根据P 点的运动速度,利用路程公式求解即可; (2)分三种情况:①当BD BP 时,②当BD DP =时,③当BP DP =时,分别讨论求解,即可得出结果; (3)过D 点作DF BP 交BP 于点F ,设OP x =,则可得224BPx ,43DPx ,453DF,利用1122BDPS DP BO BP DF ,即可求出OP 的长,利用路程公式可求得t 的值。

(完整word版)初三(九年级)数学一元二次方程应用题专项练习(带答案)

(完整word版)初三(九年级)数学一元二次方程应用题专项练习(带答案)

一元二次方程应用题专项练习题(带答案)一、面积问题m的矩形苗圃,它的长比宽多2 m. 苗圃的长和宽各是多少?01、一个面积为120 2m的矩形?若能,则矩形02、有一条长为16 m的绳子,你能否用它围出一个面积为15 2的长、宽各是多少?03、如图,在一块长35 m、宽26 m的矩形地面上,修建同样宽的两条互相垂直的道路(两m,条道路各与矩形的一条边平行),剩余部分栽种花草,要使剩余部分的面积为850 2道路的宽应为多少?04、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的总面积为570m2,道路应为多宽?05、一块四周镶有宽度相等的花边的地毯如图所示,它的长为8 m,宽为5 m. 如果地毯中m,那么花边有多宽?央长方形图案的面积为18 206、在一幅长90 cm、宽40 cm的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少?m的长方形,将它的一边剪短5 m,另一边剪短2 m,恰好变成一个07、有一面积为54 2正方形,这个正方形的边长是多少?08、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17 cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.09、如图,在Rt△ACB中,∠C=90°,AC=8 m,BC=6 m,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动(到点C为止),它们的速度都是1 m/s. 经过几秒△PCQ的面积是Rt△ACB面积的一半?二、体积问题dm,求这个木箱的长和宽.10、长方体木箱的高是8 dm,长比宽多5 dm,体积是528 311、将一块正方形铁皮的四角各剪去一个边长为4 cm的小正方形,做成一个无盖的盒子.cm,求原铁皮的边长.已知盒子的容积是400 3三、数的问题12、两个数的差等于4,积等于45,求这两个数.13、三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少?14、有五个连续整数,前三个数的平方和等于后两个数的平方和,求这五个数.15、若两个连续整数的积是56,则它们的和是 ( )A. 11B. 15C. -15 D .±1516、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.四、变化率问题(增长或减少)17、某公司前年缴税40万元,今年缴税48.4万元,该公司缴税的年平均增长率为多少?18、某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______.19、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A. 200(1+x)2=1000B. 200+200×2x=1000C. 200+200×3x=1000D. 200[1+(1+x)+(1+x)2]=100020、某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3、4月份月销售额的平均增长率.五、利润问题21、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,每件衬衫应降价多少元?22、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

人教版九年级数学上册 一元二次方程专题练习(word版

人教版九年级数学上册 一元二次方程专题练习(word版

人教版九年级数学上册 一元二次方程专题练习(word 版一、初三数学 一元二次方程易错题压轴题(难)1.如图,在矩形ABCD 中,6AB cm =,8AD cm =,点P 从点A 出发沿AD 向点D 匀速运动,速度是1/cm s ,过点P 作PE AC ∥交DC 于点E ,同时,点Q 从点C 出发沿CB 方向,在射线CB 上匀速运动,速度是2/cm s ,连接PQ 、QE ,PQ 与AC 交与点F ,设运动时间为()(08)<<t s t .(1)当t 为何值时,四边形PFCE 是平行四边形;(2)设PQE 的面积为2()s cm ,求s 与t 的函数关系式;(3)是否存在某一时刻t ,使得PQE 的面积为矩形ABCD 面积的932; (4)是否存在某一时刻t ,使得点E 在线段PQ 的垂直平分线上.【答案】(1)83t =;(2)S =299(08)8t t t -+<<;(3)当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932;(4)当573256=t 时,点E 在线段PQ 的垂直平分线上 【解析】 【分析】(1)由四边形PFCE 是平行四边形,可得,PF CE ∥由PD QC 得四边形CDPQ 为平行四边形,即PD CQ =,列式82t t -=,计算可解. (2)由PE AC ∥,得=DP DE DA DC ,代入时间t ,得886-=t DE 解得364=-DE t ,34CE t =再通过S S =梯形CDPQ PDE CEQ S S --△△构建联系,可列函数式299(08)8S t t t =-+<<.(3)由PQE 的面积为矩形ABCD 面积的932得299986832S t t =-+=⨯⨯,可解当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932. (4)当点E 在线段PQ 的垂直平分线上时,=EQ PE ,得22=EQ PE ,由Rt CEQ 与△Rt PDE 可得,222+=CE CQ EQ ,222PD DE PE +=,即2222+=+CE CQ PD DE ,代入364=-DE t ,34CE t =,2CQ t =,8PD t =-可得222233(2)(8)644⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭t t t t ,计算验证可解.【详解】(1)当四边形PFCE 是平行四边形时,∥PF CE , 又∵PD QC ,∴四边形CDPQ 为平行四边形, ∴PD CQ =, 即82t t -=, ∴83t =(2)∵PE AC ∥,∴=DP DEDA DC , 即886-=t DE, ∴364=-DE t , ∴336644=-+=CE t t ,∴21133(8)66242248⎛⎫=⋅=--=-+ ⎪⎝⎭△PDE S PD DE t t t t , 2113322244=⋅=⨯⨯=△CEQ S CE CQ t t t ,S 梯形11()(28)632422=+⋅=+-⋅=+CDPQ QC PD CD t t t ,∴S S =梯形299(08)8--=-+<<△△CDPQ PDE CEQ S S t t t(3)由题意,299986832-+=⨯⨯t t 解得12t =,26t =所以当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932.