最短路算法

合集下载

最短路问题(整理版)

最短路问题(整理版)

最短路问题(short-path problem)若网络中的每条边都有一个权值值(长度、成本、时间等),则找出两节点(通常是源节点与结束点)之间总权和最小的路径就是最短路问题。

最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。

最短路问题,我们通常归属为三类:单源最短路径问题(确定起点或确定终点的最短路径问题)、确定起点终点的最短路径问题(两节点之间的最短路径)1、Dijkstra算法:用邻接矩阵a表示带权有向图,d为从v0出发到图上其余各顶点可能达到的最短路径长度值,以v0为起点做一次dijkstra,便可以求出从结点v0到其他结点的最短路径长度代码:procedure dijkstra(v0:longint);//v0为起点做一次dijkstrabegin//a数组是邻接矩阵,a[i,j]表示i到j的距离,无边就为maxlongintfor i:=1 to n do d[i]:=a[v0,i];//初始化d数组(用于记录从v0到结点i的最短路径), fillchar(visit,sizeof(visit),false);//每个结点都未被连接到路径里visit[v0]:=true;//已经连接v0结点for i:=1 to n-1 do//剩下n-1个节点未加入路径里;beginmin:=maxlongint;//初始化minfor j:=1 to n do//找从v0开始到目前为止,哪个结点作为下一个连接起点(*可优化) if (not visit[j]) and (min>d[j]) then//结点k要未被连接进去且最小begin min:=d[j];k:=j;end;visit[k]:=true;//连接进去for j:=1 to n do//刷新数组d,通过k来更新到达未连接进去的节点最小值,if (not visit[j]) and (d[j]>d[k]+a[k,j]) then d[j]:=a[k,j]+d[k];end;writeln(d[n]);//结点v0到结点n的最短路。

networkx 最短路算法

networkx 最短路算法

一、网络图简介网络图是一种表示对象之间关系的数学结构,它由一组节点和连接这些节点的边组成。

在现实生活中,网络图可以用来表示交通网络、社交网络、电力网络等各种复杂系统。

在计算机科学中,网络图通常被用于建模和解决各种问题,比如最短路径问题、最小生成树问题、网络流问题等。

二、 NetworkX 简介NetworkX 是一个用 Python 语言编写的开源图论和复杂网络分析工具包,它提供了创建、操作和研究复杂网络的功能。

NetworkX 支持创建各种类型的网络图,包括有向图、无向图、加权图等,并提供了丰富的图算法和分析工具。

其中,最短路径算法是 NetworkX 中的一个重要功能,它可以用来寻找网络图中的最短路径。

三、最短路径算法概述最短路径算法用于寻找网络图中两个节点之间的最短路径,其中路径的长度可以通过边的权重来定义。

最短路径算法有多种实现方式,常见的算法包括 Dijkstra 算法、Bellman-Ford 算法、Floyd-Warshall 算法等。

这些算法在不同场景下具有不同的适用性和效率。

四、 NetworkX 中的最短路径算法在 NetworkX 中,最短路径算法主要包括两种实现方式:单源最短路径算法和全源最短路径算法。

单源最短路径算法用于寻找网络图中某个特定节点到其他所有节点的最短路径,常见的算法有 Dijkstra 算法和 Bellman-Ford 算法;全源最短路径算法用于寻找网络图中任意两个节点之间的最短路径,常见的算法有 Floyd-Warshall 算法。

五、单源最短路径算法1. Dijkstra 算法Dijkstra 算法是一种用于计算单源最短路径的贪心算法,它的基本思想是从起始节点开始,逐步扩展到其他节点,并更新节点之间的最短距离。

具体步骤如下:(1)初始化起始节点到其他所有节点的距离为无穷大,起始节点到自身的距离为 0;(2)选择距离起始节点最近的未访问节点,并更新该节点到其相邻节点的距离;(3)重复上述步骤,直至所有节点都被访问过。

