2018 初三数学中考复习 几何作图 专项复习练习题 含答案

合集下载

2018年中考数学-----几何综合题汇总3

2018年中考数学-----几何综合题汇总3

2018年中考数学-----几何综合题汇总31.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:①当α=0°时,= ;②当α=180°时,= .(2)拓展探究:试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决:当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.2.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E.DF 与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB;(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC 的延长线相交于点F,作DN⊥AC于点N,若DN⊥AC于点N,若DN=FN,求证:BE+CF=(BE﹣CF).3.如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.4.已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.5.【问题提出】如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF;试证明:AB=DB+AF。

天津市和平区普通中学2018届初三数学中考复习 矩形、菱形和正方形 专项复习练习 含答案与解析

天津市和平区普通中学2018届初三数学中考复习 矩形、菱形和正方形 专项复习练习 含答案与解析

天津市和平区普通中学2018届初三数学中考复习矩形、菱形和正方形专项复习练习1.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=23,∠AEO=120°,则FC的长度为( )A.1 B.2 C. 2 D. 32.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有( )①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④3. 关于▱ABCD的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形 B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形 D.若AB=AD,则▱ABCD是正方形4. 如图,在菱形ABCD中,过点D做DE⊥AB于点E,做DF⊥BC于点F,连结EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.5. 如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500 m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100 m,求小聪行走的路程.6. 如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.7. 如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB,外角∠ACD的平分线于点E,F.(1)若CE=8,CF=6,求OC的长;(2)连结AE,AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.8. 如图,在▱ABCD中,BC=2AB=4,点E,F分别是BC,AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.9. 已知菱形的周长为45,两条对角线的和为6,求菱形的面积.10. 如图,已知E,F,G,H分别为菱形ABCD四边的中点,AB=6 cm,∠ABC=60°.(1)试判断四边形EFGH的类型,并证明你的结论;(2)求四边形EFGH的面积.11. 如图,点E 是正方形ABCD 的边BC 延长线上一点,连结DE ,过顶点B 作BF⊥DE,垂足为F ,BF 分别交AC 于H ,交CD 于G.(1)求证:BG =DE ;(2)若点G 为CD 的中点,求HGGF 的值.12. 已知正方形的对角线AC ,BD 相交于点O .(1)如图1,E ,G 分别是OB ,OC 上的点,CE 与DG 的延长线相交于点F .若DF ⊥CE ,求证:OE =OG ;(2)如图2,H 是BC 上的点,过点H 作EH ⊥BC ,交线段OB 于点E ,连结DH ,交CE 于点F ,交OC 于点G .若OE =OG .①求证:∠ODG =∠OCE ; ②当AB =1时,求HC 的长.答案与解析: 1. A 2. B【解析】当▱ABCD 的面积最大时,四边形ABCD 为矩形,得出∠A =∠B =∠C =∠D =90°,AC =BD ,根据勾股定理求出AC =32+42=5,①正确,②正确,④正确;③不正确;故选B. 3. C4. 解:(1) ∵四边形ABCD 是菱形,∴AD =CD ,∠A =∠C ,∵DE ⊥AB ,DF ⊥BC ,∴∠AED =∠CFD =90°,∴△ADE ≌△CDF(2) ∵四边形ABCD 是菱形,∴AB =CB ,∵△ADE ≌△CDF ,∴AE =CF ,∴BE =BF ,∴∠BEF =∠BFE5. 解:小敏走的路程为AB +AG +GE =1500+(AG +GE)=3100,则AG +GE =1600 m ,小聪走的路程为BA +AD +DE +EF =3000+(DE +EF).连结CG ,在正方形ABCD 中,∠ADG =∠CDG=45°,AD =CD ,在△ADG 和△CDG 中,∵AD =CD ,∠ADG =∠CDG,DG =DG ,∴△ADG ≌△CDG ,∴AG =CG.又∵GE⊥CD,GF⊥BC,∠BCD =90°,∴四边形GECF 是矩形,∴CG =EF.又∵∠CDG=45°,∴DE =GE ,∴小聪走的路程为BA +AD +DE +EF =3000+(GE +AG)=3000+1600=4600 m6. 解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC,∴∠ABC +∠BAD=180°,∵∠ABC ∶∠BAD =1∶2,∴∠ABC =60°,∴∠DBC =12∠ABC=30°,则tan ∠DBC =tan30°=33(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,即∠BOC=90°,∵BE ∥AC ,CE ∥BD ,∴四边形OBEC 是平行四边形,则四边形OBEC 是矩形【解析】(1)由四边形ABCD 是菱形,得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠DBC 的度数;(2)由四边形ABCD 是菱形,得到对角线互相垂直,即∠BOC =90°,利用有一个角为直角的平行四边形是矩形即可得证. 7. 解:(1)∵EF 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠OCE =∠BCE,∠OCF =∠DCF,∵EF ∥BC ,∴∠OEC =∠BCE,∠OFC =∠DCF,∴∠OEC =∠OCE,∠OFC =∠OCF,∴OE =OC ,OF =OC ,∴OE =OF ;∵∠OCE+∠BCE +∠OCF+∠DCF=180°,∴∠ECF =90°,在Rt △CEF 中,由勾股定理得:EF =CE 2+CF 2=10,∴OC =OE =12EF =5(2)当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形.理由如下: 连结AE ,AF ,当O 为AC 的中点时,AO =CO ,∵EO =FO ,∴四边形AECF 是平行四边形,∵∠ECF =90°,∴平行四边形AECF 是矩形【解析】(1)根据平行线的性质以及角平分线的性质得出∠OEC =∠OCE ,∠OFC =∠OCF ,证出OE =OC =OF ,∠ECF =90°,由勾股定理求出EF ,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可.8. 解:(1)∵▱ABCD ,∴AB =CD ,BC =AD ,∠ABC =∠CDA.又∵BE=EC =12BC ,AF =DF =12AD ,∴BE =DF.∴△ABE ≌△CDF (2)∵四边形AECF 为菱形,∴AE =EC.又∵点E 是边BC 的中点,∴BE =EC ,即BE =AE.又BC =2AB =4,∴AB =12BC=BE ,∴AB =BE =AE ,即△ABE 为等边三角形,▱ABCD 的BC 边上的高为2×sin60°=3,∴菱形AECF 的面积为2 39. 解:四边形ABCD 是菱形,AC +BD =6,∴AB =5,AC ⊥BD ,AO =12AC ,BO=12BD ,∴AO +BO =3,∴AO 2+BO 2=AB 2,(AO +BO)2=9,即AO 2+BO 2=5,AO 2+2AO·BO+BO 2=9,∴2AO ·BO =4,∴菱形的面积是12AC·BD=2AO·BO=4【解析】根据菱形对角线互相垂直,利用勾股定理转化为两条对角线的关系式求解.10. 解:(1)连结AC ,BD ,相交于点O ,∵E ,F ,G ,H 分别是菱形四边上的中点,∴EH =12BD =FG ,EH ∥BD ∥FG ,EF =12AC =HG ,∴四边形EHGF 是平行四边形,∵菱形ABCD 中,AC ⊥BD ,∴EF ⊥EH ,∴四边形EFGH 是矩形 (2)∵四边形ABCD是菱形,∠ABC =60°,∴∠ABO =30°,∵AC ⊥BD ,∴∠AOB =90°,∴AO =12AB=3,∴AC =6,在Rt △AOB 中,由勾股定理得OB =AB 2-OA 2=33,∴BD =63,∵EH =12BD ,EF =12AC ,∴EH =33,EF =3,∴矩形EFGH 的面积=EF·FG=9 3cm 211. 解:(1)∵BF⊥DE,∴∠GFD =90°,∵∠BCG =90°,∠BGC =∠DGF,∴∠CBG =∠CDE,在△BCG 与△DCE 中,∵∠CBG =∠CDE,BC =CD ,∠BCG =∠DCE,∴△BCG ≌△DCE(ASA),∴BG =DE(2)设CG =1,∵G 为CD 的中点,∴GD =CG =1,由(1)可知:△BCG≌△DCE(ASA),∴CG =CE =1,∴由勾股定理可知:DE =BG =5,∵sin ∠CDE =CE DE =GF GD ,∴GF =55,∵AB ∥CG ,∴△ABH ∽△CGH ,∴AB CG =BH HG =21,∴BH =253,GH =53,∴HG GF =53【解析】(1)由于BF⊥DE,所以∠GFD=90°,从而可知∠CBG=∠CDE,根据全等三角形的判定即可证明△BCG≌△DCE,从而可知BG =DE ;(2)设CG =1,从而知CG =CE =1,由勾股定理可知:DE =BG =5,易证△ABH∽△CGH,所以BHHG=2,从而可求出HG 的长度,进而求出HGGF 的值.12. 解:(1) ∵四边形ABCD 是正方形,∴AC ⊥BD ,OD =OC ,∴∠DOG =∠COE=90°,∴∠OEC +∠OCE =90°.∵DF ⊥CE ,∴∠OEC +∠ODG =90°,∴∠ODG =∠OCE.∴△ODG ≌△OCE(ASA),∴OE =OG(2)①∵OD =OC ,∠DOG =∠COE=90°,又OE =OG ,∴DOG ≌COE(SAS),∴∠ODG =∠OCE②设CH =x ,∵四边形ABCD 是正方形,AB =1,∴BH =1-x ,∠DBC =∠BDC=∠ACB =45°,∵EH⊥BC,∴∠BEH =∠EBH=45°.∴EH =BH =1-x.∵∠ODG=∠OCE,∴∠BDC -∠ODG=∠ACB-∠OCE.∴∠HDC=∠ECH.∵EH⊥BC,∴∠EHC =∠HCD=90°.∴△CHE ∽△DCH.∴EH HC =HCCD. ∴HC 2=EH·CD,得x 2+x -1=0.解得x 1=5-12,x 2=-5-12(舍去).∴HC=5-12。