(4)当点E 在线段PQ 的垂直平分线上时,=EQ PE , ∴22=EQ PE ,在Rt CEQ 中,222+=CE CQ EQ , 在△Rt PDE 中,222PD DE PE +=, ∴2222+=+CE CQ PD DE ,即222233(2)(8)644⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭t t t t解得1256-=t ,2256+=-t (舍)所以当=t 时,点E 在线段PQ 的垂直平分线上. 【点睛】本题考查的是一次函数与几何图形的实际应用,勾股定理,平行线的性质,解一元二次方程,需要注意的是在解一元二次方程的实际应用中经常会涉及到解的验证,不可忽略.2.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元. (1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7. 【解析】 【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解. 【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩ 解之得:108a b =⎧⎨=⎩ 答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得:()()()()410010214010960x x x x +-++-= 解之得:12x =,27x =经检验,12x =,27x =均符合题意 答:x 的值为2或7. 【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.3.已知关于x 的一元二次方程kx 2﹣2(k +1)x +k ﹣1=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围; (2)是否存在实数k ,使1211x x -=1成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)k >﹣13且k ≠0;(2)存在,7k =±详见解析 【解析】 【分析】(1)根据一元二次方程的根的判别式,建立关于k 的不等式,求得k 的取值范围. (2)利用根与系数的关系,根据21121211,x x x x x x --=即可求出k 的值,看是否满足(1)中k 的取值范围,从而确定k 的值是否存在. 【详解】解:(1)由题意知,k ≠0且△=b 2﹣4ac >0 ∴b 2﹣4ac =[﹣2(k +1)]2﹣4k (k ﹣1)>0, 即4k 2+8k +4﹣4k 2+4k >0, ∴12k >﹣4 解得:k >13-且k ≠0(2)存在,且7k =±理由如下:∵12122(1)1,,k k x x x x k k+-+== 又有211212111,x x x x x x --== 2112,x x x x ∴-=22222121122,x x x x x x ∴-+=22121212()4(),x x x x x x ∴+-=2222441()(),k k k k k k+--∴-= 22(22)(44)(1),k k k k ∴+--=- 21430,k k ∴--=1,14,3,a b c ==-=-24208,b ac ∴∆=-= 144137213.2k ±∴==± k >13-且k ≠0,172130.21,3-≈--> 17213.3+->∴满足条件的k 值存在,且7213.k =± . 【点睛】本题考查的是一元二次方程根的判别式,一元二次方程根与系数的关系,掌握以上知识是解题的关键.4.已知关于x 的一元二次方程(x ﹣3)(x ﹣4)﹣m 2=0. (1)求证:对任意实数m ,方程总有2个不相等的实数根; (2)若方程的一个根是2,求m 的值及方程的另一个根.【答案】(1)证明见解析;(2)m 的值为±2,方程的另一个根是5. 【解析】 【分析】(1)先把方程化为一般式,利用根的判别式△=b 2-4ac 证明判断即可;(2)根据方程的根,利用代入法即可求解m 的值,然后还原方程求出另一个解即可. 【详解】 (1)证明:∵(x ﹣3)(x ﹣4)﹣m 2=0, ∴x 2﹣7x+12﹣m 2=0,∴△=(﹣7)2﹣4(12﹣m 2)=1+4m 2, ∵m 2≥0, ∴△>0,∴对任意实数m ,方程总有2个不相等的实数根; (2)解:∵方程的一个根是2, ∴4﹣14+12﹣m 2=0,解得m=±,∴原方程为x 2﹣7x+10=0,解得x=2或x=5,即m 的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b 2-4ac >0时,方程有两个不相等的实数根; 当△=b 2-4ac=0时,方程有两个相等的实数根;当△=b2-4ac<0时,方程没有实数根. 5.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.6.如图,已知AB是⊙O的弦,半径OA=2,OA和AB的长度是关于x的一元二次方程x2﹣4x+a=0的两个实数根.(1)求弦AB的长度;(2)计算S△AOB;(3)⊙O上一动点P从A点出发,沿逆时针方向运动一周,当S△POA=S△AOB时,求P点所经过的弧长(不考虑点P与点B重合的情形).【答案】(1)AB=2;(2)S△AOB33)当S△POA=S△AOB时,P点所经过的弧长分别是43π、83π、103π. 【解析】试题分析:(1)OA 和AB 的长度是一元二次方程的根,所以利用一元二次方程的根与系数的关系即可求出AB 的长度;(2)作出△AOB 的高OC ,然后求出OC 的长度即可求出面积; (3)由题意知:两三角形有公共的底边,要面积相等,即高要相等. 试题解析:(1)由题意知:OA 和AB 的长度是x 2﹣4x+a=0的两个实数根, ∴OA+AB=﹣41-=4, ∵OA=2, ∴AB=2;(2)过点C 作OC⊥AB 于点C ,∵OA=AB=OB=2,∴△AOB 是等边三角形,∴AC=12AB=1, 在Rt△ACO 中,由勾股定理可得:OC=3,∴S △AOB =12AB ﹒OC=12×2×3=3; (3)延长AO 交⊙O 于点D ,由于△AOB 与△POA 有公共边OA , 当S △POA =S △AOB 时,∴△AOB 与△POA 高相等,由(2)可知:等边△AOB 的高为3,∴点P 到直线OA 的距离为3,这样点共有3个 ①过点B 作BP 1∥OA 交⊙O 于点P 1,∴∠BOP 1=60°, ∴此时点P 经过的弧长为:1202180π⨯=43π, ②作点P 2,使得P 1与P 2关于直线OA 对称,∴∠P 2OD=60°, ∴此时点P 经过的弧长为:2402180π⨯=83π, ③作点P 3,使得B 与P 3关于直线OA 对称,∴∠P 3OP 2=60°, ∴此时P 经过的弧长为:3002180π⨯ =103π, 综上所述:当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π.【点睛】本题主要考查了一元二次方程与圆的综合知识.涉及等边三角形性质,圆的对称性等知识,能综合运用所学知识,选择恰当的方法进行解题是关键.7.(本题满分10分)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,直线CD与x轴、y轴分别交于点C、D,AB与CD相交于点E,线段OA、OC的长是一元二次方程-18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.