圆柱凸轮设计结构_圆柱凸轮结构原理

合集下载

圆柱凸轮 (2)

圆柱凸轮 (2)

圆柱凸轮圆柱凸轮是一种机械部件,常用于将旋转运动转换为直线或其他运动形式。

它通常由一个圆柱形的轴和一个或多个凸出的部分构成。

圆柱凸轮的设计和使用非常广泛,在许多不同的领域中都有应用。

结构和工作原理圆柱凸轮的基本结构包括轴和凸出的部分。

轴是一个长圆柱体,可以通过轴承或其他支撑方式固定在机械系统中。

凸出的部分通常位于轴的一端,由于形状的不同可以实现不同的运动。

当轴通过旋转运动时,凸出的部分与其他部件接触并产生力。

这种力的大小和方向取决于凸出部分的形状和轴的运动。

通过合理设计凸出部分的形状,可以实现转动时的线性推进、旋转或其他运动形式。

发动机圆柱凸轮在发动机中扮演着重要的角色。

在内燃机中,凸轮轴通过凸轮来控制气门的开启和关闭。

气门的开关时间和幅度对于发动机的性能和效率有重要影响。

通过设计不同形状和位置的凸轮,可以实现发动机的不同运行模式和特性。

机械运动圆柱凸轮也广泛应用于机械运动系统中。

例如,凸轮可以用于传动系统中的连杆机构,将旋转运动转换为直线运动。

,圆柱凸轮还可以被用作摆线机构的驱动部件,使其实现复杂的轨迹运动。

自动化和圆柱凸轮在自动化和领域中也有重要应用。

例如,凸轮可以用于控制机械手臂的姿态和运动轨迹。

通过调整凸轮的形状和大小,可以实现机械手臂的精确控制和灵活性。

除了上述应用领域外,圆柱凸轮还被广泛用于其他机械系统中。

例如,它们可以用于纺织机械、印刷机械、制药机械等行业中的关键部件。

设计考虑因素在设计圆柱凸轮时,有几个重要的考虑因素需要考虑:凸出部分的形状凸出部分的形状决定了凸轮的运动特性。

根据具体的应用需求,可以选择不同形状的凸出部分,例如圆形、矩形、楔形等。

不同的形状对于传递力量和产生特定运动形式具有不同的效果。

凸轮的尺寸和轮廓凸轮的尺寸和轮廓直接影响运动的幅度和速度。

在设计时需要考虑凸轮与其他部件的配合和接触。

合理的尺寸和轮廓设计可以确保凸轮的稳定和可靠性。

材料选择和加工工艺凸轮通常要承受较大的负荷和磨损,需要选择合适的材料和加工工艺。

凸轮机构工作原理

凸轮机构工作原理

凸轮机构工作原理凸轮机构是一种常见的机械传动装置,它通过凸轮的运动来驱动其他机械部件进行工作。

凸轮机构广泛应用于各种机械设备中,如发动机、机床、自动化生产线等。

那么,凸轮机构的工作原理是怎样的呢?接下来,我们将详细介绍凸轮机构的工作原理。

首先,我们来了解一下凸轮的结构。

凸轮通常是一个圆柱形的零件,它的轮廓呈现出不规则的形状,可以是圆形、椭圆形、心形等。

凸轮的轮廓决定了它在运动过程中对其他机械部件的作用方式。

凸轮通常与从动件通过接触或者间接作用的方式相连,通过凸轮的运动来带动从动件做出相应的运动。

凸轮机构的工作原理主要是依靠凸轮的运动来实现从动件的运动。

当凸轮转动时,凸轮的轮廓会推动从动件做出相应的运动。

这种运动方式可以是直线运动、旋转运动、摆动运动等,具体取决于凸轮的轮廓形状和从动件的设计。

通过合理设计凸轮的轮廓和从动件的结构,可以实现各种复杂的运动方式,从而满足不同机械设备的工作需求。

凸轮机构的工作原理还涉及到凸轮的运动规律。

凸轮的运动规律可以是简单的匀速运动,也可以是复杂的变速运动甚至是非圆周运动。