北京市丰台区普通中学2018届初三数学中考复习 简单的几何证明与计算 专项复习练习 含答案与解析

北京市丰台区普通中学2018届初三数学中考复习 简单的几何证明与计算 专项复习练习 含答案与解析

北京市丰台区普通中学2019届初三数学中考复习 简单的几何证明与计算专项复习练习1. 如图,在△ABC 中,AD 平分∠BAC,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F.(1)求证:AB =AC ;(2)若AD =23,∠DAC =30°,求AC 的长.解析:(1)先证△DEB≌△DFC 得∠B=∠C,由此即可证明;(2)先证AD⊥BC,再在Rt △ADC 中,利用30°角性质设CD =a ,AC =2a ,根据勾股定理列出方程即可求解.解:(1)∵AD 平分∠BAC,DE ⊥AB 于点E ,DF ⊥AC 于点F ,∴DE =DF ,∠DEB =∠DFC =90°,又∵BD=CD ,∴Rt △DEB≌Rt △DFC(HL ),∴∠B =∠C,∴AB =AC(2)∵AB=AC ,BD =DC ,∴AD ⊥BC ,在Rt △ADC 中,∵∠ADC =90°,AD =23,∠DAC =30°,∴AC =2CD ,设CD =a ,则AC =2a ,∵AC 2=AD 2+CD 2,∴4a 2=a 2+(23)2,∵a >0,∴a =2,∴AC =2a =42. 如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为点F ,交AD 的延长线于点E ,交DC 于点N.(1)求证:△ABM∽△EFA;(2)若AB =12,BM =5,求DE 的长.解析:(1)由两角相等即可证明;(2)由勾股定理求出AM ,得出AF ,由△ABM∽△EFA 得出比例式,求出AE ,即可求解.解:(1)∵四边形ABCD 是正方形,∴AB =AD ,∠B =90°,AD ∥BC ,∴∠AMB =∠EAF,又∵EF⊥AM,∴∠AFE =90°,∴∠B =∠AFE,∴△ABM ∽△EFA(2)∵∠B=90°,AB =12,BM =5,∴AM =122+52=13,AD =12,∵F 是AM 的中点,∴AF =12AM =6.5,∵△ABM ∽△EFA ,∴BM AF =AM AE ,即56.5=13AE,∴AE =16.9,∴DE =AE -AD =4.93. 如图,AC 是矩形ABCD 的对角线,过AC 的中点O 作EF⊥AC,交BC 于点E ,交AD 于点F ,连接AE ,CF.(1)求证:四边形AECF 是菱形;(2)若AB =3,∠DCF =30°,求四边形AECF 的面积.(结果保留根号)解析:(1)过AC 的中点O 作EF⊥AC,根据线段垂直平分线的性质,可得AF =CF ,AE =CE ,OA =OC ,由AAS 可证△AOF≌△COE,可得AF =CE ,由此即可证明;(2)由四边形ABCD 是矩形,易求得CD 的长,利用三角函数求得CF 的长,即可求解. 解:(1)∵O 是AC 的中点,且EF⊥AC,∴AF =CF ,AE =CE ,OA =OC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFO =∠CEO,可证△AOF≌△COE(AAS ),∴AF =CE ,∴AF =CF =CE =AE ,∴四边形AECF 是菱形(2)∵四边形ABCD 是矩形,∴CD =AB =3,在Rt △CDF 中,cos ∠DCF =CD CF,∠DCF =30°,∴CF =CD cos 30°=2,∵四边形AECF 是菱形,∴CE =CF =2,∴四边形AECF 是的面积为EC·AB=2 34.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD=90°,D 为AB 边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD 2=AD 2+DB 2.解:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴AC =BC ,CD =CE ,∵∠ACB =∠DCE =90°,∴∠ACE +∠ACD =∠BCD +∠ACD ,∴∠ACE =∠BCD ,可证△ACE≌△BCD(SAS )(2)∵△ACB 是等腰直角三角形,∴∠B =∠BAC=45°.∵△ACE ≌△BCD ,∴∠B =∠CAE=45°,∴∠DAE =∠CAE+∠BAC=45°+45°=90°,∴AD 2+AE 2=DE 2.由(1)知AE =DB ,∴AD 2+DB 2=DE 2,即2CD 2=AD 2+DB 25.如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为D ,E ,AD 与BE 相交于点F.(1)求证:△ACD∽△BFD;(2)当tan ∠ABD =1,AC =3时,求BF 的长.解:(1)∵AD⊥BC,BE ⊥AC ,∴∠BDF =∠ADC=∠BEC=90°,∴∠C +∠DBF=90°,∠C +∠DAC=90°,∴∠DBF =∠DAC,∴△ACD ∽△BFD(2)∵tan ∠ABD =1,∠ADB =90°,∴AD BD =1,∵△ACD ∽△BFD ,∴AC BF =AD BD=1,∴BF =AC =36.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,延长CB 至点F ,使CF =CA ,连接AF ,∠ACF 的平分线分别交AF ,AB ,BD 于点E ,N ,M ,连接EO.(1)已知EO =2,求正方形ABCD 的边长;(2)猜想线段EM 与CN 的数量关系并加以证明.解:(1)∵四边形ABCD 是正方形,∴CA =2BC 2=2BC.∵CF=CA ,CE 是∠ACF 的角平分线,∴E 是AF 的中点.∵E,O 分别是AF ,AC 的中点,∴EO ∥BC ,且EO =12CF ,∴CA =CF =2EO =22,∴BC =2,∴正方形ABCD 的边长为2 (2)EM =12CN.证明:∵CE 平分∠ACB,∴∠OCM =∠BCN,∵四边形ABCD 是正方形,∴AC ⊥BD ,∠ABC =90°,∴∠COM =∠CBN=90°,∴△OCM ∽△BCN ,∴CM CN =OC BC =22.∵EO∥BC,∴△OEM ∽△BCM ,∴EM CM =OE BC =22,CM CN ·EM CM =22×22=12,∴EM CN =12,即EM =12CN 7.如图,在菱形ABCD 中,G 是BD 上一点,连接CG 并延长交BA 的延长线于点F ,交AD 于点E.(1)求证:AG =CG ;(2)求证:AG 2=GE·GF.解:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,AD =CD ,∠ADB =∠CDB,可证△ADG≌△CDG(SAS ),∴AG =CG(2)∵△ADG≌△CDG,∴∠EAG =∠DCG,∵AB ∥CD ,∴∠DCG =∠F,∴∠EAG =∠F,∵∠AGE =∠AGE,∴△AGE ∽△FGA ,∴AG FG =EG AG,∴AG 2=GE·GF 8.