(1)求点A,C的坐标;(2)若反比例函数y=的图象经过点E,求k的值;(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.【答案】(1)、A(12,0),C(﹣6,0);(2)、k=36;(3)、6个;Q1(10,﹣12),Q2(﹣3,6﹣3).【解析】试题分析:(1)、首先求出方程的解,根据OA>OC求出两点的坐标;(2)、根据∠ABO的正切值求出OB的长度,根据Rt△AOB得出AB的长度,作EM⊥x轴,根据三角形相似得出点E的坐标,然后求出k的值;(3)、分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q.试题解析:(1)由题意,解方程得:x1=6,x2=12.∵OA>OC,∴OA=12,OC=6.∴A(12,0),C(﹣6,0);(2)∵tan∠ABO=,∠AOB=90°∴∴OB=16.在Rt△AOB中,由勾股定理,得AB=20∵BE=5,∴AE=15.如图1,作EM⊥x轴于点M,∴EM∥OB.∴△AEM∽△ABO,∴,即:∴EM=12,AM=9,∴OM=12﹣9=3.∴E(3,12).∴k=36;(3)满足条件的点Q的个数是6,x轴的下方的Q1(10,﹣12),Q2(﹣3,6﹣3);方法:如下图①分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;(有三种)②以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q;(有三种)如图①∵E(3,12),C(﹣6,0),∴CG=9,EG=12,∴EG2=CG•GP,∴GP=16,∵△CPE 与△PCQ 是中心对称,∴CH=GP=16,QH=FG=12, ∵OC=6, ∴OH=10, ∴Q (10,﹣12),如图②作MN ∥x 轴,交EG 于点N ,EH ⊥y 轴于点H ∵E (3,12),C (﹣6,0), ∴CG=9,EG=12, ∴CE=15, ∵MN=CG=, 可以求得PH=3﹣6,同时可得PH=QR ,HE=CR ∴Q (﹣3,6﹣3),考点:三角形相似的应用、三角函数、一元二次方程.8.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%5a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30. 【解析】 【分析】(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可. 【详解】(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥, 解这个不等式,得56x ≤, 答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件, 根据题意,得()()()12260001%561%90001%701%6000569000701%2523a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令%a y =,整理这个方程,得21030y y -=,解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =,即a 的值是30.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.9.如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别以3cm /s 、2cm /s 的速度从点A 、C 同时出发,点Q 从点C 向点D 移动.(1)若点P 从点A 移动到点B 停止,点P 、Q 分别从点A 、C 同时出发,问经过2s 时P 、Q 两点之间的距离是多少cm ?(2)若点P 从点A 移动到点B 停止,点Q 随点P 的停止而停止移动,点P 、Q 分别从点A 、C 同时出发,问经过多长时间P 、Q 两点之间的距离是10cm ?(3)若点P 沿着AB →BC →CD 移动,点P 、Q 分别从点A 、C 同时出发,点Q 从点C 移动到点D 停止时,点P 随点Q 的停止而停止移动,试探求经过多长时间△PBQ 的面积为12cm 2?【答案】(1)2cm ;(2)85s 或245s ;(3)经过4秒或6秒△PBQ 的面积为 12cm 2.【解析】 试题分析:(1)作PE ⊥CD 于E ,表示出PQ 的长度,利用PE 2+EQ 2=PQ 2列出方程求解即可;(2)设x 秒后,点P 和点Q 的距离是10cm .在Rt △PEQ 中,根据勾股定理列出关于x 的方程(16-5x )2=64,通过解方程即可求得x 的值;(3)分类讨论:①当点P 在AB 上时;②当点P 在BC 边上;③当点P 在CD 边上时. 试题解析:(1)过点P 作PE ⊥CD 于E .则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴2cm;∴经过2s时P、Q两点之间的距离是2;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤163时,则PB=16-3y,∴12PB•BC=12,即12×(16-3y)×6=12,解得y=4;②当163<x≤223时,BP=3y-AB=3y-16,QC=2y,则1 2BP•CQ=12(3y-16)×2y=12,解得y1=6,y2=-23(舍去);③223<x≤8时,QP=CQ-PQ=22-y,则1 2QP•CB=12(22-y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的面积为 12cm2.考点:一元二次方程的应用.10.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).(1)求点D的坐标.(2)求直线BC的解析式.(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.【答案】(1)D(4,7)(2)y=3944x (3)详见解析【解析】试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE 和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b (k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C 的对称点时,△PCD为等腰三角形,然后求解即可.试题解析:(1)x2﹣7x+12=0,解得x1=3,x2=4,∵OA>OB,∴OA=4,OB=3,过D作DE⊥y于点E,∵正方形ABCD,∴AD=AB,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE,∵DE⊥AE,∴∠AED=90°=∠AOB,∵DE⊥AE∴∠AED=90°=∠AOB,∴△DAE≌△ABO(AAS),∴DE=OA=4,AE=OB=3,∴OE=7,∴D(4,7);(2)过点C作CM⊥x轴于点M,同上可证得△BCM≌△ABO,∴CM=OB=3,BM=OA=4,∴OM=7,∴C(7,3),设直线BC的解析式为y=kx+b(k≠0,k、b为常数),代入B(3,0),C(7,3)得,,解得,∴y=x﹣;(3)存在.点P与点B重合时,P1(3,0),点P与点B关于点C对称时,P2(11,6).考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数。

九年级上册数学 一元二次方程专题练习(word版