最短路问题的求解方法

最短路问题的求解方法

最短路问题的求解方法最短路问题是图论中一个经典的问题,它在实际生活中有着广泛的应用,比如在交通规划、网络通信、物流配送等领域都有着重要的作用。

在解决最短路问题时,我们通常会采用不同的算法来求解,本文将介绍几种常见的最短路求解方法。

首先,我们来介绍最简单的最短路求解方法——暴力法。

暴力法的思路是枚举所有可能的路径,并找出其中的最短路。

虽然暴力法在理论上是可行的,但在实际应用中,由于其时间复杂度较高,往往不适用于大规模的图。

因此,我们需要寻找更加高效的算法来解决最短路问题。

其次,我们可以考虑使用迪杰斯特拉算法(Dijkstra algorithm)来求解最短路问题。

迪杰斯特拉算法是一种贪心算法,它通过不断地选择距离起点最近的顶点,并更新其邻居顶点的距离,来逐步求解最短路。

迪杰斯特拉算法的时间复杂度为O(V^2),其中V表示顶点的个数。

这使得它在实际应用中具有较高的效率,尤其适用于稠密图的求解。

除了迪杰斯特拉算法外,我们还可以使用弗洛伊德算法(Floydalgorithm)来解决最短路问题。

弗洛伊德算法采用动态规划的思想,通过不断更新图中任意两点之间的最短路径长度,来逐步求解整个图的最短路。

弗洛伊德算法的时间复杂度为O(V^3),因此在大规模图的求解中也具有较高的效率。

除了上述算法外,我们还可以考虑使用A算法、贝尔曼-福特算法等其他算法来解决最短路问题。

这些算法各有特点,适用于不同类型的图和不同的应用场景。

总的来说,最短路问题是一个重要且经典的问题,在实际应用中有着广泛的应用。

在求解最短路问题时,我们可以根据具体的情况选择合适的算法来求解,以提高效率和准确性。

希望本文介绍的几种最短路求解方法能够对读者有所帮助,谢谢阅读!。

最短路算法

最短路算法

最短路径在一个无权的图中,若从一个顶点到另一个顶点存在着一条路径,则称该路径长度为该路径上所经过的边的数目,它等于该路径上的顶点数减1。

由于从一个顶点到另一个顶点可能存在着多条路径,每条路径上所经过的边数可能不同,即路径长度不同,把路径长度最短(即经过的边数最少)的那条路径叫作最短路径或者最短距离。

对于带权的图,考虑路径上各边的权值,则通常把一条路径上所经边的权值之和定义为该路径的路径长度或带权路径长度。

从源点到终点可能不止一条路径,把带权路径长度最短的那条路径称为最短路径,其路径长度(权值之和)称为最短路径长度或最短距离。

最短路径算法Dijkstra算法:该算法是用于求解单源点最短路径的实用算法。

Dijkstra算法的基本思想如下:设置并逐步扩充一个集合S,存放已求出其最短路径的顶点,则尚未确定最短路径的顶点集合是V-S其中,V为网中所有顶点集合。

按最短路径长度递增的顺序逐个用V-S中的顶点加到S中,直到S中包含全部顶点,而V-S为空。

Dijkstra算法的具体步骤;(1)设源点为V1,则S中只包含顶点V1,令W=V-S,则W中包含除V1外图中所有顶点。

V1对应的距离值为0,即D[1]=0。

W中顶点对应的距离值是这样规定的:若图中有弧 <v1,vk>,则Vj顶点的距离为此弧权值,否则为一个无穷大的数;(2)从W中选择一个其距离值最小的顶点 vk,并加入到S中;(3)每往S中加入一个顶点vk后,就要对W中各个顶点的距离值进行一次修改。

若加进vk做中间顶点,使<v1,vk> + <vk+vj>的值小于<v1,vj> 值,则用<v1,vk> + <vk+vj>代替原来vj 的距离值;(4)重复步骤2和3,即在修改过的W中的选距离值最小的顶点加入到S 中,并修改W中的各个顶点的距离值,如此进行下去,知道S中包含图中所有顶点为之,即S=V。

