梁板壳的几何大变形_从近似的非线性理论到有限变形理论

合集下载

生物软组织力学特性及超弹性模型

生物软组织力学特性及超弹性模型

生物软组织力学特性及超弹性模型生物软齟织力学待性属于生物粘弹性固体力学的研究范峙,己广泛应用于生狗怵的基础研允.如机肉讥皮肤国' 心肌阿及布横阿等.为ia袒工程握供了大盘的生物力学数据.宙于生命体结构与功能的复杂性和特殊性.便软组织在变形时表现岀各向杲性、非线性*粘弹性,墜性等特点(珂・其力学模型主要有粘弹性模型利趙弹性摸型.粘弹件锁魁吧研朮生物轮组织的…个早期榄型*理论成筋,c广泛应用到肌罔、闸帯、柏顺、戌|庆、粘贬朋血倚竽轶殂织的生韌力学研咒」山同吋•诫翦地粘押件理论研兗为超禅性模型的发展幵拓了思齬・尽管软组织的力学行为表现出与时间相黄的特性•但崔好应变卒范鬧内(即准静态条件卜[・展魅可将其觇为超弹性体-自上个世紀80年代以来.各圜学者対生物软组织的翘艸峙和为进苗了广泛地研究・程理论利临氐研冗方而血取得了氏足地逬燧・本章首先介细主物软组织力学性能的研宛冇法和歆组织变形时的力学特征.在介绍趙弹性应变能函数王曲,肯龙从连续介质力学出狀.介貂有限变形理论「在这一部分渓及有限变形时的桶种应山/陶变表达方式;隹介绍粗弹性模型吋.就简单的荐向局性应变能碉毀开始・邃歩引入横向同性超弹性模塑・最后提出前卿録腺准静歩轴向力学件能研託方江口因为木文卞要研究家殒前制艘腺在低疵变率下的撞忡力学忤施・故未研JE材料的粘弹杵櫃型.2 1生物软组织力学特性研究方法生樹软组织不冏于常见的金属或高聚物尊材料.其组织结构貝朵.力学ttttfiffi 处环境和实验方註的雖响较大,研覽具力学性醴的硏究方法構像篇考虫鞠理学与工凰学冇面的知HI.生物力学研眾方法主要包含以下儿个主要步悄问:(1)研眾宦砌須纵的i松在学和细观组织结构.以便于理W0FS对镇的几何构翹及对力学性能的滋响.(2)测定问趣屮涉及的M料或组织的力学性葩°在该却需屮・III/试样欣材不便、fj效试禅尺• f不足威试佯的离体狀态,塔加了确宦本构方程的难度,但可以枚为春晶的建立示构方用的粽学厢式,而把某此嚳筛鬲待牛.网实验卿俯定"(3)粮抿物理学基本定律和材科本构方程,推导岀微分方程或积分方程:⑷井清组织嶠肓府工作坏境.得到肖盘义的边界荼件;同时.粥解析圧或坡值法求解边界値何邂*⑸进存生理丈验.验证上述边界値问遞的解.在该步購中,釦必便实验与靂论相一魏・简華地说就绘幣戒拒同的假说;(6)将实验结果与相应的理论解进行对比.验证假设是否合理.求得本构方程:(7)探讨理论与丈验的实际应用。

非线性有限元法综述

非线性有限元法综述

非线性有限元法综述摘要:本文针对非线性有限元法进行综述,分别从UL列式及TL列式、CR列式、几何精确梁、壳理论三个方面介绍其分析思路和发展动态,旨在为相关学者提供一些思路参考。

关键词:几何非线性;UL列式;TL列式;CR列式;几何精确梁、壳理论1引言几何非线性是由于位置改变引起了结构非线性响应。

进行结构几何非线性分析,实质上就是要得到结构真实的变形与受力情况。

有限元方法是进行结构几何非线性分析的最成熟的方法,也是应用最广泛的分析方法.2非线性有限元法研究思路非线性有限元法主要指UL列式法、TL列式法、CR列式法和几何精确梁、壳理论等,它们有着基本相同的思路,即利用虚功原理建立平衡方程。

方程中充分考虑了非线性因素对结构应变和应力的影响,也就是将线性应变和非线性应变都代入到表达式中,然后确定单元的本构关系并选取合适的形函数,导出单元对应的弹性刚度矩阵和几何刚度矩阵,再选取合适的增量-迭代算法进行求解,由此就完成了结构的整个几何非线性分析求解过程。