九年级上册数学 一元二次方程专题练习(word版

九年级上册数学 一元二次方程专题练习(word 版一、初三数学 一元二次方程易错题压轴题(难)1.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.【答案】(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析 【解析】 【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③ 54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等; ②AP BD ⊥,90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒, BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=, 即54t -=, 1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =,DN CD ∴<,∴点N 在点C 、D 之间, 1.54AM t ==,4CD =, AM CD ∴=,如图②中,连接AC 交MD 于O , 90ABC BCD ∠=∠=︒, 180ABC BCD ∴∠+∠=︒, //AB BC ∴,AMD CDM ∴∠=∠,BAC DCA ∠=∠, 在AOM 和COD △中, AMD CDM AM CDBAC DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOM COD ASA ∴≅△△,OA OC ∴=,ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=, ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-, ADF CDF S S ∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.阅读下面材料:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,它通常用字母d表示,我们可以用公式(1)2n nS na d-=+⨯来计算等差数列的和.(公式中的n表示数的个数,a表示第一个数的值,)例如:3+5+7+9+11+13+15+17+19+21=10×3+10(101)2-×2=120.用上面的知识解决下列问题.(1)计算:2+8+14+20+26+32+38+44+50+56+62+68+74+80+86+92+98+104+110+116(2)某县决定对坡荒地进行退耕还林.从2009年起在坡荒地上植树造林,以后每年植树后坡荒地的实际面积按一定规律减少,下表为2009、2010、2011、2012四年的坡荒地面积的统计数据.问到哪一年,可以将全县所有坡荒地全部种上树木.2009年2010年2011年2012年植树后坡荒地的实际面积(公顷)25 20024 00022 40020400【答案】(1)1180;(2)到2017年,可以将全县所有的坡荒地全部种上树木.【解析】【分析】(1)根据题意,由公式(1)2n nS na d-=+⨯来计算等差数列的和,即可得到答案;(2)根据题意,设再过x年可以将全县所有的坡荒地全部种上树木.列出方程,解方程即可得到答案.【详解】解:(1)由题意,得6d =,20n =,2a =,∵(1)2n n S na d -=+⨯, ∴20(201)22062S -=⨯+⨯401140=1180=+; (2)解:设再过x 年可以将全县所有的坡荒地全部种上树木.根据题意,得1200x+(1)2x x -×400=25200, 整理得:(x ﹣9)(x+14)=0, ∴x =9或x =﹣14(负值舍去). ∴2009+9-1=2017;答:到2017年,可以将全县所有的坡荒地全部种上树木. 【点睛】本题考查了一元二次方程的应用,解一元二次方程,以及计算等差数列的和公式,解题的关键是熟练掌握题意,正确找出等量关系,列出方程进行解题.3.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠. 【解析】 【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可; (2)分别求出两种方式的增长率,然后比较即可. 【详解】(1)设平均每次下调x%,则7000(1﹣x )2=5670,解得:x 1=10%,x 2=190%(不合题意,舍去); 答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x )2=(1﹣10%)2=81%. ∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.4.问题提出:(1)如图1,在四边形ABCD 中,已知:AD BC ∥,90D ∠=︒,4BC =,ABC 的面积为8,求BC 边上的高.问题探究(2)如图2在(1)的条件下,点E 是CD 边上一点,且2CE =,EAB CBA =∠∠,连接BE ,求ABE △的面积 问题解决(3)如图3,在(1)的条件下,点E 是CD 边上任意一点,连接AE 、BE ,若EAB CBA =∠∠,ABE △的面积是否存在最小值;若存在,求出最小值;若不存在;请说明理由.【答案】(1)4;(2)203;(3)存在,最小值为16216- 【解析】 【分析】(1)作BC 边上的高AM ,利用三角形面积公式即可求解;(2)延长DA ,过B 点作BF ⊥DA 于点F ,作BH ⊥AE 于点H ,易得四边形BCDF 为矩形,在(1)的条件下BC=CD=4,则BCDF 为正方形,由EAB CBA =∠∠,结合∠FAB=∠CBA 可得∠FAB=∠EAB ,从而推出BF=BH=4,易证Rt △BCE ≌Rt △BHE ,所以EH=CE=2,设AD =a ,则AF=AH=4-a ,在Rt △ADE 中利用勾股定理建立方程可求出a ,最后根据S △ABE =1AE BH 2即可求解; (3)辅助线同(2),设AD=a ,CE=m ,则DE=4-m ,同(2)可得出m 与a 的关系式,设△ABE 的面积为y ,由y=1AE BH 2得到m 与y 的关系式,再求y 的最小值即可. 【详解】(1)如图所示,作BC 边上的高AM ,∵S △ABC =1BC AM=82 ∴82AM==44⨯ 即BC 边上的高为4;(2)如图所示,延长DA ,过B 点作BF ⊥DA 于点F ,作BH ⊥AE 于点H ,∵AD BC ∥,90D ∠=︒ ∴∠BCD=∠D=90°=∠F ∴四边形BCDF 为矩形, 又∵BC=CD=4∴四边形BCDF 为正方形, ∴DF=BF=BC=4, 又∵AD ∥BC ∴∠FAB=∠CBA 又∵∠EAB=∠CBA ∴∠FAB=∠EAB ∵BF ⊥AF ,BH ⊥AE ∴BH=BF=4,在Rt △BCE 和Rt △BHE 中, ∵BE=BE ,BH=BC=4 ∴Rt △BCE ≌Rt △BHE (HL ) ∴EH=CE=2同理可证Rt △BAF ≌Rt △BAH (HL ) ∴AF=AH设AD=a ,则AF=AH=4-a在Rt △ADE 中,AD=a ,DE=2,AE=AH+EH=4-a+2=6-a 由勾股定理得AD 2+DE 2=AE 2,即()22226+=-a a解得8=3a∴AE=6-a=103S △ABE =111020AE BH=4=2233⨯⨯ (3)存在,如图所示,延长DA ,过B 点作BF ⊥DA 于点F ,作BH ⊥AE 于点H ,同(2)可得CE=EH ,AF=AH ,设AD=a ,CE=EH=m ,则DE=4-m ,AF=AH=4-a在Rt △ADE 中,AD 2+DE 2=AE 2,即()()22244+-=-+a m a m 整理得8=4+ma m ∴AE=AH+HE=2816444+-+=++m m m m m设△ABE 的面积为y ,则y=()222161116AE BH=42244++=++m m m m ∴()()24216+=+y m m整理得:223240++-=m ym y ∵方程必有实数根∴()2=423240∆-⨯⨯-≥y y整理得2322560+-≥y y∴()()16216162160⎡⎤⎡⎤---≥⎣⎦⎣⎦y y (注:利用求根公式进行因式分解)又∵面积y ≥0 ∴216≥y即△ABE 的面积最小值为16216. 