如图,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF =BD ,连接BF.(1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.解:(1)∵AF∥BC,∴∠AFE =∠DCE,∵点E 为AD 的中点,∴AE =DE ,可证△AEF≌△DEC(AAS ),∴AF =CD ,∵AF =BD ,∴BD =CD ,∴D 是BC 的中点(2)若AB =AC ,则四边形AFBD 是矩形.证明:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴AD ⊥BC ,∴∠ADB =90°,∴平行四边形AFBD 是矩形9.如图,在四边形ABCD 中,∠ABC =90°,AC =AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN.(1)求证:BM =MN ;(2)若∠BAD=60°,AC 平分∠BAD,AC =2,求BN 的长.解:(1)在△CAD 中,∵M ,N 分别是AC ,CD 的中点,∴MN ∥AD ,MN =12AD ,在Rt △ABC 中,∵M 是AC 的中点,∴BM =12AC ,∵AC =AD ,∴MN =BM (2)∵∠BAD=60°,AC 平分∠BAD,∴∠BAC =∠DAC=30°,由(1)可知BM =12AC =AM =MC ,∴∠BMC =∠BAM+∠ABM=2∠BAM=60°,∵MN ∥AD ,∴∠NMC =∠DAC =30°,∴∠BMN =∠BMC+∠NMC=90°,∴BN 2=BM 2+MN 2,由(1)可知MN =BM =12AC =1,∴BN = 2 10.如图,在△ABC 和△BCD 中,∠BAC =∠BCD=90°,AB =AC ,CB =CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF,延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.解:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ACD=∠ACB+∠BCD=135°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,可证△ABF≌△ACD(SAS),∴AD=AF(2)由(1)知AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∵∠BAC=90°,∴∠EAB =∠BAC=90°,∴∠EAF=∠BAD,可证△AEF≌△ABD(SAS),∴BD=EF(3)四边形ABNE是正方形.理由如下:∵CD=CB,∠BCD=90°,∴∠CBD=45°,又∵∠ABC=45°,∴∠ABD=∠ABC+∠CBD=90°,由(2)知∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形11.如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.(1)求证:AC2=CD·BC;(2)过E作EG⊥AB,并延长EG至点K,使EK=EB.①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;②若∠B=30°,求证:四边形AKEC是菱形.解:(1)∵AC平分∠BCD,∴∠DCA=∠ACB.又∵AC⊥AB,AD⊥AE,∴∠DAC+∠CAE =90°,∠CAE+∠EAB=90°,∴∠DAC=∠EAB.又∵E是BC的中点,∴AE=BE,∴∠EAB=∠ABC,∴∠DAC=∠ABC,∴△ACD∽△BCA,∴ACBC=CDAC,∴AC2=CD·BC(2)①连接AH.∵∠ADC=∠BAC=90°,点H,D关于AC对称,∴AH⊥BC.∵EG ⊥AB,AE=BE,∴点G是AB的中点,∴HG=AG,∴∠GAH=∠GHA.∵点F为AC 的中点,∴AF=FH,∴∠HAF=∠FHA,∴∠FHG=∠AHF+∠AH G=∠FAH+∠HAG=∠CAB=90°,∴FH ⊥GH②∵EK ⊥AB ,AC ⊥AB ,∴EK ∥AC ,又∵∠B=30°,∴AC =12BC =EB =EC.又EK =EB ,∴EK =AC ,∴四边形AKEC 是平行四边形,又∵AC=EC ,∴四边形AKEC 是菱形12. △ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF.(1)观察猜想如图1,当点D 在线段BC 上时,①BC 与CF 的位置关系为__垂直__;②BC,CD ,CF 之间的数量关系为__BC =CD +CF__;(2)数学思考如图2,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE.若已知AB =22,CD =14BC ,请求出GE 的长. 解析:(2)根据正方形的性质得到∠BAC=∠DAF =90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论;(3)过A 作AH⊥BC 于点H ,过E 作EM⊥BD 于点M ,EN ⊥CF 于点N ,先求出AH ,DH ,证△ADH≌△DEM(AAS )得到EM =DH ,DM =AH ,由等量代换得到CN =EM ,EN =CM ,根据等腰直角三角形的性质得到CG =BC =4,根据勾股定理即可得到结论. 解:(2)CF⊥BC 成立;BC =CD +CF 不成立,CD =CF +BC.证明:∵正方形ADEF ,∴AD =AF ,∵∠BAC =∠DAF=90°,∴∠BAD =∠CAF,可证△DAB≌△FAC(SAS ),∴∠ABD =∠ACF,∵∠BAC =90°,AB =AC ,∴∠ACB =∠ABC=45°.∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF-∠ACB=135°-45°=90°,∴CF ⊥BC.∵CD =DB +BC ,DB =CF ,∴CD =CF +BC(3)过A 作AH⊥BC 于点H ,过E 作EM⊥BD 于点M ,EN ⊥CF 于点N ,∵∠BAC =90°,AB =AC ,∴BC =2AB =4,AH =12BC =2,∴CD =14BC =1,CH =12BC =2,∴DH =3,由(2)证得BC⊥CF,CF =BD =5,∵四边形ADEF 是正方形,∴AD =DE ,∠ADE =90°,∵BC ⊥CF ,EM ⊥BD ,EN ⊥CF ,∴四边形CMEN 是矩形,∴NE =CM ,EM =CN ,∵∠AHD =∠ADC=∠EMD=90°,∴∠ADH +∠EDM=∠EDM+∠DEM=90°,∴∠ADH =∠DEM,可证△ADH≌△DEM(AAS ),∴EM =DH =3,DM =AH =2,∴CN =EM =3,EN =CM =3,∵∠ABC =45°,∴∠BGC =45°,∴△BCG 是等腰直角三角形,∴CG =BC =4,∴GN =1,∴EG =GN 2+EN 2=10。