非线性有限元法将结构的变形过程划分为三个主要阶段:C0状态、C1状态和C2状态,如图1所示。

图1 单元的变形C0状态是单元的初始状态,C1状态是单元受力变形后上一次处于平衡的状态;C2状态是单元的当前状态,也就是所求的状态。

2.1UL法和TL法研究思路UL法和TL法为几何非线性问题提供了新的分析思路。

这两种方法本质上没有很大区别,但是方程建立的参考状态有所不同。

完全拉格朗日法(TL法)是以结构变形前C0状态为参考建立平衡方程的,考虑结构从C0状态到C2状态之间的变形;而更新的拉格朗日法(UL法)以结构变形后C1状态为参考建立平衡方程的[2],考虑结构从C1状态到C2状态之间的变形。

两种拉格朗日法的主要形式如下:(1)TL列式(2)UL列式从上面两式可以看出:TL法和UL法的另一个不同是TL法的增量平衡方程中考虑了初位移矩阵的影响,而UL法则忽略了其影响,只考虑了弹性刚度矩阵和初应力矩阵的影响。

第二章:弹性力学基本理论及变分原理

第二章:弹性力学基本理论及变分原理

第二章 弹性力学基本理论及变分原理弹性力学是固体力学的一个分支。

它研究弹性体在外力或其他因素(如温度变化)作用下产生的应力、应变和位移,并为各种结构或其构件的强度、刚度和稳定性等的计算提供必要的理论基础和计算方法。

本章将介绍弹性力学的基本方程及有关的变分原理。

§2.1小位移变形弹性力学的基本方程和变分原理在结构数值分析中,经常用到弹性力学中的定解问题及与之等效的变分原理。

现将它们连同相应的矩阵形式的张量表达式综合引述于后,详细推导可参阅有关的书籍。

§2.1.1弹性力学的基本方程的矩阵形式弹性体在载荷作用下,体内任意一点的应力状态可由6个应力分量表示,它们的矩阵表示称为应力列阵或应力向量111213141516222324252633343536444546555666x x y y z z xy xy yz yz zx zx D D D D D D D D D D D D D D D D D D D D D σεσεσετγτγτγ⎧⎫⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭ (2.1.1) 弹性体在载荷作用下,将产生位移和变形,弹性体内任意一点位移可用3个位移分量表示,它们的矩阵形式为[]T u u v u v w w ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭(2.1.2)弹性体内任意一点的应变,可由6个应变分量表示,应变的矩阵形式为x y Tz xy z xy yz zx xy yz zx εεεσεεεγγγγγγ⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎡⎤==⎨⎬⎣⎦⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭(2.1.3)对于三维问题,弹性力学的基本方程可写成如下形式 1 平衡方程0xy x zx x f x y z τστ∂∂∂+++=∂∂∂ 0xy y zy y f xyzτστ∂∂∂+++=∂∂∂0yz zx zz f x y zττσ∂∂∂+++=∂∂∂ x f 、y f 和z f 为单位体积的体积力在x 、y 、z 方向的分量。

梁杆结构几何非线性有限元的数值实现方法

梁杆结构几何非线性有限元的数值实现方法

NUMERICAL IMPLEMENTATION OF GEOMETRICALLY NONLINEAR FINITE ELEMENT METHOD FOR BEAM STRUCTURES
CHEN Zheng-qing
(College of Civil Engineering, Hunan University, Changsha 410082, China)
= tσ ij + ∆∗T ij = ∆∗ Eij
(1) (2)
而它在 t+Δt 时刻柯西应变就等于其增量:
t + ∆t t Eij
式中, ∆ Eij 为:

∆∗ Eij = ∆∗ε ij + ∆∗ηij 1 ∆∗ε ij = (∆ui ,j + ∆u j ,i ) 2 1 ∆∗ηij = ∆uk ,i ∆uk ,j 2
———————————————
收稿日期:2013-05-01;修改日期:2014-03-06 基金项目:国家自然科学基金项目(91215302) 作者简介: 陈政清(1947―), 男, 湖南湘潭人, 教授, 博士, 湖南大学风工程研究中心主任, 主要从事结构振动与控制研究(E-mail: zqchen@).
(3) (4) (5)
44




E G [ t kαβ ]{∆qα } = {t+ ∆t Pβ − tψ β } + t kαβ
仍然假定变形体的应变增量是小应变,应 力应变增量关系可以记为:
(14) (15) (16)
′ ∆∗ε kl ∆∗T ij = Cijki
功增量方程如下: ′ = A3 ′ − A4 ′ A1′ + A2 式中:

欧拉伯努利梁理论

欧拉伯努利梁理论
就可得列均如g无关的弹性桁舉的控制方禹即jpfrflu2411m去万轉24屮抽谊性碘就可碍到桁臭的静力学平備力程為242对干均质的弹性带架剧去方程240牛的惯性项就可得到用也務表示的静力学乎囊方墓为243对于檀霰面面积为常慣a的杆上述方袈可写为这里ftfta是忤用在杆的柚向的外力15翼的方程如图29jof示
§9.2
若在梁的总变形(挠度)中■眄变形与弯曲变形相比较■前者可以略 去•则町对浹木辛柯梁理论作一些修正•可以设(9.1-5b)式中
这样・FsHO・这个假设的意义是:在谁未交形状态垂直F梁轴线的横截 面•在梁变形后仍保持为平面且垂直于变形后的梁轴线•这样•由(9.1-
5a)及(9.1-8a)式可得
若给定梁端的3(或FJ以及器(或M),則可得到方程(9.2-3)的惟一 解方程(9.2-2)、(9.2-3)是欧拉-伯努利梁模型,这疑以对这个问题 进行研究的数学家、力学家欧拉(1707—1783)和伯努利(1700—1782)的 名字命名的欧拉-伯努利梁理论以其形式简单.便于应用而在工程上被 广泛地采用,因此•这一理论在材料力学课程中冇详细的讨论.需要指出 的是.在历史上,先有欧拉・伯努利梁理论•它对于细长梁(£■*0,见图9-3)是正确的•在这种情况下,略去的变形,即假设梁只有 弯曲变形,而梁对于剪变形是完全刚件的.这样处理,不会产牛明显的谋 羞•对于粗短染(£井非很小),剪变形在渠的总变形(挠度)中右较大的 贡献.剪变形与弯曲变形相比洞者不能略去一因此.对片粗班梁必须采用 饮木辛柯梁模型进行计算.铁木辛柯梁理论是欧拉-伯努利梁理论的发 展.
例弹性基础梁
现应用欧拉-伯努利梁等敲面.两瑞简支•受均布栽荷/»。,弹性基础的刚性

有限元方法的发展及应用

有限元方法的发展及应用

有限元⽅法的发展及应⽤有限元⽅法的发展及应⽤摘要:有限元法是⼀种⾼效能、常⽤的计算⽅法。

有限元法在早期是以变分原理为基础发展起来的,所以它⼴泛地应⽤于以拉普拉斯⽅程和泊松⽅程所描述的各类物理场中。

⾃从1969年以来,某些学者在流体⼒学中应⽤加权余数法中的迦辽⾦法或最⼩⼆乘法等同样获得了有限元⽅程,因⽽有限元法可应⽤于以任何微分⽅程所描述的各类物理场中,⽽不再要求这类物理场和泛函的极值问题有所联系。

基本思想:由解给定的泊松⽅程化为求解泛函的极值问题。

1有限元法介绍1.1有限元法定义有限元法(FEA,Finite Element Analysis)的基本概念是⽤较简单的问题代替复杂问题后再求解。

它是起源于20世纪50年代末60年代初兴起的应⽤数学、现代⼒学及计算机科学相互渗透、综合利⽤的边缘科学。

有限元法的基本思想是将求解域看成是由许多称为有限元的⼩的互连⼦域组成,对每⼀单元假定⼀个合适的(较简单的)近似解,然后推导求解这个域总的满⾜条件(如结构的平衡条件),从⽽得到问题的解。

这个解不是准确解,⽽是近似解,因为实际问题被较简单的问题所代替。

由于⼤多数实际问题难以得到准确解,⽽有限元不仅计算精度⾼,⽽且能适应各种复杂形状,因⽽成为⾏之有效的⼯程分析⼿段。

有限元法最初应⽤在⼯程科学技术中,⽤于模拟并且解决⼯程⼒学、热学、电磁学等物理问题。

1.2有限元法优缺点有限元⽅法是⽬前解决科学和⼯程问题最有效的数值⽅法,与其它数值⽅法相⽐,它具有适⽤于任意⼏何形状和边界条件、材料和⼏何⾮线性问题、容易编程、成熟的⼤型商⽤软件较多等优点。

(1)概念浅显,容易掌握,可以在不同理论层⾯上建⽴起对有限元法的理解,既可以通过⾮常直观的物理解释来理解,也可以建⽴基于严格的数学理论分析。

(2)有很强的适⽤性,应⽤范围极其⼴泛。

它不仅能成功地处理线性弹性⼒学问题、费均质材料、各向异性材料、⾮线性应⽴-应变关系、⼤变形问题、动⼒学问题已及复杂⾮线性边界条件等问题,⽽且随着其基本理论和⽅法的逐步完善和改进,能成功地⽤来求解如热传导、流体⼒学、电磁场等领域的各类线性、⾮线性问题。