【点睛】本题考查四边形综合问题,正确作出辅助线,得出AB 平分∠FAC ,利用角平分线的性质定理得到BF=BH ,结合勾股定理求出AE 是解决(2)题的关键,(3)题中利用一元二次方程的判别式求最值是解题的关键.5.如图,∠ AOB =90°,且点A ,B 分别在反比例函数1k y x =(x <0),2ky x=(x >0)的图象上,且k 1,k 2分别是方程x 2-x -6=0的两根. (1)求k 1,k 2的值;(2)连接AB ,求tan ∠ OBA 的值.【答案】(1)k 1=-2,k 2=3. (2)tan∠OBA =6. 【解析】解:(1)∵k 1,k 2分别是方程x 2-x -6=0的两根,∴解方程x 2-x -6=0,得x 1=3,x 2=-2.结合图像可知:k 1<0,k 2>0,∴k 1=-2,k 2=3.(2)如图,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥y 轴于点D .[来源:学&科&网Z&X&X&K]由(1)知,点A ,B 分别在反比例函数2y x =-(x <0),3y x=(x >0)的图象上, ∴S △ACO =12×2-=1 ,S △ODB =12×3=32.∵∠ AOB =90°, ∴∠ AOC +∠ BOD =90°,∵∠ AOC +∠ OAC =90°,∴∠ OAC =∠ BOD . 又∵∠ACO =∠ODB =90°,∴△ACO ∽△ODB .∴S S ACO ODB ∆∆=2OA OB ⎛⎫ ⎪⎝⎭=23,∴OA OB 6OA OB 6∴在Rt △AOB 中,tan ∠ OBA =OA OB 6.6.已知关于x 的一元二次方程x 2﹣x +a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4【解析】 【分析】(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案. 【详解】(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0, (x +3)(x ﹣4)=0, x +3=0或x ﹣4=0, ∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,, ∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0, 解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,. ∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦, 把22112211x x a x x a -=--=-,代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9, 解得:a =﹣4,a =2(舍去), 所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.7.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A ,B 两种型号的空气净化器,两种净化器的销售相关信息见下表:(1)每台A 型空气净化器和B 型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共100台,其中B 型空气净化器的进货量不少于A 型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A 型空气净化器的净化能力为300 m 3/小时,B 型空气净化器的净化能力为200 m 3/小时.某长方体室内活动场地的总面积为200 m 2,室内墙高3 m .该场地负责人计划购买5台空气净化器每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,至少要购买A型空气净化器多少台?【答案】(1)每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元;(2)为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台;(3)至少要购买A型空气净化器2台.【解析】解:(1)设每台A型空气净化器的利润为x元,每台B型空气净化器的利润为y元,根据题意得:5102000,200, {{ 1052500.100. x y xx y y+==+==解得答:每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元. (2)设购买A型空气净化器m台,则购买B型空气净化器(100﹣m)台,∵B型空气净化器的进货量不少于A型空气净化器的2倍,∴100-m≥2m,解得:m≤100. 3设销售完这100台空气净化器后的总利润为W元.根据题意,得W=200m+100(100﹣m)=100m+10000.∵要使W最大,m需最大,∴当m=33时,总利润最大,最大利润为W:100×33+10000=13300(元).此时100﹣m=67.答:为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台.(3)设应购买A型空气净化器a台,则购买B型空气净化器(5﹣a)台,根据题意得:12[300a+200(5-a)]≥200×3.解得:a≥2.∴至少要购买A型空气净化器2台.8.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.9.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P2﹣1,2);②P(﹣32,154)【解析】试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为1x=-即可得到抛物线的解析式;(2)①首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PD=OA,从而得到方程求得x 的值即可求得点P 的坐标; ②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得x=21-(舍去)或x=21--,∴点P (21--,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.10.定南县某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【答案】(1)10%;(2)方案②【解析】试题分析:首先设下调的百分率为x,根据题意列出方程进行求解,得出答案;分别求出两种方案所需要花费的钱数,然后进行比较.试题解析:(1)设平均每次下调的百分率是x,依题意得,4000(1-x)2=3240解之得:x=0.1=10%或x=1.9(不合题意,舍去)答:平均每次下调的百分率是10%.(2)方案①实际花费=100×3240×98%=317520元方案②实际花费=100×3240-100×80=316000元∵317520>316000 ∴方案②更优惠考点:一元二次方程的应用。