专题4.1 几何图形初步(第04期)-2018年中考数学试题分项版解析汇编(解析版)

专题4.1 几何图形初步(第04期)-2018年中考数学试题分项版解析汇编(解析版)

专题4.1 几何图形初步一、单选题1.如图,下列水平放置的几何体中,主视图不是长方形的是( ) A.B.C.D.【来源】2019年春人教版九年级下册数学《第29章投影与视图》单元测试题【答案】B【解析】A、C、D的主视图都是长方形,而B的主视图是等腰三角形,故选B2.若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°【来源】2018年甘肃省陇南市中考数学试卷【答案】C【解析】【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】180°﹣65°=115°.故它的补角的度数为115°.故选:C【点睛】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.3.已知∠A=55°,则它的余角是()A.25°B.35°C.45°D.55°【来源】人教版数学七年级上册同步练习:4.3.3 余角和补角【答案】B【解析】【分析】根据余角的定义进行解答即可得.【详解】∵∠A=55°,∴它的余角是90°﹣∠A=90°﹣55°=35°,故选B.【点睛】本题考查了余角与补角,熟知互余两角的和为90度是解本题的关键.4.毕业前夕,同学们准备了一份礼物送给自己的母校,现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的展开图(不考虑文字方向)不可能是()【来源】四川省巴中市2018年中考数学试卷【答案】C【解析】【分析】根据立方体的平面展开图规律解决问题即可.【详解】理由:选项C不能围成正方体,不符合题意。

故选:C.【点睛】本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.注意正方体的平面展开图中,相对的两个面中间一定隔着一个小正方形.5.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A.庆B.力C.大D.魅【来源】黑龙江省大庆市2018年中考数学试卷【答案】A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“力”是相对面,“创”与“庆”是相对面,“魅”与“大”是相对面,故选A.【点睛】本题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.6.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【来源】河北省2018年中考数学试卷【答案】A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.7.如图,已知DE∥BC,如果∠1=70°,那么∠B的度数为A.70°B.100°C.110°D.120°【来源】四川省甘孜州2018年中考数学试题【答案】C【解析】【分析】根据平行线的性质可知∠B与∠2互补,再根据对顶角的性质可知∠2=∠1=70°,据此即可得答案. 【详解】解:如图,∵DE//BC,∴∠2+∠B=180°,∵∠2=∠1=70°,∴∠B=180°-70°=110°,故选C.【点睛】本题考查了平行线的性质、对顶角的性质,熟练掌握平行线的性质是解题的关键.8.已知,直线EF分别交AB、CD于点G、H,∠EGB=25°,将一个60°角的直角三角尺如图放置(60°角的顶点与H重合),则∠PHG等于()A.30°B.35°C.40°D.45°【来源】内蒙古赤峰市2018年中考数学试卷【答案】B【解析】【分析】依据AB∥CD,可得∠EHD=∠EGB=25°,再根据∠PHD=60°,即可得到结论.【详解】∵AB∥CD,∴∠EHD=∠EGB=25°.又∵∠PHD=60°,∴∠PHG=60°﹣25°=35°.故选B.【点睛】本题考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上。