最短路dijkstra算法详解

最短路dijkstra算法详解

最短路dijkstra算法详解最短路问题是图论中的一个经典问题,其目标是在给定图中找到从一个起点到其他所有节点的最短路径。

Dijkstra算法是解决最短路问题的一种常用算法,本文将详细介绍Dijkstra算法的原理、实现以及时间复杂度等相关内容。

一、Dijkstra算法的原理Dijkstra算法是一种贪心算法,其基本思想是从起点开始,逐步扩展到其他节点。

具体而言,Dijkstra算法通过维护一个集合S来记录已经找到了最短路径的节点,以及一个数组dist来记录每个节点到起点的距离。

初始时,S集合为空,dist数组中除了起点外所有节点都被初始化为无穷大。

接下来,重复以下步骤直到所有节点都被加入S集合:1. 从dist数组中选择距离起点最近的未加入S集合的节点u;2. 将u加入S集合;3. 更新与u相邻的未加入S集合的节点v的距离:如果从起点出发经过u可以得到更短的路径,则更新v对应位置上dist数组中存储的值。

重复以上步骤直至所有节点都被加入S集合,并且dist数组中存储了每个节点到起点的最短距离。

最后,根据dist数组中存储的信息可以得到起点到任意节点的最短路径。

二、Dijkstra算法的实现在实现Dijkstra算法时,需要使用一个优先队列来维护未加入S集合的节点,并且每次从队列中选择距离起点最近的节点。

由于C++标准库中没有提供优先队列,因此需要手动实现或者使用第三方库。

以下是一个基于STL堆实现的Dijkstra算法代码示例:```c++#include <iostream>#include <vector>#include <queue>using namespace std;const int INF = 0x3f3f3f3f;vector<pair<int, int>> adj[10001];int dist[10001];void dijkstra(int start) {priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;pq.push(make_pair(0, start));dist[start] = 0;while (!pq.empty()) {int u = pq.top().second;pq.pop();for (auto v : adj[u]) {if (dist[u] + v.second < dist[v.first]) {dist[v.first] = dist[u] + v.second;pq.push(make_pair(dist[v.first], v.first));}}}}int main() {int n, m, start;cin >> n >> m >> start;for (int i = 1; i <= n; i++) {dist[i] = INF;}for (int i = 1; i <= m; i++) {int u, v, w;cin >> u >> v >> w;adj[u].push_back(make_pair(v, w));}dijkstra(start);for (int i = 1; i <= n; i++) {if (dist[i] == INF) {cout << "INF" << endl;} else {cout << dist[i] << endl;}}return 0;}```以上代码中,adj数组用于存储图的邻接表,dist数组用于存储每个节点到起点的最短距离。

第三节 最短路问题

第三节 最短路问题

作业
195页
习题8
8.4题
( X , X ) { (V1 ,V4 ) ,(V2 ,V4 ) ,(V5 ,V4 ) ,(V5 ,V9 )} 1、 2、K14 K 24 8 K54 5 3 8 K59 1 3 4
3、 (V5 ,V9 ) V9 ( 4 ,
5)
第五轮: V1 (0,0) V2 (2,1) V5 (3,2) V9 (4,5) V7 (7,9) 1、 ( X , X ) { (V1 ,V4 ) ,(V2 ,V4 ) ,(V5 ,V4 ),(V9 ,V6 ),(V9 ,V7 ),(V9 ,V8 )} 2、 K14 K24 K54 8 3、 (V9 ,V7 ) V7 ( 7 ,
V1
(i , i )
V2
5
7
1
V4
6
2 2
V3
1
V5
第三步: 找出第二步中 K ij 最小的那条弧,给它的终 点以标号
(V1 ,V3 ) V3 (2,1)
8
如果有几个 K ij 都取最小值,就同时标号
以后每一轮都重复第二轮的三个步骤, 从而使某个顶点获得标号; 当终点获得标号后,计算结束; 然后逆向追踪获得最短路.
( X , X ) { (V1 ,V4 ) ,(V2 ,V4 ) ,(V5 ,V4 ) ,(V5 ,V9 )} 1、 2、K14 K 24 8 K54 3 5 8 K59 3 1 4
3、 (V5 ,V9 ) V9 ( 4 ,
5)
第三轮: V1 (0,0) V2 (2,1) V5 (3,2)
9)
1)
V4 (8,1) V1 V2 (2,1) V5 (3,2) V9 (4,5) V7 (7,9) V6 (10,9)