不同的运动规律将直接影响到从动件的运动方式和速度。

在实际应用中,我们需要根据具体的工作需求来设计凸轮的运动规律,以实现最佳的工作效果。

除此之外,凸轮机构的工作原理还包括凸轮与从动件的传动方式。

凸轮与从动件之间的传动方式可以是直接接触传动,也可以是间接传动,例如通过连杆、齿轮等传动装置。

不同的传动方式将直接影响到凸轮机构的工作效率、稳定性和寿命。

因此,在设计凸轮机构时,需要充分考虑凸轮与从动件的传动方式,以确保机械设备的正常运行。

总的来说,凸轮机构的工作原理是基于凸轮的运动来实现从动件的运动。

通过合理设计凸轮的轮廓、运动规律和传动方式,可以实现各种复杂的机械运动,从而满足不同机械设备的工作需求。

希望通过本文的介绍,读者对凸轮机构的工作原理有了更深入的了解。

机械原理大作业凸轮机构设计

机械原理大作业凸轮机构设计

机械原理大作业凸轮机构设计一、凸轮机构概述凸轮机构是一种常见的传动机构,它通过凸轮的旋转运动,带动相应零件做直线或曲线运动。

凸轮机构具有结构简单、运动平稳、传递力矩大等优点,在各种机械设备中得到广泛应用。

二、凸轮基本结构1. 凸轮凸轮是凸起的圆柱体,通常安装在主轴上。

其表面通常为圆弧形或其他曲线形状,以便实现所需的运动规律。

2. 跟随件跟随件是与凸轮配合的零件,它们通过接触面与凸轮相互作用,并沿着规定的路径做直线或曲线运动。

跟随件可以是滑块、滚子、摇臂等。

3. 连杆连杆连接跟随件和被驱动部件,将跟随件的运动转化为被驱动部件所需的运动。

连杆可以是直杆、摇杆等。

三、凸轮机构设计要点1. 几何参数设计设计时需要确定凸轮半径、角度和曲率半径等参数,这些参数的选择将直接影响凸轮机构的运动规律和性能。

2. 运动规律设计根据被驱动部件的运动要求,选择合适的凸轮曲线形状,以实现所需的运动规律。

3. 稳定性设计在设计凸轮机构时,需要考虑其稳定性。

例如,在高速旋转时,可能会发生跟随件脱离凸轮或者产生振动等问题,因此需要采取相应措施提高稳定性。

4. 材料和制造工艺设计在材料和制造工艺方面,需要考虑凸轮机构所承受的载荷和工作环境等因素,选择合适的材料和制造工艺。

四、几种常见凸轮机构及其应用1. 摇臂式凸轮机构摇臂式凸轮机构由摇臂、连杆和被驱动部件组成。

它通常用于实现直线运动或旋转运动,并且具有结构简单、运动平稳等优点。

摇臂式凸轮机构广泛应用于各种机械设备中,如发动机气门控制系统、纺织设备等。

2. 滑块式凸轮机构滑块式凸轮机构由凸轮、滑块、连杆和被驱动部件组成。

它通常用于实现直线运动,并且具有结构简单、运动平稳等优点。

滑块式凸轮机构广泛应用于各种机械设备中,如冲压设备、印刷设备等。

3. 滚子式凸轮机构滚子式凸轮机构由凸轮、滚子、连杆和被驱动部件组成。

它通常用于实现圆弧形运动,并且具有运动平稳、传递力矩大等优点。

滚子式凸轮机构广泛应用于各种机械设备中,如汽车发动机气门控制系统等。

圆柱凸轮机构

圆柱凸轮机构

圆柱凸轮机构
圆柱凸轮机构是一种常用的运动机构,其主要作用是将旋转运动转换为直线运动或者将直线运动转换为旋转运动。

它由凸轮、摆杆、从动件和固定件组成,其中凸轮是主动件,摆杆和从动件是运动副,固定件则是支撑机构的固定部分。

圆柱凸轮机构的原理是利用凸轮的凸起部分与摆杆相接触,使得摆杆在凸轮的作用下做直线运动。