人教版九年级上册 第21章 《一元二次方程》 单元练习题(含答案)

人教版九年级上册 第21章 《一元二次方程》 单元练习题(含答案)

《一元二次方程》 单元练习题一.选择题1.已知x =0是关于x 的一元二次方程(m ﹣1)x 2+mx +4m 2﹣4=0的一个根,那么直线y =mx 经过的象限是( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限2.一元二次方程x 2+4x +5=0的根的情况是( ) A .无实数根B .有一个实根C .有两个相等的实数根D .有两个不相等的实数根3.一元二次方程x 2﹣6x +5=0的两根分别是x 1、x 2,则x 1•x 2的值是( ) A .5B .﹣5C .6D .﹣64.用配方法解一元二次方程x 2﹣4x ﹣9=0,可变形为( ) A .(x ﹣2)2=9B .(x ﹣2)2=13C .(x +2)2=9D .(x +2)2=135.下列方程是一元二次方程的是( ) A .(x ﹣1)(x ﹣3)=x 2﹣1 B .x 2﹣2x =2x 2﹣1 C .ax 2+bx +c =0D .x +=26.x =是下列哪个一元二次方程的根( )A .3x 2+2x ﹣1=0B .2x 2+4x ﹣1=0C .﹣x 2﹣2x +3=0D .3x 2﹣2x ﹣1=07.近几年,手机支付用户规模增长迅速,据统计2017年手机支付用户约为3.56亿人,连续两年增长后,2019年手机支付用户达到约5.27亿人.如果设这两年手机支付用户的年平均增长率为x ,则根据题意可以列出方程为( ) A .3.56(1+x )=5.27 B .3.56(1+2x )=5.27 C .3.56(1+x 2)=5.27D .3.56(1+x )2=5.278.一件商品标价100元,连续两次降价后的价格为81元,则两次平均降价的百分率是( ) A .10%B .15%C .18%D .20%9.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是()A.32x+2×20x﹣2x2=570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=32×20﹣570D.(32﹣2x)(20﹣x)=57010.已知等腰△ABC的底边长为3,两腰长恰好是关于x的一元二次方程kx2﹣(k+3)x+6=0的两根,则△ABC的周长为()A.6.5 B.7 C.6.5或7 D.8二.填空题11.方程x2=2020x的两根之和是.12.关于x的一元二次方程mx2﹣(3m﹣1)x+2m﹣1=0.其根的判别式的值为1,则该方程的根为.13.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.14.已知实数x满足(x2﹣x)2﹣2(x2﹣x)﹣3=0,则代数式x2﹣x+2020的值为.15.学校打算用长16m的篱笆围成一个长方形的生物园饲养小动物,生物园的一面靠墙(如图),面积是30m2,求生物园的长和宽.设生物园的宽(与墙相邻的一边)为xm,则列出的方程为.三.解答题16.解下列一元二次方程:(1)x2+4x﹣8=0;(2)(x﹣3)2=5(x﹣3);(3)2x2﹣4x=1(配方法).17.关于x的一元二次方程x2﹣2(m+1)x+m2+5=0有实数根.(1)求m的取值范围;(2)已知等腰△ABC的底边长为4,另两边的长恰好是方程的两个根,求△ABC的周长.18.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出1件.若商场平均每天赢利600元,每件衬衫应降价多少元?19.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?20.学了一元二次方程的根与系数的关系后,小亮兴奋地说:“若设一元二次方程ax2+bx+c=0的两个根为x1,x2,由根与系数的关系有x1+x2=﹣,x1x2=,由此就能快速求出,x12+x22,…的值了.比如设x1,x2是方程x2+2x+3=0的两个根,则x1+x2=﹣2,x 1x2=3,得.(1)小亮的说法对吗?简要说明理由;(2)写一个你最喜欢的一元二次方程,并求出两根的平方和;(3)已知2﹣是关于x的方程x2﹣4x+c=0的一个根,求方程的另一个根与c的值.21.某小型工厂9月份生产的A、B两种产品数量分别为200件和100件,A、B两种产品出厂单价之比为2:1.由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单价的增长率的2倍.设B产品生产数量的增长率为x(x>0),若10月份该工厂的总收入增加了4.4x,求x的值.参考答案一.选择题1.解:∵关于x的一元二次方程(m﹣1)x2+mx+4m2﹣4=0有一个根是0,∴4m2﹣4=0,解得:m=±1,根据题意,得m﹣1≠0,∴m≠1,∴m=﹣1.∴直线y=mx经过的象限是第二、四象限.故选:B.2.解:∵△=42﹣4×5=﹣4<0,∴方程无实数根.故选:A.3.解:∵一元二次方程x2﹣6x+5=0的两根分别是x1、x2,∴x1•x2===5,故选:A.4.解:∵x2﹣4x﹣9=0,∴x2﹣4x=9,则x2﹣4x+4=9+4,即(x﹣2)2=13,故选:B.5.解:A、方程整理得:x2﹣4x+3=x2﹣1,即4x﹣4=0,不符合题意;B、方程整理得:x2+2x﹣1=0,符合题意;C、当a=0时,方程为bx+c=0,不符合题意;D、方程不是整式方程,不符合题意,故选:B.6.解:A、3x2+2x﹣1=0中,x=,不合题意;B 、2x 2+4x ﹣1=0中,x =,不合题意;C 、﹣x 2﹣2x +3=0中,x =,不合题意;D 、3x 2﹣2x ﹣1=0中,x =,符合题意;故选:D .7.解:设这两年手机支付用户的年平均增长率为x , 依题意,得:3.56(1+x )2=5.27. 故选:D .8.解:设平均每次降价的百分率为x ,根据题意列方程得: 100×(1﹣x )2=81,解得x 1=0.1=10%,x 2=1.9(不符合题意,舍去), 故选:A .9.解:设道路的宽为xm ,则草坪的长为(32﹣2x )m ,宽为(20﹣x )m , 根据题意得:(32﹣2x )(20﹣x )=570. 故选:D .10.解:∵两腰长恰好是关于x 的一元二次方程kx 2﹣(k +3)x +6=0的两根, ∴△=[﹣(k +3)]2﹣4×k ×6=0, 解得k =3,∴一元二次方程为x 2﹣6x +6=0,∴两腰之和为=4,∴△ABC 的周长为4+3=7, 故选:B .二.填空题(共5小题)11.解:方程化为一般式:x 2﹣2020x =0, 设方程的两根为x 1,x 2,则x 1+x 2=2020, 故答案为2020.12.解:根据题意△=(3m ﹣1)2﹣4m (2m ﹣1)=1, 解得m 1=0,m 2=2, 而m ≠0, ∴m =2,此时方程化为2m 2﹣5x +3=0, (2x ﹣3)(x ﹣1)=0, ∴x 1=,x 2=1. 故答案为x 1=,x 2=1.13.解:设这个公司有员工x 人,则每人需发送(x ﹣1)条祝贺元旦的短信, 依题意,得:x (x ﹣1)=2450,解得:x 1=50,x 2=﹣49(不合题意,舍去). 故答案为:50. 14.