2018年中考数学《几何图形的动点问题》同步提分训练含答案解析

2018年中考数学《几何图形的动点问题》同步提分训练含答案解析

2018年中考数学提分训练: 几何图形的动点问题一、选择题1.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x 的大致图象是()A. B. C. D.2.如图1,在矩形ABCD中,动点E从A出发,沿方向运动,当点E到达点C时停止运动,过点E做,交CD于F点,设点E运动路程为x, ,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )A. B. C. 6 D. 53.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④4.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.5.如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别为AM,MR的中点,则EF的长随M点的运动( )A. 变短B. 变长C. 不变D. 无法确定二、填空题6.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)7.如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为________.8.如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC 在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=________;(2)当△ABC的边与坐标轴平行时,t=________。

天津市河北区普通中学2018届初三数学中考复习 图形的相似及位似 专项练习 含答案

天津市河北区普通中学2018届初三数学中考复习 图形的相似及位似 专项练习  含答案

天津市河北区普通中学2018届初三数学中考复习 图形的相似及位似 专项练习1.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为( A ) A.34 B.43 C.916 D.1692.如图,点F 在平行四边形ABCD 的边AB 上,射线CF 交DA 的延长线等于点E ,在不添加辅助线的情况下,与△AEF 相似的三角形有( C ) A .0个 B .1个 C .2个 D .3个3.如图,D 是△ABC 的边BC 上一点,AB =4,AD =2,∠DAC =∠B .如果△ABD 的面积为15,那么△ACD 的面积为( D )A .15B .10 C.152D .54.如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOES △COB=12;③AD AB =OE OB ;④S △ODE S △ADC =13.其中正确的个数有( B ) A .1个 B .2个 C .3个 D .4个5.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠B =30°,CE 平分∠ACB 交⊙O 于点E ,交AB 于点D ,连接AE ,则S △ADE ∶S △CDB 的值等于( D )A .1∶ 2B .1∶ 3C .1∶2D .2∶36.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( D ) A.12B .1 C. 3 D .27. 如图,矩形ABCD 的边长AD =3,AB =2,E 为AB 的中点,F 在边BC 上,且BF =2FC ,AF 分别与DE ,DB 相交于点M ,N ,则MN 的长为( B ) A.225 B.9220 C.324 D.4258. 如图,在正方形ABCD 中,△BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 相交于点H .给出下列结论:①△ABE ≌△DCF ;②FP PH =35;③DP 2=PH ·PB ;④S △BPD S 正方形ABCD =3-14.其中正确的是__①③④__.(写出所有正确结论的序号)9.如图,在平面直角坐标系中,矩形OABC 的顶点坐标分别为O (0,0),A (2,0),B (2,1),C (0,1),以坐标原点O 为位似中心,将矩形OABC 放大为原图形的2倍,记所得矩形为OA 1B 1C 1,B 为对应点为B 1,且B 1在OB 的延长线上,则B 1的坐标为__(4,2)__.10.一副三角板按图叠放,则△AOB 与△DOC 的面积之比为__1∶3__.11.如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6,BD =4,则CD 的长为__5__.12.一块直角三角板ABC 按如图放置,顶点A 的坐标为(0,1),直角顶点C 的坐标为(-3,0),∠B =30°,则点B 的坐标为__(-3-3,3.13.如图,已知△ABC ,△DCE ,△FEG ,△HGI 是4个全等的等腰三角形,底边BC ,CE ,EG ,GI 在同一直线上,且AB =2,BC =1,连接AI ,交FG 于点Q ,则QI =__43__.14.如图,已知EC ∥AB ,∠EDA =∠ABF . (1)求证:四边形ABCD 是平行四边形; (2)求证:OA 2=OE ·OF .解:(1)∵EC ∥AB ,∴∠EDA =∠DAB , ∵∠EDA =∠ABF , ∴∠DAB =∠ABF , ∴AD ∥BC , ∵DC ∥AB ,∴四边形ABCD 为平行四边形 (2)∵EC ∥AB ,∴△OAB ∽△OED ,∴OA OE =OBOD,∵AD ∥BC ,∴△OBF ∽△ODA ,∴OB OD =OFOA,∴OA OE =OFOA,∴OA 2=OE ·OF15.如图,已知四边形ABCD 内接于⊙O,A 是BDC ︵的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F ,E ,且BF ︵=AD ︵. (1)求证:△ADC∽△EBA;(2)如果AB =8,CD =5,求tan ∠CAD 的值.解:(1)∵四边形ABCD 内接于⊙O,∴∠CDA =∠ABE. ∵BF ︵=AD ︵,∴∠DCA =∠BAE, ∴△ADC ∽△EBA(2)∵A 是BDC ︵的中点, ∴AB ︵=AC ︵,∴AB =AC =8, ∵△ADC ∽△EBA ,∴∠CAD =∠AEC,DC AB =ACAE,即58=8AE ,∴AE =645, ∴tan ∠CAD =tan ∠AEC =AC AE =8645=5816.如图,矩形纸片ABCD ,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP,△BPQ ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由)(2)如果AM =1,sin ∠DMF =35,求AB 的长.解:(1)有三对相似三角形,即△AMP∽△BPQ∽△CQD(2)设AP =x ,由折叠知,BP =AP =EP =x ,AB =DC =2x ,由△AMP∽△BPQ 得AM BP =APBQ,即1x =x BQ ,∴BQ =x 2,由△AMP∽△CQD 得AP CD =AM CQ ,即x 2x =1CQ,∴CQ =2,∴AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+1.∵在Rt △FDM 中,sin ∠DMF =35,DF =DC =2x ,∴2x x 2+1=35,变形得3x 2-10x +3=0,解得x 1=3,x 2=13(不合题意,舍去),∴AB =617.如图,Rt △ABC 中,∠ACB =90°,AC =6 cm ,BC =8 cm.动点M 从点B 出发,在BA 边上以每秒3 cm 的速度向定点A 运动,同时动点N 从点C 出发,在CB 边上以每秒2 cm的速度向点B 运动,运动时间为t 秒(0<t <103),连接MN .(1)若△BMN 与△ABC 相似,求t 的值; (2)连接AN ,CM ,若AN ⊥CM ,求t 的值.图① 图②解:(1)由题意知BM =3t cm ,CN =2t cm ,∴BN =(8-2t )cm ,BA =62+82=10(cm),当△BMN ∽△BAC 时,BM BA =BN BC ,∴3t 10=8-2t 8,解得t =2011;当△BMN ∽△BCA 时,BMBC=BN BA ,∴3t 8=8-2t 10,解得t =3223,∴△BMN 与△ABC 相似时,t 的值为2011或3223(2)过点M 作MD ⊥CB 于点D ,由题意得DM =BM ·sin B =3t ·610=95t (cm),BD =BM ·cos B=3t ·810=125t (cm),∴CD =(8-125t )cm ,∵AN ⊥CM ,∠ACB =90°,∴∠CAN +∠ACM =90°,∠MCD +∠ACM =90°,∴∠CAN =∠MCD ,∵MD ⊥CB ,∴∠MDC =∠ACB =90°,∴△CAN ∽△DCM ,∴AC CN =CD DM ,∴62t =8-125t95t ,解得t =1312或t =0(舍去),则t 的值为1312。

