聚合物表面性能与相容性

合集下载

聚合物相容性的表征和测定

聚合物相容性的表征和测定

聚合物相容性的表征和测定聚合物共混物是指两种或两种以上聚合物的混合物,正如合金一样,共混高聚物可以使材料得到单一的等聚物所不具有的性能,因此其合成具有很重要的意义。

聚合物之间的相容性是选择适宜共混方法的重要依据,也是决定共混物形态结构和性能的关键因素。

以下就聚合物之间相容性的基本特点,相容性的表征参数和测定方法进行简单的阐述。

从热力学角度来看,聚合物的相容性就是聚合物之间的相互溶解性,是指两种聚合物形成均相体系的能力。

若两种聚合物可以任意比例形成分子水平均匀的均相体系,则是完全相容;如硝基纤维素-聚丙烯酸的甲脂体系。

若是两种聚合物仅在一定的组成范围内才能形成稳定的均相体系,则是部分相容。

如部分相容性很小,则为不相容,如聚苯乙烯-聚丁二烯体系。

相容与否决定于混合物的混合过程中的自由能变化是否小于0。

即要求△G=△H-T△S<0.对于聚合物的混合,由于高分子的分子量很大,混合时熵的变化很小,而高分子-高分子混合过程一般都是吸热过程,即△H为正值,因此要满足△G<0是困难的。

△G往往是正的,因而绝大多数共混高聚物都不能达到分子水平的混合,或者是不相容的,形成非均相体系。

但共混高聚物在某一温度范围内能相容,像高分子溶液一样,有溶解度曲线,具有最高临界相容温度(UCST)和最低临界相容温度(LCST),这与小分子共存体系存在最低沸点和最高沸点类似。

大部分聚合物共混体系具有最低临界相容温度,这是聚合物之间相容性的一个重要特点。

还应指出,聚合物之间的相容性还与分子量的分布有关。

一般,平均分子量越大,聚合物之间的相容性就越小。

以上定性地描述了影响相容性的一些因素,那么在实际中如何判断聚合物之间的相容性呢?最常用的判据是溶度参数和Huggins-Flory相互作用参数。

聚合物合金作为一种多组分复合体,各组分间的相容性以及如何改善组分间的相容性是聚合物合金研究的重点内容,众所周知,大多数聚合物之间是不相容或部分相容的,聚合物合金是多相结构体系,多相结构体系中,相形态结构和界面性质在某种程度上反映了合金中各组分间的相容性程度,而相容性好坏与合金性能有着密切关系。