凸轮的凸起部分与从动件相接触,从而使得从动件在凸轮的作用下做旋转运动。

通过这种方式,圆柱凸轮机构可以实现各种不同的运动形式,并且具有结构简单、制造成本低、使用寿命长等优点。

圆柱凸轮机构的应用十分广泛,可以用于各种机械装置中,例如汽车发动机、工业机器人、印刷机等。

其中最常见的应用是在汽车发动机中,圆柱凸轮机构被用来控制气门的开关,从而实现发动机的正常工作。

圆柱凸轮机构的设计和制造需要考虑许多因素,例如凸轮的形状、大小、材料等。

凸轮的形状直接影响机构的运动形式和性能,因此需要根据具体的应用需求进行设计。

凸轮的大小和材料则需要考虑机构的承载能力和使用寿命等因素,以确保机构的可靠性和稳定性。

除了设计和制造,圆柱凸轮机构的使用和维护也需要注意一些问题。

例如,在使用过程中需要定期检查凸轮的磨损情况,及时更换磨损严重的凸轮,以避免机构的失效。

此外,机构的润滑也需要注意,应根据机构的使用条件选择适当的润滑方式和润滑剂,以确保机构的
正常运转。

总之,圆柱凸轮机构是一种常用的运动机构,其应用广泛,具有结构简单、制造成本低、使用寿命长等优点。

在设计、制造、使用和维护过程中,需要考虑许多因素,以确保机构的性能和可靠性。

凸轮机构的组成及工作原理

凸轮机构的组成及工作原理

凸轮机构的组成及工作原理
凸轮机构是一种常用的机械传动装置,主要由凸轮、从动件和传动件组成。

凸轮是核心部分,通常为圆柱形,轮廓上有一或多个凸起的凸轮面。

从动件是通过凸轮的运动来驱动的零件,例如推动阀门或杆件的运动。

传动件则是连接凸轮和从动件的中间件,通常是凸轮轴、滚子或摆杆。

凸轮机构的工作原理是基于凸轮的运动带动从动件进行一定的运动。

凸轮被旋转,凸起的凸轮面逐渐接触从动件,从而使从动件受到推动。

凸轮的轮廓可以根据需要设计成各种形状,以实现不同的运动要求,例如往复、摆动或旋转运动。

在凸轮机构中,凸轮的运动规律直接影响到从动件的运动特性。

通过改变凸轮轮廓的形状和凸轮的旋转速度,可以实现从动件的不同速度和加速度。

此外,凸轮的运动规律还可以通过调整凸轮轴的位置或改变凸轮的形状来实现从动件的倒转、停留或逆向运动。

凸轮机构具有结构简单、运动可靠、传动效率高的优点。

它广泛应用于各种机械设备中,例如内燃机的进气和排气阀控制、工业机械的动作传动以及自动化生产线的运动控制等领域。

总之,凸轮机构是一种基于凸轮运动的机械传动装置,通过凸轮的运动来驱动从动件的运动。

它的组成部分包括凸轮、从动件和传动件。

凸轮机构的工作原理是通过改变凸轮的形状和运动规律来实现从动件的特定运动要求。

这种机构具有结构简单、运动可靠、传动效率高等优点,在各个领域都有广泛的应用。

机械原理第9章凸轮机构及其设计

机械原理第9章凸轮机构及其设计

第二十一页,编辑于星期日:十四点 分。
②等减速推程段:
当δ =δ0/2 时,s = h /2,h/2 = C0+C1δ0/2+C2δ02/4 当δ = δ0 时,s = h ,v = 0,h = C0+C1δ0+C2δ02
0 = ωC1+2ωC2δ ,C1=-2 C2δ0 C0=-h,C1= 4h/δ0, C2=-2h/δ02
如图所示,选取Oxy坐标系,B0 点为凸轮廓线起始点。当凸轮转过δ 角度时,推杆位移为s。此时滚子中 心B点的坐标为
x (s0 s) sin e cos
y
(s0
s) cos
A7