2018初三数学中考复习几何作图专项复习练习题含答案

2018初三数学中考复习几何作图专项复习练习题含答案

2018初三数学中考复习几何作图专项复习练习题1.下列尺规作图,能判断AD是△ ABC边上的高是(B )2.如图,已知在RtAABC中,/ ABC =90°,点D是BC边的中点,分别以B,C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连结BE,则下列结论:①EDLBC,②/ A = / EBA,1③EB平分/AED,④ED = ]AB中,一定正确的是(B )A.①②③B.①②④3.如图,在△ ABC中,/C = 90° , ZB = 30 ,以点A为圆心,任意长为半1 .一径圆弧分别交AB, AC于点M和N,再分别以M, N为圆心,大于2MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是(D )①AD是/BAC的平分线;②/ADC = 60° ;③点D在AB的垂直平分线上;④ S*A DAC :S A ABC 1 : 3.A. 1个B. 2个C.3个D.4个4.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连结EH HF,FG GE则下列结论中,不一定正确的是(B )A. △EGFte等腰三角形 B . z\EGF为等边三角形C.四边形EGFH;菱形D . z\EHF为等腰三角形1 ....... ..5.如图,分别以线段AC的两个端点A, C为圆心,大于2AC的长为半径圆弧, 两弧相交于B, D两点,连结BD AR BC CD DA以下结论:①BD垂直平分AQ②AC平分/ BAD③AC= BD,④四边形ABC奥中心对称图形.其中正确的有(C )A.①②③ B .①③④ C .①②④ D .②③④6.如图,在平面直角坐标系中,以点。

为圆心,适当长为半径画弧,交x轴于1点M交y轴于点N,再分别以点M N为圆心,大于gMN的长为半径圆弧,两弧在第二象限交于点P.若点P的坐标为(2a, b+1),则a与b的数量关系为(B )yA. a = b B . 2a+b=—1 C . 2a- b=1 D . 2a+b=17.用直尺和圆规作Rtz\ABC斜边AB上的高线CD以下四个作图中,作法错误的是(D )8.如图,在^ ABC中,/ B= 55° , /C= 30° ,分别以点A和点C为圆心,大一1于2AC的长为半径圆弧,两弧相交于点M, N,作直线MN交BC于点D,连结AD,则/ BAD勺度数为659.如图,以点O为圆心,任意长为半径画弧,与射线O帧于点A,再以点A为1 圆心,AO长为半径圆弧,两弧交于点B,四射线OB则cos/AOB勺值等于二10.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线, 则对应选项中作法正确的是11.如图,△ABCWz\DEF关于直线l对称,请用无刻度的直尺,在下面两个图中分别作出直线1.①解:图略.图①中,过点A和BC EF的交点作直线即是;图②中,延长AB, DE 交于一点,延长CB FE交于一点, 过两交点作直线即是1.12.在△ABC+, /ACB= 90 , CD为z\ABC的角平分线.(1)求作:线段CD的垂直平分线EF,分别交AC BC于点E, F,垂足为0(要求尺规作图,保留作图痕迹,不写作法);(2)求证:△ COB AC0F(3)连接DE, DF,判断四边形CED屋什么特殊四边形,并说明理由.解:(1)如图所示.D B⑵「CD 是/ACB勺平分线,・./EC0= /FCQ「0CL EF, •. / E0C= / F0C= 90 .「/ EC0= / FC0在乙 E0CF口△ F0C^, C C0= C0 •二△ E0C2△ F0C.I / E0C= / F0C⑶「EF 垂直平分CD /. EO EQ FC= FD.v AE0C2 △ F0CEC= FQED=EC= FC= FD, •.・四边形CED呢菱形.又•「/ ECF= 90 ,四边形CED呢正方形.14 .如图,已知矩形 ABCD(ABAD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A 为圆心,以AD 的长为半径画弧交边BC 于点E,连结AE ②作/ DAE 的平分线交C 叶点F;③连结EF;(2)在(1)作出的图形中,若 AB= 8, AD= 10,则tan/FEC.解:(1)如图所示.(2)由(1)知 AE= AD= 10, /DAF= / EAF/AB= 8, /. BE= A /A ^-AB = 6.在ADA 林口 △ EAF 中,AD= AE,..Y/DAF= /EAF ••△DAF^ △EAF(SAS)「. / D= / AEF= 90 ,「./BEAAF= AF,+ /FEC= 90 .又「/BEA^ / BAE= 90 ,「. / FEC= /BAE • - tan ZFEC= tan15 .如图,在 Rtz\ABC 中,/ BAC= 90/ BAE= BE 6 AB= 8= 3 4.(1)先作/ ACB 的平分线交AB 边于点P,再以点P 为圆心,PA 长为半径作。