(完整)Dijkstra算法的流程图

(完整)Dijkstra算法的流程图

Dijkstra算法的流程图需求和规格说明:Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低.算法本身并不是按照我们的思维习惯——求解从原点到第一个点的最短路径,再到第二个点的最短路径,直至最后求解完成到第n个点的最短路径,而是求解从原点出发的各有向路径的从小到大的排列,但是算法最终确实得到了从原点到图中其余各点的最短路径,可以说这是个副产品,对于算法的终结条件也应该以求得了原点到图中其余各点的最短路径为宜.清楚了算法的这种巧妙构思后,理解算法本身就不是难题了.实现注释:想要实现的功能:Dijkstra算法是用来求任意两个顶点之间的最短路径。

在该实验中,我们用邻接矩阵来存储图。

在该程序中设置一个二维数组来存储任意两个顶点之间的边的权值。

用户可以将任意一个图的信息通过键盘输入,让后在输入要查找的两个顶点,程序可以自动求出这两个顶点之间的最短路径.已经实现的功能:在该实验中,我们用邻接矩阵来存储图。

在该程序中设置一个全局变量的二维数组,用它来存储任意两个顶点之间的边的权值。

然后通过最短路径的计算,输入从任意两个顶点之间的最短路径的大小。

用户手册:对于改程序,不需要客户进行什么复杂的输入,关键是用来存放图的任意两个顶点之间的边的权值的二维数组的初始化,即将要通过Dijkstra算法求最短路径的图各条边的权值放入二维数组中。

这样程序就可以自动的计算出任意两个顶点之间的最短路径并且进行输出.设计思想:s为源,w[u,v] 为点u 和v 之间的边的长度,结果保存在 dist[]初始化:源的距离dist[s]设为0,其他的点距离设为无穷大,同时把所有的点状态设为没有扩展过。

循环n-1次:1. 在没有扩展过的点中取一距离最小的点u,并将其状态设为已扩展.2. 对于每个与u相邻的点v,如果dist[u] + w[u,v] < dist[v],那么把dist [v]更新成更短的距离dist[u] + w[u,v]。

最短路算法总结---单源最短路径(SSSP)

最短路算法总结---单源最短路径(SSSP)

最短路算法总结---单源最短路径(SSSP)众所周知,最短路算法在⽐赛中占有相当部分的分值在⼤多数情况下,甚⾄使⽤并⾮最佳的算法也可以的得到相当⼤部分的分数。

以下选⾃书中核⼼内容,是竞赛⽣要熟练掌握且清晰理解的⼏种最基本算法。

(全部化为有向图做,双向边就化为两条单向边,恩,就这样操作)以下所有讨论不考虑环,全部INF处理,请悉知。

⼀.Dijkstra算法(贪⼼)(O(n^2))(效率⼀般,但相当可做)(边权⾮负,否则。

qwq)1.dist[1]=0 ,其余 dist = INF->2.找出⼀个未标记,dist[x]最⼩的节点x,标记x。

->3.扫描节点x的所有出边(x,y,z),if (dist[y]>dist[x]+z ) dist[y]=dist[x]+z (这是这个最基本的算法的核⼼语句,具体可想象三⾓形三边关系)。

(注意这⾥边权为负数的话,那么我们2中最先选择出的起点就不⼀定最⼩了,那万⼀以后跑出来个负边,全局都会受影响,那咱还贪个啥⼼,还跑个啥Dijkstra)4.重复2-3直到全部点都被标记(233要是所有点⾛的线路都试过了,没有答案你来打我啊)⼆.Bellman-Ford算法(O(nm))(我不咋⽤,但这个是SPFA的原型)->1.扫描所有边(x,y,z),if (dist[y]>dist[x]+z)dist[y]=dist[x]+z (我没看错吧?我把上⽂抄了下来?没错,⼏种算法的基本套路是⼀样的)(但要注意,这⾥不同的是这⾥Bell-ford的2并⾮像Dijkstra那样要求对所有点扫描,⽽仅仅是某⼀部分。