解:令x 2﹣x =t , ∴t =x 2﹣x =(x )2﹣≥,∴t 2﹣2t ﹣3=0,解得:t =3或t =﹣1(舍去), ∴t =3, 即x 2﹣x =3,∴原式=3+2020=2023, 故答案为:2023.15.解:设宽为x m ,则长为(16﹣2x )m . 由题意,得 x (16﹣2x )=30, 故答案为:x (16﹣2x )=30. 三.解答题(共6小题) 16.解:(1)∵x 2+4x ﹣8=0, ∴x 2+4x =8, 则x 2+4x +4=8+4, 即(x +2)2=12, ∴x +2=±2,∴x 1=﹣2+2,x 2=﹣2﹣2;(2)∵(x ﹣3)2=5(x ﹣3), ∴(x ﹣3)2﹣5(x ﹣3)=0, 则(x ﹣3)(x ﹣3﹣5)=0, ∴x ﹣3=0或x ﹣8=0, 解得:x 1=3,x 2=8;(3)方程两边同除以2,变形得x 2﹣2x =, 配方,得x 2﹣2x +1=+1,即(x ﹣1)2=, 开方得:x ﹣1=±,解得:x 1=1+,x 2=1﹣.17.解:(1)根据题意得△=4(m +1)2﹣4(m 2+5)≥0, 解得m ≥2;(2)∵等腰△ABC 的底边长为4,另两边的长恰好是方程的两个根, ∴方程有两个相等的实数解,∴△=4(m +1)2﹣4(m 2+5)=0,解得m =2, 此时方程为x 2﹣6x +9=0,解得x 1=x 2=3, ∴△ABC 的周长=3+3+4=10.18.解:设每件衬衫降价x 元,则每件赢利(40﹣x )元,每天可以售出(10+x )件, 依题意,得:(40﹣x )(10+x )=600, 整理,得:x 2﹣30x +200=0, 解得:x 1=10,x 2=20.∵为了扩大销售量,增加盈利,尽快减少库存, ∴x 的值应为20.答:若商场平均每天要盈利600元,每件衬衫应降价20元. 19.解:(1)设BC =xm ,则AB =(33﹣3x )m , 依题意,得:x (33﹣3x )=90,解得:x1=6,x2=5.当x=6时,33﹣3x=15,符合题意,当x=5时,33﹣3x=18,18>18,不合题意,舍去.答:鸡场的长(AB)为15m,宽(BC)为6m.(2)不能,理由如下:设BC=ym,则AB=(33﹣3y)m,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.20.解:(1)小亮的说法不对若有一根为震,就无法计算的值了,因为零作除数无意义.(2)所喜欢的一元二次方程x2﹣5x﹣6=0,设方程的两个根分别是为x1,x2,∴x1+x2=5,x1x2=﹣6,又∵,代入得:=52﹣2×(﹣6)=37;(3)把x=2﹣代入方程得(2﹣)2﹣4(2﹣)+c=0,解得c=1,则x1+x2=4,则.21.解:根据题意,得:2(1+2x)×200(1+2x)+(1+4x)×100(1+x)=(2×200+1×100)(1+4.4x),整理,得:20x2﹣x=0,解得:x1=0.05=5%,x2=0(不合题意,舍去).答:x的值是5%.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级上册数学 一元二次方程专题练习(word 版一、初三数学 一元二次方程易错题压轴题(难)1.如图,在长方形ABCD 中,边AB 、BC 的长(AB <BC )是方程x 2-7x +12=0的两个根.点P 从点A 出发,以每秒1个单位的速度沿△ABC 边 A →B →C →A 的方向运动,运动时间为t (秒).(1)求AB 与BC 的长;(2)当点P 运动到边BC 上时,试求出使AP 长为10时运动时间t 的值;(3)当点P 运动到边AC 上时,是否存在点P ,使△CDP 是等腰三角形?若存在,请求出运动时间t 的值;若不存在,请说明理由.【答案】(1) AB =3,BC =4;(2) t =4;(3) t 为10秒或9.5秒或535秒时,△CDP 是等腰三角形.【解析】试题分析:(1)解一元二次方程即可求得边长;(2)结合图形,利用勾股定理求解即可; (3)根据题意,分为:PC =PD ,PD =PC ,PD =CD ,三种情况分别可求解.试题解析:(1)∵x 2-7x +12=(x -3)(x -4)=0∴1x =3或2x =4 .则AB =3,BC =4(2)由题意得()223t-310?+=() ∴14t =,22t =(舍去)则t =4时,AP 10.(3)存在点P ,使△CDP 是等腰三角形.①当PC =PD =3时, t =3431++ =10(秒). ②当PD =PC(即P 为对角线AC 中点)时,AB =3,BC =4. 2234+=5,CP 1=12AC =2.5 ∴t=34 2.51++ =9.5(秒)③当PD=CD=3时,作DQ⊥AC于Q.1341221552DQ⨯⨯==⨯,22129355PQ⎛⎫=-=⎪⎝⎭∴PC=2PQ=18 5∴183453515t++==(秒)可知当t为10秒或9.5秒或535秒时,△CDP是等腰三角形.2.阅读与应用:阅读1:a,b为实数,且a>0,b>0,因为()2≥0,所以a﹣2+b≥0,从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油()L.若该汽车以每小时x公里的速度匀速行驶,1h的耗油量为yL.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量.【答案】问题1:2,8;问题2:(1)y=;(2)10.【解析】【分析】(1)利用题中的不等式得到x+=4,从而得到x=2时,周长的最小值为8;(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油量最小的形式速度.【详解】(1)∵x +≥2=4,∴当x = 时,2(x +)有最小值8.即x =2时,周长的最小值为8;故答案是:2;8;问题2:,当且仅当, 即x =90时,“=”成立,所以,当x =90时,函数取得最小值9,此时,百公里耗油量为,所以,该汽车的经济时速为每小时90公里,经济时速的百公里耗油量为10L .【点睛】本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料,易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.3.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩ 答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.4.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.【详解】(1)设平均每次下调x%,则7000(1﹣x )2=5670,解得:x 1=10%,x 2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x )2=(1﹣10%)2=81%. ∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.5.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.【答案】(1)k >34;(2 【解析】【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=5,,利用完全平方公式进行变形即可求得答案.【详解】解:(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0,∴k >34; (2)当k =2时,原方程为x 2-5x +5=0,设方程的两个根为m ,n ,∴m +n =5,mn =5, ∴矩形的对角线长为:()222215m n m n mn +=+-=.