C8 A6 C7
w
A8
-w
A9
C9 B8 B9 B7 r0
C10
B12100 ° B0
O
B1 a B2
C1 L C2φ1φ0
A10 A0
φ
Φ
o
2
1
2 3 456
180º
7 8 9 10
60º 120º
δ
(1)作出角位移线图;
(2)作初始位置;
A5
C6
B6 B1580°B4
C4
C5
φ3
φC23
A1
↓对心直动平底推杆盘形凸 轮机构
↑偏置直动尖端推杆盘形凸轮机 构
第十一页,编辑于星期日:十四点 分。
↑尖端摆动凸轮机构
↓平底摆动凸轮机构
↑滚子摆动凸轮机构
第十二页,编辑于星期日:十四点 分。
(4)按凸轮与从动件保持接触的方式分
力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持接
触的
此外,还要考虑机构的冲击性能。

机械原理-凸轮机构及其设计

机械原理-凸轮机构及其设计

第六讲凸轮机构及其设计(一)凸轮机构的应用和分类一、凸轮机构1.组成:凸轮,推杆,机架。

2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。

缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。

二、凸轮机构的分类1.按凸轮的形状分:盘形凸轮圆柱凸轮2.按推杆的形状分尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。

易遭磨损,只适用于作用力不大和速度较低的场合滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。

不能与凹槽的凸轮轮廓时时处处保持接触。

平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。

不能与凹槽的凸轮轮廓时时处处保持接触。

3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。

(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。

4.根据凸轮与推杆接触方法不同分:(1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。

①等宽凸轮机构② 等径凸轮机构③共轭凸轮(二)推杆的运动规律一、基本名词:以凸轮的回转轴心O 为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0 称为基圆半径。

推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。

推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。

回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。

休止:推杆处于静止不动的阶段。

推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角二、推杆常用的运动规律1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。