)(为神魔呢?这是样做有道理的。

证明:若⼀张有向图的⼀条边满⾜三⾓形不等式,即dist[y]<=dist[x]+z,那么所有这样的边连起来的⼀条路肯定最短啦,⼲嘛还要把所有边都跑⼀边呢,这样就剪掉很多不必要去扫的边)2.重复,直到1那家伙扫完(即基于三⾓不等式的关系下不再发⽣任何更新)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
3 10
1 2
2
v1
2
8
4 2 4
v3
6
v5
D ( 0) D
最短路问题在图论应用中处于很重要的地位, 下面举两个实际应用的例子。 例1 设备更新问题 某工厂使用一台设备,每年年初工厂要作出决定: 继续使 用旧的还是购买新的?如果继续使用旧的, 要付维修费;若要购买 一套新的,要付购买费。试 确定一个5年计划,使总支出最小. 若已知设备在各年的购买费,及不同机器役龄时的 残值与维修费,如表所示.
给 (v1 , v5 ) 划成彩线。
59 40 28 30
21
v1 (0)

12
v2 (12)

19 13
v3 (19)14 20
v4 (28) 15
29

15 v5 (40)
22

v6

41
k16 , k26 , k36 , k46 , k56 } ⑹ min{ min{ 59,53,49,50,55} 49
min{ k24 , k25 , k34 , k35} min{ 9,8,10,13} 8
① 给 (v2 , v5 ) 划成粗线。
② 给 v5 标号(8)。 ③ 划第4个弧。
v2 (4)
4
5
4
v4(9)
7
9
5
v6
1
v1 (0)


6

4
5
v8
1
v3(6)
7
v5 (8)

6

v7
5)接着往下考察,有四条路可走:(v2 , v4 ), (v3 , v4 ), (v5 , v6 ), (v5 , v7 ). 可选择的最短路为
vs , vt 为图中任意两点,求一条道路 ,使它是从 v s 到
vt 的所有路中总权最小的路。即:
L( )
最小。
( vi , v j )
l
ij
最短路算法中1959年由 Dijkstra (狄克斯特洛)提出的
算法被公认为是目前最好的方法,我们称之为 Dijkstra 算 法。下面通过例子来说明此法的基本思想。 条件:所有的权数 lij 0 思路:逐步探寻。
年底)。
59 40 28 30
21
v1
12
v2
19 13
20
v3 14
29
v4 15
22
v5
15
v6
41
边 (vi , v j ) 上的数字表示第i年初购进设备,一直使用到第j年 初所需支付的购买费、维修的全部费用(可由表8-2计算得
到)。
这样设备更新问题就变为:求从 v1 到 v6 的最短路问题.
59 40 28 30
21
v1 (0)

12
v2 (12)

19 13
v3 (19)14 20
v4 (28) 15
29

15 v5 (40)
22

v6

41

min{k15 , k16 , k25 , k26 , k35 , k36 , k45 , k46 } min{40,59,41,43,35,49,43,50} 40
min{ k24 , k34 , k56 , k57 } min{ 9,10,13,14} 9
① 给 (v2 , v4 ) 划成粗线。 ② 给 v4 标号(9)。 ③ 划第5个弧。
v2 (4)
4
5
4
v4(9)
7
9
5
v6 (13)
1
v1 (0)


6

4
5
v8
1
v3(6)
7
v5 (8)