大挠度空间梁的静、动力学建模、分析与计算

大挠度空间梁的静、动力学建模、分析与计算
本文研究的对象是一空间大挠度梁结构,其非线性程度取决于其发生的非线性 位移的大小。很难具体的将其划分为强非线性系统或是弱非线性系统。而且由于梁 结构的连续性,其实际系统的惯性、弹性和阻尼等都是连续分布的,因此属于连续 系统或分布参数系统。要确定连续系统中无数个质点的运动形态需要无限多个广义 坐标,显然是不能将其作为简单的低维系统来处理的。在这种情况下,要获得梁的 动、静力学行为特性是很困难的,到目前为止还没有见到有关文献求解几何非线性 梁结构的精确理论解的方法。
综合以上文献的研究埘以看出,建模是基于Hamilton原理或者牛顿第二运动定 律,在考虑到电子大变形掰雩{超稿位移一应变韵鞯线镶菸盛保留撵瞧粱在弯曲变形 黠熬夸熬辫率瓣嚣绞篷磺翡肇疆上接导爨寒豹粱懿丈挠度运动凌力学徽分方程。~ 系列实验和实践表明,保留到二阶或者量阶非线性项的影响所建立的梁的大挠度送 嬲微分方程是瀵怒工程或麓装求豹。
1.2.1静力学方程的求解方法概述
对于大挠度梁结构来说,位移和应变之间的已经不再表示为线性关系。而且由 于梁结构的大挠度变形,位移和应变之间呈非线性关系,刚度矩阵也不再是常数矩 阵,而是单元位移的矩阵函数。几何非线性有限元是在传统方法的基础上,引入了
大挠度空间梁的静、动力学建模、分析与计算
应变与位移之间的几何非线性关系,然后再将系统动力学方程中的非线性项作’近 似变换,非线性项就可以表示为与节点位移有关的几何刚度矩阵㈣㈣,即
influence of the nonlinearity is obvious,the conclusion drawn from the present method is
same the
to the conclusion ofthe other correlative literatures。

非线性弹性力学

非线性弹性力学
1940年M.穆尼通过大量实验,提出某些类型的橡皮的弹性势函数表达式,从而把非线性弹性理论中难题之一 的弹性势函数的形式问题向前推进了一步,并证实橡皮是几乎不可压缩的材料,使它有了进一步和发展。
1948年R.S.里夫林在任意形式的贮能函数下,得到不可压缩弹性体的几个简单而重要问题的精确解。将它们 应用于橡胶制品,即使橡胶的伸长为原长的两三倍,精度仍能达到百分之几。在这一成就的鼓舞下,学者们重新 开始探讨有限变形弹性理论,并导致了整个的蓬勃发展。此后,非线性弹性理论就成为理性力学的重要组成部分。 1952年起C.特鲁斯德尔、W.诺尔、B.D.科勒曼、J.L.埃里克森、M.E.格廷、A.C.爱林根以及美籍华人王钊诚在 非线性弹性力学方面作出较大贡献,中国的郭仲衡于1962~1963年连续发表了多篇论文。1972年奥登等人在用有 限元法进行数值解方面做了大量有成效的工作,从而使得非线性弹性力学在工程实际中得到较广泛的应用。但是 非线性弹性力学无论在理论方面、精确解方面还是数值近似解方面都比线性弹性力学难度大,所以至今远不如线 性弹性力学成熟,有许多问题尚需进一步探讨。非线性弹性力学的基本概念和方程比较复杂,在分析中大多采用 张量这一数学工具。
变形描述
变形描述在讨论非线性弹性力学问题时,取初始时刻物体在三维空间中所占的区域为参考构形(见)现时构形,在其上取笛卡儿坐标。
由方程 对于有单值逆变换的情形,存在 在时刻物质点的位置矢量为X,在运动过程中,该点在时刻的位置矢量为,则 在时刻物质点的位置矢量为X,在运动过程中,该点在时刻的位置矢量为,则 其中u是该物质点的位移矢量,它在和中的坐标分别记为和。 必须区分使用和坐标,这是非线性弹性力学区别于线性弹性力学的基本特征之一。 描述物体变形的量有变形梯度,在中,其定义为: 其中为克罗内克符号;为位移分量的偏导数,即变形梯度既包含纯变形又包含刚性转动,为把纯变形从其中 分解出来,须采用极分解定理,相应于左分解和右分解分别得到左柯西-格林应变(又称芬格应变)和右柯西-格林 应变(又称格林变)。而在中有逆应变(称为皮奥拉应变)和(称为柯西应变)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档