聚合物合金相容性的预测和表征

聚合物合金相容性的预测和表征
[ 8]
[ ∀ ] m 判 据 为: 定 义
id
[∀]m =
- [ ∀ ] m , 推算出 [ ∀ ] m = [ ∀1 ] w 1 + [ ∀ 2 ]w 2, 其中
[ ∀ ] m ex p、 [ ∀ ] m id、[ ∀ 1, 2 ] 分别为实验所测溶液、 理想混 合溶液 和聚合物组分溶液的特性粘 数 , w 1, 2为 两聚合 物组分 的质量 分数 , 将 [ ∀ ] m id 与 [ ∀ ] m ex p进 行比 较 , 若 [ ∀ ] m % 0 时 , 聚合 物分子 间 的 相 互 作 用 表 现 为 吸 引 , 两 种 聚 合 物 相 容 ; 若 [ ∀ ] m < 0 时 , 聚合物分 子间 的相 互 作用 表现 为排 斥 , 两种 聚合物不相容。朱思君等 [ 3] 采用 DSV 法预测 PESU /PESU C 体系为部分相容体系 , 实验结果与 混合焓变原则预测结果相 同。 2. 4 显微镜法 相差显微镜原理是使光 的直射 振动对 衍射 振动周 相移 动 % /2, 将物体内微小的 周相差 转变为 相的 亮度差 , 因 而使 透明物体的可见度大为改善 [ 19] , 分辨 率可达 1 &m。 只要两 相的折光指数存在微小 差异就可 以观察 到不相 容体系 的分 离形态。电子显微镜法主要指 透射电 镜 ( TEM ) 法和 扫描电 镜 ( SEM ) 法 , TEM 的分辨 率小于 10 nm, 配 以适 当的染 色技 术 , 可成为观察相区尺寸、 形状和相界面最直观的方法。 2. 5 红外光谱 ( I R) 法 相容性很好的合金体 系的 IR 谱图 会偏 离单 组分 IR 谱 图的平均值。因为不同聚合物之间存在较强的相互作用 , 导 致有关基团的 红外 吸收 谱带 发生 移动 或峰 形不 对称 加 宽。 但不能从其偏离程度相应地预测其相容程度 , 所以这种方法 只可以定性研究聚合物间的相容 性。 IR 法可 以发现 聚合物 合金中氢 键 的 存 在 , 进 而表 征 相 容 性 [ 20] 。 Chung T aishung 等 [ 21] 利 用 FT I R 测 定 了 纯 PA 膜 和 聚苯 并 咪 唑 ( PBI ) /PA ( 80 /20) 膜中羰 基的 伸缩 振 动 , 发现 共 混膜 的波 峰 从 1 471 c m - 1移至 1 730 cm - 1, 这种迁移表明在共混膜中存在 着分子 间氢键的相互作 用 , 同 时共 混体 系的 热分 析和 力学 分 析表 明 , 此体系为相容体系。 使用 I R 法还可以表 征互穿 网络、 反应 增容 等聚合 物共 混技术中新基团或价键的生成 , 进 而表征聚合物合金的相容 性。 Chen Y ing zi等 [ 22] 用超声波处理 PP / ( 乙烯 /丙烯 /二 烯 ) 共聚物 ( EPDM ) , FT IR 分析表明 , 721 c m - 1 处为 [ CH 2 ] n ( n% 4) 的吸收峰 , 从而表征了 EPD M 原位接 枝到 PP 分子 链上所 起的增容剂作用 , 使 相容性 增加 ; DSC 分 析也表 明 EPDM 与 基体 PP 的相容性增加。 2. 6 其它表征方法 除了以 上 方 法 外 , 超 声 波 技 术 [ 18, 23] 、 小 角中子 散射 ( SAN S) [ 24] 法、X 射 线 衍 射 [ 25- 26] 法、核 磁 共 振 ( NM R ) 法 [ 27- 29] 等也可用于聚合 物合金相容性的表征。超声波技术 是通过测量超声波速度 及聚合物 合金对 超声波 的吸收 系数