精品解析:北京市朝阳区普通中学2018届初三中考数学复习 由三视图描述几何体 专题复习练习题(解析

精品解析:北京市朝阳区普通中学2018届初三中考数学复习  由三视图描述几何体 专题复习练习题(解析

北京市朝阳区普通中学2018届初三中考数学复习由三视图描述几何体专题复习练习题一、选择题1. 如图是几何体的三视图,该几何体是A. 圆锥B. 圆柱C. 正三棱柱D. 正三棱锥【答案】C【解析】【详解】由展开图的特点知识是三棱柱的展开图.故选C.2. 一个几何体的三视图如图所示,则这个几何体是()A. 球体B. 圆锥C. 棱柱D. 圆柱【答案】D【解析】【详解】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.3. 一个几何体的三视图如图所示,则这个几何体是()A. B. C. D.【答案】C【解析】【详解】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为四棱柱,故选C.考点:由三视图判断几何体.4. 图中三视图所对应的直观图是()A. B. C. D.【答案】C【解析】【分析】试题分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切高度相同.只有C满足这两点.故选C.考点:由三视图判断几何体.5. 由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A. B. C. D.【答案】A【解析】【详解】试题分析:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有四列,从左到右分别是1,2,2,1个正方形.解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,2,1个正方形.故选A.点评:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.6. 如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B. C. D.【答案】B【解析】【详解】解:圆柱从上边看是一个圆,从正面看是一个正方形,既可以堵住方形空洞,又可以堵住圆形空洞,故选B.考点:简单几何体的三视图.7. 如图是由几个相同的小立方块组成的三视图,小立方块的个数是()A. 3个B. 4个C. 5个D. 6个【答案】B【解析】 【详解】试题分析:综合三视图可看出,底面有3个小立方体,第二层应该有1个小立方体,因此小立方体的个数应该是3+1=4个.故选B .8. 如图,由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是( )A.B. C. D.【答案】B【解析】 【详解】根据该组合体的主视图和俯视图及正方形的个数确定每层的小正方形的个数,然后确定其左视图:∵该组合体共有8个小正方体,俯视图和主视图如图,∴该组合体共有两层,第一层有5个小正方体,第二层有三个小正方形,且全位于第二层的最左边. ∴左视图应该是两层,每层两个.故选B .9. 如图是某几何体的三视图,则该几何体的体积是( )A. 183B. 543C. 1083D. 2163【答案】C【解析】【详解】试题解析:由三视图可看出:该几何体是一个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6×34×62×2=1083.故选C.考点:由三视图判断几何体.二、填空题10. 写出一个在三视图中俯视图与主视图完全相同的几何体______________【答案】球或正方体【解析】【详解】试题分析:球的俯视图与主视图都为圆;正方体的俯视图与主视图都为正方形.故答案为球或正方体.考点:三视图11. 如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是______cm3.【答案】24【解析】【分析】根据主视图和俯视图求出长方体的长宽高即可解题.【详解】解:由主视图可知长方体长为4,高为3,由俯视图可知长方体宽为2,∴长方体体积=432⨯⨯=24 cm3【点睛】本题考查了利用三视图求立体图形的体积,属于简单题,看懂三视图是解题关键.12. 如图是一个正六棱柱的主视图和左视图,则图中a的值为____.3【解析】【详解】由正六棱柱主视图和左视图,可得到正六棱柱的最长的对角线长是4,则边长为2,做AD⊥BC,在△ABC中,AB=AC=2,∠BAC=120°,∴在直角△ABD中,∠ABD=30°,AD=1,∴BD=223-=.AB AD三、解答题13. 如图是一个包装盒的三视图,则这个包装盒对应的几何体是_____________,求出这个包装盒的体积.【答案】圆柱体(2) 2000πcm2【解析】【详解】分析:根据三视图、正视图以及左视图都为矩形,底面是圆形,则可想象出这是一个圆柱体.根据体积=底面积×高,列出算式计算即可求解.本题解析:圆柱体解:V=π×102×20=2000π(cm3)点睛:本题考查了由三视图判断几何体和几何体的体积,本题难点是确定几何体的形状,关键是找到等量关系里相应的量.14. 一个物体由几个相同的小立方体叠成,它的三视图如图所示,请回答下列问题:(1)该物体具有几层?(2)最高部位在哪里?(3)一共需要几个小立方体?【答案】(1)该物体有三层(2)最高部位左侧最后端(3)一共需要9个或10个或11个小立方体【解析】【详解】分析:根据题目给出的几何体的三视图,发挥空间想象能力,可以想象出几何体的样子,画出草图,据此可得解.本题解析:(1)该物体有三层(2)最高部位在左侧最后端(3)一共需要9个或10个或11个小立方体,如图所示(在俯视图中)15. 一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.【答案】四棱拄,80cm2.【解析】【详解】解:这个几何体的三视图如图所示,它的俯视图为菱形,主视图、左视图是矩形,所以该几何体是四棱拄;那么菱形的一条对角线长为3,另一条对角线长为4,所以菱形的边长=2232552242⎛⎫+==⎪⎝⎭,而四棱拄的四个面都是矩形,矩形的宽都是菱形的边长,所以它的侧面积=5482⨯⨯=80.【点睛】本题考查四棱拄,三视图,考生解答本题需要掌握四棱拄的性质,对四棱拄侧面图形的形状要了解,熟悉三视图,会观察几何体的三视图.16. 由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图所示.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.【答案】(1)答案见解析.【解析】【详解】(1)(2)∵俯视图有5个正方形,∴最底层有5个正方体,由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;由主视图可得第2层最多有4个正方体,第3层最多有2个正方体;∴该组合几何体最少有5+2+1=8个正方体,最多有5+4+2=11个正方体,∴n可能为8或9或10或11.(1)由俯视图可得该几何体有2行,则左视图应有2列,由主视图可得共有3层,那么其中一列必为3个正方形,另一列最少是1个,最多是3个;(2)由俯视图可得该组合几何体有3列,2行,以及最底层正方体的个数及摆放形状,由主视图结合俯视图可得从左边数第二列第二层最少有1个正方体,最多有2个正方体,第3列第2层,最少有1个正方体,最多有2个正方体,第3层最少有1个正方体,最多有2个正方体,分别相加得到组成组合几何体的最少个数及最多个数即可得到n的可能的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018 初三数学中考复习 几何作图 专项复习练习题