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.6.如图,在平面直角坐标系中,O 为原点,点A (0,8),点B (m ,0),且m >0.把△AOB 绕点A 逆时针旋转90°,得△ACD ,点O ,B 旋转后的对应点为C ,D ,(1)点C 的坐标为 ;(2)①设△BCD 的面积为S ,用含m 的式子表示S ,并写出m 的取值范围;②当S=6时,求点B 的坐标(直接写出结果即可).【答案】(1)C (8,8);(2)①S=0.5m 2﹣4m (m >8),或S=﹣0.5m 2+4m (0<m <8);②点B 的坐标为(7,0)或(2,0)或(6,0).【解析】【分析】(1)由旋转的性质得出AC =AO =8,∠OAC =90°,得出C (8,8)即可;(2)①由旋转的性质得出DC =OB =m ,∠ACD =∠AOB =90°,∠OAC =90°,得出∠ACE =90°,证出四边形OACE 是矩形,得出DE ⊥x 轴,OE =AC =8,分三种情况:a 、当点B 在线段OE 的延长线上时,得出BE =OB−OE =m−8,由三角形的面积公式得出S =0.5m 2−4m (m >8)即可;b 、当点B 在线段OE 上(点B 不与O ,E 重合)时,BE =OE−OB =8−m ,由三角形的面积公式得出S =−0.5m 2+4m (0<m <8)即可;c 、当点B 与E 重合时,即m =8,△BCD 不存在;②当S =6,m >8时,得出0.5m 2−4m =6,解方程求出m 即可;当S =6,0<m <8时,得出−0.5m 2+4m =6,解方程求出m 即可.【详解】(1)∵点A (0,8),∴AO=8,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=8,∠OAC=90°,∴C(8,8),故答案为(8,8);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是矩形,∴DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,如图1所示:则BE=OB﹣OE=m﹣8,∴S=0.5DC•BE=0.5m(m﹣8),即S=0.5m2﹣4m(m>8);b、当点B在线段OE上(点B不与O,E重合)时,如图2所示:则BE=OE﹣OB=8﹣m,∴S=0.5DC•BE=0.5m(8﹣m),即S=﹣0.5m2+4m(0<m<8);c、当点B与E重合时,即m=8,△BCD不存在;综上所述,S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②当S=6,m>8时,0.5m2﹣4m=6,解得:m=4±27(负值舍去),∴m=4+27;当S=6,0<m<8时,﹣0.5m2+4m=6,解得:m=2或m=6,∴点B的坐标为(4+27,0)或(2,0)或(6,0).【点睛】本题是三角形综合题目,考查了坐标与图形性质、旋转的性质、矩形的判定与性质、三角形面积公式、一元二次方程的解法等知识;本题综合性强,有一定难度.7.已知二次函数y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;【答案】①a的值是﹣2或﹣4;②最大值=13,最小值=9【解析】【分析】①根据题意解一元二次方程即可得到a的值;②根据a≤x≤b,b=﹣3求得a=-4,由此得到一次函数为y=﹣4x﹣3,根据函数的性质当x=﹣4时,函数取得最大值,x=﹣3时,函数取得最小值,分别计算即可.【详解】解:①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a ×(﹣1)+a 2+3,解得,a 1=﹣2,a 2=﹣4,∴a 的值是﹣2或﹣4;②∵a ≤x ≤b ,b =﹣3∴a =﹣2舍去,∴a =﹣4,∴﹣4≤x ≤﹣3,∴一次函数y =﹣4x ﹣3,∵一次函数y =﹣4x ﹣3为单调递减函数,∴当x =﹣4时,函数取得最大值,y =﹣4×(﹣4)﹣3=13x =﹣3时,函数取得最小值,y =﹣4×(﹣3)﹣3=9.【点睛】此题考查解一元二次方程,一次函数的性质,(2)是难点,正确理解a 、b 的关系得到函数解析式是解题的关键.8.某连锁超市派遣调查小组在春节期间调查某种商品的销售情况,下面是调查后小张与其 他两位成员交流的情况.小张:“该商品的进价为 24元/件.”成员甲:“当定价为 40元/件时,每天可售出 480件.”成员乙:“若单价每涨 1元,则每天少售出 20件;若单价每降 1元,则每天多售出 40件.” 根据他们的对话,请你求出要使该商品每天获利 7680元,应该怎样合理定价?【答案】要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件【解析】【分析】设每件商品定价为x 元,则在每件40元的基础上涨价时每天的销售量是[]48020(40)x --件,每件商品的利润是(24)x -元,在每件40元的基础上降价时每天的销量是[]48040(40)x +-件,每件的利润是(24)x -元,从而可以得到答案.【详解】解:设每件商品定价为x 元.①当40x ≥时,[](24)48020(40)7680x x ---= ,解得:1240,48;x x ==②当40x <时,[](24)48040(40)7680x x -+-=,解得:1236,40x x ==(舍去),.答:要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件.【点睛】本题考查的是一元二次方程中的升降价对销售量产生影响方面的应用,用含有未知数的代数式表示销售量是这一类题的关键.9.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,例如润滑用油量为89kg 时,用油的重复利用率为61.6%.①润滑用油量为80kg ,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg ,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg );(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x 千克,则x{1﹣[60%+1.6%(90﹣x )]}=12,整理得:x 2﹣65x ﹣750=0,(x ﹣75)(x+10)=0,解得:x 1=75,x 2=﹣10(舍去),60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用10.如图,平面直角坐标系中,直线l 分别交x 轴、y 轴于A 、B 两点(OA <OB )且OA 、OB 的长分别是一元二次方程()2x 31x 30-++=的两个根,点C 在x 轴负半轴上, 且AB :AC=1:2(1)求A 、C 两点的坐标; (2)若点M 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连接AM ,设△ABM 的面积为S ,点M 的运动时间为t ,写出S 关于t 的函数关系式,并写出自变量的取值范围;(3)点P 是y 轴上的点,在坐标平面内是否存在点Q ,使以 A 、B 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出Q 点的坐标;若不存在,请说明理由.【答案】解:(1)解()2x 31x 30-++=得(x ﹣3)(x ﹣1)=0, 解得x 1=3,x 2=1。

相关文档
最新文档