聚合物的分散性与相容性研究探讨

聚合物的分散性与相容性研究探讨

聚合物的分散性与相容性研究探讨在材料科学的广袤领域中,聚合物扮演着举足轻重的角色。

聚合物的性能不仅取决于其化学组成,还受到分散性与相容性等因素的显著影响。

深入研究聚合物的分散性与相容性,对于开发高性能的聚合物材料、优化生产工艺以及拓展其应用范围具有至关重要的意义。

首先,让我们来理解一下什么是聚合物的分散性。

简单来说,分散性指的是聚合物在特定介质或体系中的分布均匀程度。

想象一下,把聚合物颗粒投入到一种溶剂中,如果这些颗粒能够均匀地散布在溶剂中,形成一个稳定且均一的混合物,我们就说这种聚合物具有良好的分散性。

反之,如果聚合物颗粒出现团聚、沉淀或者分布不均的现象,那么其分散性就较差。

聚合物分散性的好坏对材料的性能有着直接的影响。

以聚合物复合材料为例,如果增强相(如纤维、颗粒等)在聚合物基体中的分散不均匀,就会导致局部应力集中,从而降低材料的整体强度和韧性。

在涂料和胶粘剂中,聚合物的分散性不佳可能会导致涂层不均匀、附着力下降等问题,严重影响产品的质量和性能。

那么,影响聚合物分散性的因素有哪些呢?首先是聚合物的分子量和分子量分布。

一般来说,分子量较小且分子量分布较窄的聚合物更容易分散。

这是因为分子量小的聚合物分子间作用力相对较弱,更容易在介质中运动和分散。

其次,介质的性质也起着关键作用。

包括介质的极性、粘度、表面张力等。

例如,极性聚合物在极性介质中往往具有更好的分散性,而在非极性介质中则可能出现分散困难的情况。

此外,加工条件如搅拌速度、温度、时间等也会对聚合物的分散性产生影响。

接下来,我们谈谈聚合物的相容性。

相容性是指两种或多种聚合物在混合时能够形成均相体系的能力。

当不同的聚合物能够相互溶解、均匀混合,并且在微观层面上没有明显的相分离,我们就认为它们具有良好的相容性。

相容性对于聚合物共混物的性能至关重要。

如果两种聚合物相容性好,共混物能够展现出单一聚合物所不具备的优异性能,如综合的力学性能、耐热性、耐化学腐蚀性等。

高分子材料的表面改性.详解

高分子材料的表面改性.详解

XPS (X-ray photoelectron spectroscopy)
通过用X射线辐照样 品,激发样品表面除 H、He以外所有元素
中至少一个内能级的
光电子发射,并对产 生的光电子能量进行
分析,以研究样品表
面的元素和含量。
Ek为光电子动能;hν为激发光能量;
EB为固体中电子结合能;Φ为逸出功
电晕放电处理方式
1. 在薄膜的生产线上进行,即通常所说的热膜处理。 优点:处理效果好; 限制性:适用于处理完就使用的场合,比如马上用于印刷、涂布或复合; 2. 在薄膜的再加工线上进行,及通常所说的冷膜处理。 限制性:处理效果与薄膜存放时间有关。处理完后就应用。
3. 进行两次处理。
既在生产线上处理,又在再加工线上处理,为了保证使用前的表面质量
以等离子体存在的星系和星云
人造等离子体示例
地球上,等离子体的自然现象:如闪电、极光等; 人造等离子体,如霓虹灯、电弧等。
PbPb N Ca Na Cl
Pb
500
400
300
200
100
0
Binding Energy (eV)
XPS analysis showed that the red pigment used on the mummy wrapping was Pb3O4 rather than Fe2O3
Analysis of Carbon Fiber- Polymer Composite Material by XPS
C/O比与电流强度的关系与上述表面张力和剥离力类似,可见 LDPE表
面张力的增大和剥离力的提高与表面含氧量的增加有密切的关系。
7.2 火焰处理和热处理
● 火焰处理是用可燃性气体的热氧化焰对聚合物表面进行瞬间高

第2章聚合物之间的相容性

第2章聚合物之间的相容性
(2)表现最低临界相容温度(LCST)行为。所谓最低临界相容 温度是指这样的温度:低于此温度,体系完全相容,高于此温 度为部分相容。
(3)同时存在最高临界相容温度和最低临界相容温度。有时, UCST和LCST会相互交叠,形成封闭的两相区。还有表现多重 UCST及LCST的行为。
16
具有最高临界相容温度的例子有:天然橡胶-丁苯橡胶、 聚异丁烯-聚二甲基硅氧烷、聚苯乙烯-聚异戊二烯、聚氧化 乙烯-聚氧化丙烯等。
1
2

1
2
E 2 V2
2
δ1、δ2分别为组分1 及组分2的溶解度参数
① 聚合物溶解度参数的测定法 a.估算法
δ= d·ΣGi/M
d--为密度; M--为重复链节的相对分子质量;
Gi--为组成分子的化学基团摩尔吸引常数。 可查表,得到Gi,来估算内聚能,从而估算溶解度参数 。
25
26
b.浊度测定法
聚合物的溶解度参数 δp 按下式计算
δp=1/2(δs+δm)
式中 δs --溶剂的溶解度参数 ; δm --溶剂和沉淀剂混合物的溶解度参数。 δm 按公式计算 : δm=φsδs+φmδm
式中 ¢s --溶剂的体积分数 ¢g--沉淀剂的体积 分数 ; δg--沉淀剂的溶解度参数
溶剂的体积分数按公式
◆在部分相容的聚合物-聚合物的混合物中,还存在着混合程度 的差别,而这种混合程度与聚合物-聚合物间的相容性有关。 相容性的好坏对其性能的影响
18
2.2.1聚合物—聚合物相容性的热力学理论
根据热力学理论,两种聚合物共混时,相容的充分必要条件是:
Gm 0
(2-1)
(
2 Gm
22
)T ,P