圆柱凸轮机构设计结构计算

圆柱凸轮机构设计结构计算

圆柱凸轮机构设计结构计算一、圆柱凸轮的几何关系计算在设计圆柱凸轮机构时,首先需要计算凸轮的几何关系。

圆柱凸轮的主要几何参数有凸轮高度、凸轮外径和跟随者的运动轨迹等。

1.凸轮高度计算:凸轮高度是指凸轮的周向高度,其取决于从动件的运动特性和受力情况。

一般情况下,凸轮高度应保证从动件在整个运动过程中不脱离凸轮。

2.凸轮外径计算:凸轮外径是指凸轮的圆周长度。

凸轮外径与凸轮半径和凸轮的周向高度有关。

凸轮外径的计算需要根据从动件的运动轨迹来确定,可以通过绘制凸轮的运动曲线图来确定凸轮外径。

3.跟随者的运动轨迹计算:跟随者的运动轨迹是指从动件在凸轮作用下所运动的路径。

跟随者的运动轨迹是由凸轮外径和凸轮的几何形状决定的。

可以通过绘制凸轮的运动曲线图来确定跟随者的运动轨迹。

二、从动件的运动特性计算在设计圆柱凸轮机构时,还需要计算从动件的运动特性,包括从动件的角速度、角加速度和运动轨迹等。

1.从动件的角速度计算:从动件的角速度是指从动件单位时间内绕凸轮中心旋转的角度。

从动件的角速度可以通过凸轮的转动速度和凸轮上的点的位置关系来计算。

2.从动件的角加速度计算:从动件的角加速度是指从动件单位时间内角速度的变化率。

从动件的角加速度可以通过凸轮的转动加速度和凸轮上点的位置关系来计算。

3.从动件的运动轨迹计算:从动件的运动轨迹是指从动件在凸轮作用下所运动的路径。

从动件的运动轨迹可以通过凸轮的几何形状和转动角度来计算。

三、受力计算在设计圆柱凸轮机构时,需要考虑凸轮和从动件的受力情况,以确保机构的安全稳定运行。

1.凸轮的受力计算:凸轮在工作过程中受到从动件的压力和惯性力的作用。

凸轮的受力计算需要考虑凸轮的材料强度和从动件的受力情况。

2.从动件的受力计算:从动件在与凸轮接触的过程中受到凸轮的压力和惯性力的作用。

从动件的受力计算需要考虑从动件的材料强度和凸轮的几何形状。

以上是圆柱凸轮机构设计结构计算的基本内容。

在实际应用中,还需要考虑其他因素,如凸轮的润滑和冷却等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱凸轮设计结构_圆柱凸轮结构原理
凸轮是一种具有曲线轮廓活凹槽的构件,圆柱凸轮的设计结构也是如此,其凸轮机构由凸轮、从动检和几家三部分组成。

随着市场的需求量逐渐增大,想要选购圆柱凸轮的朋友也想知道圆柱凸轮哪家好,因为他们不知道圆柱凸轮的设计机构自己结构原理究竟是怎样的,随着人们生产水平的提高,对于产品质量要求越来越高,对于圆柱凸轮设计机构怎样才能保质保量呢,让我们一起认识下它的机构原理究竟是怎么回事吧。

#详情查看#【圆柱凸轮】
【圆柱凸轮设计结构】
圆柱凸轮分割器此款凸轮分割器可承受较大负载,BT系列机种之尺寸设计特性与凸缘型功能相似,于驱动运转上可承受超大轴向负载及垂直径向压力,在输出端有一凸起固定盘面及大孔径空心轴,可搭配设置动态、静态自动化周边设备。

可将动力源之电、油、气等管路置于空心孔内,此系列机种广泛应用于重负载、直结自动化设备之各类机构及产业机械等,作同步自动化间歇驱动。

要准确测量送芯凸轮,主要需解决以下问题:
1、如何准确建立工件坐标系,在空间扫描圆柱凸轮;
2、如何测量计算以进行空间修正,获得圆柱凸轮表面实际点数据;
3、如何在平面内进行理论曲线与实际曲线的比较。

建立工件坐标系,扫描圆柱凸轮通过对圆柱凸轮的分析,此凸轮不像平面凸轮那样,只在某一个平面内扫描曲线,而圆柱凸轮的轮廓是复杂的空间曲面,扫描测量无法在某一个平面内完成,因此不适合建立直角坐标系,而要根据其特点建立极坐标系,经过反复研读测量软件说明书,深入分析各探测点类型含意,终实现了探针在给定直径上进行圆柱扫描。

【圆柱凸轮结构原理】
圆柱凸轮主要由凸轮的回转运动或往复运动推动从动件作规定往复移动或摆动的机构。

凸轮具有曲线轮廓或凹槽,有盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。

从动件与凸轮作点接触或线接触,有滚子从动件
平底从动件和从动件等。

从动件能与任意复杂的凸轮轮廓保持接触,可实现任意运动,但容易磨损,适用于传力较小的低速机构中。

圆柱凸轮是由凸轮,从动件和机架三个基本构件组成的高副机构。

凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。

与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一般做往复直线运动或摆动,称为从动件。

为了使从动件与凸轮始终保持接触,可采用弹簧或施加重力。

具有凹槽的凸轮可使从动件传递确定的
运动,为确动凸轮的一种。

般情况下凸轮是主动的,但也有从动或固定的凸轮。

多数凸轮是单自由度的,但也有双自由度的劈锥凸轮。

圆柱凸轮结构紧凑,适用于要求从动件作间歇运动的场合。

它与液压和气动的类似机构比较,运动可靠,因此在自动机床、内燃机、印刷机和纺织机中获得广泛应用。

相关文档
最新文档