1.下列尺规作图,能判断AD 是△ABC 边上的高是( B )
2. 如图,已知在Rt △ABC 中,∠ABC =90°,点D 是BC 边的中点,分别以B ,C 为圆心,大于线段BC 长度一半的长为半径画弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连结BE ,则下列结论:①ED ⊥BC ,②∠A =∠EBA ,
③EB 平分∠AED ,④ED =12AB 中,一定正确的是( B )
A .①②③
B .①②④
C .①③④
D .②③④
3.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半
径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长
为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( D )
①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △ABC =1∶3.
A .1个
B .2个
C .3个
D .4个
4. 任意一条线段EF ,其垂直平分线的尺规作图痕迹如图所示.若连结EH ,HF ,FG ,GE ,则下列结论中,不一定正确的是( B )
A .△EGH 为等腰三角形
B .△EGF 为等边三角形
C .四边形EGFH 为菱形
D .△EHF 为等腰三角形
5.如图,分别以线段AC 的两个端点A ,C 为圆心,大于12
AC 的长为半径画弧,两弧相交于B ,D 两点,连结BD ,AB ,BC ,CD ,DA ,以下结论:①BD 垂直平分AC ,②AC 平分∠BAD,③AC =BD ,④四边形ABCD 是中心对称图形.其中正确的有( C )
A .①②③
B .①③④
C .①②④
D .②③④
6.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴于
点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12
MN 的长为半径画弧,两弧在第二象限交于点P.若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( B )
A .a =b
B .2a +b =-1
C .2a -b =1
D .2a +b =1
7.用直尺和圆规作Rt △ABC 斜边AB 上的高线CD ,以下四个作图中,作法错误的是( D )
8.如图,在△ABC 中,∠B =55°,∠C =30°,分别以点A 和点C 为圆心,大于12
AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为__65°__.
9.如图,以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为
圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos ∠AOB 的值等于__12
__.
10.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法正确的是__①②④__.
11.如图,△ABC 与△DEF 关于直线l 对称,请用无刻度的直尺,在下面两个图中分别作出直线
l.
解:图略.图①中,过点A 和BC ,EF 的交点作直线即是;图②中,延长AB ,DE 交于一点,延长CB ,FE 交于一点,过两交点作直线即是l.
12.在△ABC 中,∠ACB =90°,CD 为△ABC 的角平分线.
(1)求作:线段CD 的垂直平分线EF ,分别交AC ,BC 于点E ,F ,垂足为O(要求尺规作图,保留作图痕迹,不写作法);
(2)求证:△COE≌△COF;
(3)连接DE ,DF ,判断四边形CEDF 是什么特殊四边形,并说明理由.
解:(1)如图所示.
(2)∵CD 是∠ACB 的平分线,∴∠ECO =∠FCO,∵OC ⊥EF ,∴∠EOC =∠FOC=90°.
在△EOC 和△FOC 中,⎩⎪⎨⎪⎧∠ECO=∠FCO,CO =CO ,∠EOC =∠FOC,
∴△EOC ≌△FOC.
(3)∵EF 垂直平分CD ,∴EC =ED ,FC =FD.∵△EOC≌△FOC,∴EC =FC ,∴ED =EC =FC =FD ,∴四边形CEDF 是菱形.又∵∠ECF=90°,∴四边形CEDF 是正方
形.
14. 如图,已知矩形ABCD(AB <AD).
(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;
①以点A 为圆心,以AD 的长为半径画弧交边BC 于点E ,连结AE ;
②作∠DAE 的平分线交CD 于点F ;
③连结EF ;
(2)在(1)作出的图形中,若AB =8,AD =10,则tan ∠
FEC.
解:(1)如图所示.
(2)由(1)知AE =AD =10,∠DAF =∠EAF,
∵AB =8,∴BE =AE 2-AB 2=6.
在△DAF 和△EAF 中,
∵⎩⎪⎨⎪⎧AD =AE ,∠DAF =∠EAF,AF =AF ,
∴△DAF ≌△EAF(SAS),∴∠D =∠AEF =90°,∴∠BEA
+∠FEC=90°.又∵∠BEA+∠BAE =90°,∴∠FEC =∠BAE,∴tan ∠FEC =tan
∠BAE =BE AB =68=34
.
15.如图,在Rt △ABC 中,∠BAC =90°.
(1)先作∠ACB 的平分线交AB 边于点P ,再以点P 为圆心,PA 长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)
(2)请你判断(1)中BC 与⊙P 的位置关系,并证明你的结论.
解:(1)如图所示,⊙P 即为所求作的圆.
(2)BC 与⊙P 相切.理由为:过P 作PD⊥BC,交BC 于点D ,∵CP 为∠ACB 的平分线,且PA⊥AC,PD ⊥CB ,∴PD =PA ,∵PA 为⊙P 的半径.∴BC 与⊙P 相切.
16.如图,MN 是⊙O 的直径,MN =4,点A 在⊙O 上,∠AMN =30°,B 为AN ︵的中
点,P 是直径MN 上一动点.
(1)利用尺规作图,确定当PA +PB 最小时P 点的位置(不写作法,但要保留作图痕迹);
(2)求PA +PB 的最小值.
解:(1)如图①所示,点P 即为所求.
(2)由(1)可知,PA +PB 的最小值即为A′B 的长,连结OA′,OB ,OA ,∵A ′点
为A 点关于直线MN 的对称点,∠AMN =30°,∴∠AON =∠A′ON=2∠AMN =
2×30°=60°.又∵B 为AN ︵的中点,∴AB ︵=BN ︵,∴∠BON =∠AOB=12∠AON=12
×60°=30°,∴∠A ′OB =∠A′ON+∠BON=60°+30°=90°.又∵MN=4,
∴OA ′=OB =12MN =12
×4=2,∴Rt △A ′OB 中,A ′B =22+22=22,即PA +PB 的最小值为2 2.。

相关文档
最新文档