聚合物共混物的相容性

聚合物共混物的相容性
2020/7/12
一相 两相
具有上临界混容温度的体系
两相 一相
具有下临界混容温度的体系
11
第一节 聚合物共混物相容性的基本概念
二、聚合物共混物的相图
相图—相图是用来表示材料 相的状态与温度及组成关系 的综合图形,它反映了组成 成分及温度变化时所可能发 生的相的变化。
相图可直观地描述聚合物共 混物的相容性。
混溶性——异种聚合物不能实现分子量级相互溶 解的混合系,但比较容易获得所期待的性能的能 力,即共混体系中成分物质的界面结合能力 (compatibility)。
2020/7/12
5
第一节 聚合物共混物相容性的基本概念
一、共混物的相容性 5. 完全相容
完全相容的聚合物共混体系,其共混物可形成均相 体系。
2. 聚合物的相容性(miscibility)
聚合物之间的相容性,就是表示聚合物混合体系形成单一相(分 子量级的混合)的能力。是指聚合物之间相互溶解的能力,代表 热力学相互溶解,其判据为共混物具有单一的Tg
从热力学角度而言,是指在任何比例混合时,都能形成分子分散 的、热力学稳定的均相体系,即在平衡态下聚合物大分子达到分 子水平或链段水平的均匀分散
1)在通常的温度、压力、组成范围内能够形成单一相
2)形成单一相的热力学的必要条件是混合的吉布斯自由能量ΔGm< 0
热力学因素是共混体系形成均相体系或发生相分离的内在动力, 基本理论体系是“Flory-Huggins模型”
实际应用中,热力学相容体系很少
2020/7/12
3
第一节 聚合物共混物相容性的基本概念
LCST: 聚苯乙烯/聚甲基乙烯基醚、
聚己内酯/苯乙烯一丙烯腈共聚物、
聚苯乙烯/聚甲基丙烯酸甲酯、

6 第三章 聚合物共混物的相容性

6 第三章  聚合物共混物的相容性
2013-7-15 16
第五节 聚合物相容性的判据及测定方法
二、测定方法 2. 光学显微镜法
光学显微镜包括透射光显微镜、反射光显微镜、暗场显微镜、 偏光显微镜、相差显微镜和干涉显微镜。光学显微镜可以直接 观察大块试样,但分辨率受光波衍射的限制,仅能提供微米数 量级的形貌细节(~200nm)。 透射光显微镜:可观察不透明的,有色的试样,要求试样制得 很薄。但对于透明物,由于反差太低,观察不清。 反射光显微镜:试样不透明,比较厚,可以观察表面结构。 暗场显微镜(或超显微镜):利用粒子对光的散射来推断两相 结构。高强度的光垂直于光轴可以观察到远远小于显微分辨能 力的散射光的粒子。但一般不常用于聚合物-聚合物体系的研 究。
2013-7-15 14
第五节 聚合物相容性的判据及测定方法
各种分子量聚异丁烯—聚苯乙烯混合物的浊点(C.P.)曲线
2013-7-15 15
第五节 聚合物相容性的判据及测定方法
二、测定方法 1. 目测法(浊度法)
这种方法的优点是实验仪器和实验过程较为简单。 但在机理上也存在着一定的缺陷。 如果出现以下情况,即使共混物中各相分离,其试 样也是光学透明的:(1)共混物中各相的折射率 相近;(2)共混物中各相的粒子尺寸远小于可见 光的波长;(3)试样太薄;(4)共混物的分散相 的含量太小。同时,人的视觉差异等因素也会影响 测试结果。
聚合物共混改性
材料科学与工程学院
戴亚辉
第三章 聚合物共混的相容性
第三章 聚合物共混物的相容性
1 第一节 第二节 第三节 第四节 第五节 第六节 聚合物共混物相容性的基本概念 聚合物共混物相容热力学理论 聚合物共混物相分离机理 影响聚合物共混物相容性的因素 聚合物相容性的判据及测定方法 聚合物共混物的相界面