6
⑤ ⑥
① 同时给 (v5 , v7 ), 划成粗线。
② 分别给
标号(14)。
v2 (4)
4
5
4
v4(9)
7
9
5
v6 (13)
1
v1 (0)
6
4
5
v8 (14)
1
v3(6)
7
v5 (8)
6
v7 (14)
最后,从 v8 逆寻粗线到 v1 ,得最短路:
v1 v2 v5 v6 v8
长度为14。
最短路问题的两个应用
给 (v4 , v6 )划线。
v3 (20)
20 25
60 20
v4 (0)
18
30
v5
v1
30
v2 15 v6 (18) 15
v7

min{ k43 , k45 , k63 , k62 , k67 } min{ 20,30,43,33,33} 20
给 v3 标号20。 给 (v4 , v3 ) 划线。
lij 当 (vi , v j ) E d ij 其他
算法基本步骤为: ⑴ 输入权矩阵
D(0) D.
v2

v1 v2 v3 v4 v5 v1 0 v2 5 v3 2 v4 2 v5
0 10 2 3 0 2 8 6 0 4 2 4 4 0 5 1 2
v3 (20)
20 25
15
60 20
v4 (0)
18
30
v5 (30)
v1 (60)
30
v2 (33)
v6 (18) 15
v7 (33)

min{ k21} min{ 63} 63
给 v1 标号63。 给 (v2 , v1 ) 划成彩线。 其它计算结果见下表:
小区号
v1 v2 v3 v4 v5 v6 v7
项目 购买费 维修费 残值
第 1年 11 5 4
第 2年 12 1-2 6 3
第 3年 13 2-3 8 2
第 4年 14 3-4 11 1
第 5年 14 4-5 18 0
机器役龄 0-1
解:把这个问题化为最短路问题。 用点 vi 表示第i年初购进一台新设备,虚设一个点 v6 ,表示第 5年底。 边 表示第i年购进的设备一直使用到第j年初(即第j-1
给 (v3 , v6 ) 划成彩线。 计算结果:最短路
v1 v3 v6
59 40 28 30
21
v1 (0)

12

v2 (12)
19 13
v3 (19)14 20
v4 (28) 15
29

15 v5 (40)
22

v6

41
最短路路长为49。 即:在第一年、第三年初各购买一台新设备为最优决策。 这时5年的总费用为49。
v2 (4)
4
5
4
v4
7
9
5
v6
1
v1 (0)


6
4
5
1
v8
v3(6)

7
v5
6
v7
3)接着往下考察,有三条路可走:(v1 , v3 ), (v2 , v4 ), (v2 , v5 ).
可选择的最短路为
min{ k13 , k24 , k25} min{ l13 , l12 d24 , l12 d25} min{ 6,4 5,4 4} 6
v3 (20)
20 25
15
60 20
v4 (0)
18
30
v5 (30)
v1
30
v2 (33)
v6 k32 , k62 , k67 } min{ 30,80,40,33,33} 30
给 v5 标号30。 给 (v4 , v5 ) 划线。
60 30 40 33 63 15 0
48
63
由于 D(v6 ) 48 最小,所以医院应建在 v6 ,此时离医院最 远的小区 v5 距离为48。
Floyd (佛洛伊德)算法 这里介绍得Floyd(1962年)可直接求出网络中任意两
点间的最短路。
令网络中的权矩阵为 D (dij )nn , 其中
2)从 v1 出发,只有两条路可走 (v1 , v2 ), (v1 , v3 ) ,其距离为
l12 4, l13 6.
v2 (4)
4
5
4
v4
7
9
5
v6
1
v1 (0)


6
4
5
v8
1
v3
7
v5
6
v7
可能最短路为
min{ k12 , k13} min{ l12 , l13} min{ 4,6} 4
v5
v4
18
30
v2 15
v6
15

v7
D(v1 ) max{ d1 , d2 ,d7 }
再求
min{D(v1 ), D(v2 ),, D(v7 )}
即为所求。 比如求 D(v4 )
v3
20 25 60 20
v4 (0)
18
30
v5
v1
30
v2 15 v6 (18) 15
v7

v4(0)
k43 , k45 , k46 } min{ 20,30,18} 18 ⑵ min{
v3 (20)
20 25
15
60 20
v4 (0)
18
30
v5 (30)
v1
30
相关文档
最新文档