第二章 聚合物之间的相容性

第二章  聚合物之间的相容性
所示情况比较复杂。 图2-2 所示情况比较复杂。 当组成在A 范围内, 当组成在 1P’或A2P’’范围内, 范围内 均相是热力学稳定状态。 均相是热力学稳定状态。 在P点,对分离为相邻组成的 点 两相来说,是热力学稳定的。 两相来说,是热力学稳定的。 但对分离为组成分别是P 但对分离为组成分别是 ’及P’’ 的两相来说, 的两相来说,是热力学不稳定 称为介稳状态。 的。称为介稳状态。 当组成在∆ 当组成在∆Gm曲线两拐点之间 均相状态是绝对不稳定的 稳定的, 时,均相状态是绝对不稳定的, 会自发地分为相互平衡的两个 相。
具有最高临界相容温度的例子有:天然橡胶 丁苯橡胶 聚异丁烯-聚二甲基硅氧烷 丁苯橡胶、 聚二甲基硅氧烷、 具有最高临界相容温度的例子有:天然橡胶-丁苯橡胶、聚异丁烯 聚二甲基硅氧烷、 聚苯乙烯-聚异戊二烯 聚氧化乙烯-聚氧化丙烯等 聚异戊二烯、 聚氧化丙烯等。 聚苯乙烯 聚异戊二烯、聚氧化乙烯 聚氧化丙烯等。 具有最低临界相容温度的例子有:聚苯乙烯 聚乙烯甲基醚 聚己内酯-苯乙烯 聚乙烯甲基醚、 苯乙烯-丙烯腈 具有最低临界相容温度的例子有:聚苯乙烯-聚乙烯甲基醚、聚己内酯 苯乙烯 丙烯腈 共聚物、聚甲基丙烯酸甲酯-苯乙烯 丙烯腈共聚物等。 苯乙烯-丙烯腈共聚物等 共聚物、聚甲基丙烯酸甲酯 苯乙烯 丙烯腈共聚物等。 同时具有LCST和UCST的例子有:聚甲基丙烯酸甲酯 氯化聚乙烯以及聚苯乙烯 聚苯 和 的例子有: 氯化聚乙烯以及聚苯乙烯-聚苯 同时具有 的例子有 聚甲基丙烯酸甲酯-氯化聚乙烯以及聚苯乙烯 醚(PS/PPO)等。 )
2.1 聚合物之间相容性的基本特点 溶液热力学回顾: 溶液热力学回顾:
设有X 摩尔的纯组分1和 设有 1摩尔的纯组分 和 X2摩尔的纯组分 ,两者 摩尔的纯组分2, 混合后正好形成一摩尔的 溶液。如右图所示: 溶液。如右图所示: 混合自由焓为: 混合自由焓为: ∆G = X1∆µ1 + X2 ∆µ2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节聚合物表面性能与相容性
一磨擦性能
在塑料中常遇到磨擦性质的问题。

如在注塑中物料在螺杆加料段的磨擦机理,磨擦系数对其螺杆的输送效率有重要影响。

物料从料斗进入螺杆之后在螺杆旋转下,使物料沿螺槽向前输送颗粒料首先被压成固体塞,在输送过程中塑料固体塞和料筒及螺杆产生相对运动,各面承受着磨擦力的作用。

这时磨擦将受到许多因素的影响,如塑料的物料性能,颗粒形状及大小,料筒及螺杆表面的光洁度及材质,相对运动的速度,塑料与金属的接触压力及作用时间等等。

不同的聚合物其磨擦系数是不同的。

当塑料与金属磨擦时,磨擦系数与磨擦中的接触面积,与塑料对金属的附着力以及剪切强度有关。

因此磨擦系数不仅与高聚物的物理性质有关,而且与影响物理—机械性质的外界压力,速度和温度有关。

在高压高速下塑料的热传导性能很差产生的热量不易散出,使塑料发生大的变形表面破坏,因此压力和速度对磨擦系数均有影响。

一般情况下,塑料的磨擦系数随载荷的加大而稍许降低。

聚合物材料的干磨擦系数,随着相对速度的提高有增加的趋势。

二相容性
相容性是指两种不同品级的聚合物在熔融状态下能否相互混溶的一种性质。

相容性不好的聚合物混熔在一起,制品会出现分层现象。

不同类型聚合物的相容性是不一样的,这与分子结构有一定关系;分子结构相近者易相容;反之难容。

例如,借助于聚碳酸酯和聚乙烯之间的互容性,在聚碳酸酯中加入30~50%聚乙烯可使伸长率提高30%,冲击强度提高4倍,并使熔体的粘度降低。

近年来,利用聚合物之间的相容特性,使共混料品级日益增多,受到人们的普遍重视。

三表观密度
大多数热塑性塑料致密状的相对密度为0.9~1.2g/cm3而粉料或颗粒料的表观密度是0.3~0.6g/cm3。

如果物料的表观密度低,使均匀加料发生困难,就易出现“架桥”现象。

这样会影响输送效率和塑化质量的稳定性。

为此有的在料斗中设置有搅拌器,或者采用定量的加料调节装置,对进料量调节和控制,保证连续,均匀地加料。

第三节聚合物的力学特性
1形变与应力关系
材料的力学特性是指材料在外力的作用下,产生变形,流动与破坏的性质,反应材料基本力学性质的量主要有两类;一类是反应材料变形情况的量如模量或柔度,泊桑比;另一类是反应材料破坏过程的量,如比例极限,拉伸强度,屈服应力,拉伸断裂等作用。

从力学观?憧矗牧掀苹凳且桓龉潭皇且桓龅恪?BR>2应力与时间的关系
应力对其作用时间的依赖性,这是聚合物材料主要特征之一。

聚合物在较高温度下力作用时间较短的应力松驰行为和在温度较低力作用时间较长的应力松驰行为是一致的。

3形变与时间关系
聚合物材料在一定温度下承受恒定载荷时,将讯速地发生变形,然后在缓慢的速率下无限期地变形下去。

若载荷足够高时变形会继续到断裂为此。

这种在温度和载荷都是恒定的条件下,变形对时间依赖的性质,即称蠕变性质。

第四节聚合物的流变性能
一概述
注塑中把聚合物材料加热到熔融状态下进行加工。

这时可把熔体看成连续介质,在机器某些部位上,如螺杆,料筒,喷嘴及模腔流道中形成流场。

在流场中熔体受到应力,时间,温度的联合作用发生形变或流动。

这样聚合物熔体的流动就和机器某些几何参数和工艺参数发生密切的联系。

处于层流状态下的聚合物熔体,依本身的分子结构和加工条件可分近似牛顿型和非牛顿型流体它们的流变特性暂不予祥细介绍。

1 关于流变性能
(1)剪切速率,剪切应力对粘度的影响
通常,剪切应力随剪切速率提高而增加,而粘度却随剪切速率或剪切应力的增加而下降。

剪切粘度对剪切速率的依赖性越强,粘度随剪切速率的提高而讯速降低,这种聚合物称作剪性聚合物,这种剪切变稀的现象是聚合物固有的特征,但不同聚合物剪切变稀程度是不同的,了解这一点对注塑有重要意义。

(2)离模膨胀效应
当聚合物熔体离开流道口时,熔体流的直径,大于流道出口的直径,这种现象称为离模膨胀效应。

普遍认为这是由聚合物的粘弹效应所引起的膨胀效应,粘弹效应要影响膨胀比的大小,温度,剪切速率和流道几何形状等都能影响熔体
的膨胀效应。

所以膨胀效应是熔体流动过程中的弹性反映,这种行为与大分子沿流动方向的剪切应力作用和垂直于流动方向的法向应力作用有关。

在纯剪切流动中法向效应是较小的。

粘弹性熔体的法向效应越大则离模膨胀效应越明显。

流道的影响;假如流道长度很短,离模效应将受到入口效应的影响。

这是因为进入浇口段的熔体要收剑流动,流动正处在速度重新分布的不稳定时期,如果浇口段很短,熔体料流会很快地出口,剪切应力的作用会突然消失,速度梯度也要消除,大分子发生蜷?曰指矗饣崾估肽E蛘托в泳纭H绻鞯雷愎怀ぃ虻杂Ρ淠苡凶愎坏氖奔浣械运沙邸U馐庇跋炖肽E蛘托вΦ闹饕蚴俏榷鞫钡募羟械院头ㄏ蛐вΦ淖饔谩?BR>(3)剪切速率对不稳定流动的影响
剪切速率有三个流变区:低剪切速率区,在低剪切速率下被破坏的高分子链缠结能来得及恢复,所以表现出粘度不变的牛顿特性。

中剪切区,随着剪切速率的提高,高分子链段缠结被顺开且来不及重新恢复。

这样就助止了链段之间相对运动和内磨擦的减小。

可使熔体粘度降低二至三个数量级,产生了剪切稀化作用。

在高剪切区,当剪切速率很高粘度可降至最小,并且难以维持恒定,大分子链段缠结在高剪切下已全部被拉直,表现出牛顿流体的性质。

如果剪切速率再提高,出现不稳定流动,这种不稳定流动形成弹性湍流熔体出现波纹,破裂现象是熔体不稳定的重要标志。

当剪切速率达到弹性湍流时,熔体不仅不会继续变稀,反而会变稠。

这是因为熔体发生破裂。

(4)温度对粘度的影响
粘度依赖于温度的机理是分子链和“自由体积”与温度之间存在着关联。

当在玻璃化温度以下时,自由体积保持恒定,体积随温度增长而大分子链开始振动。

当温度超过玻璃化温度时,大链段开始移动,链段之间的自由体积增加,链段与链段之间作用力减小,粘度下降。

不同的聚合物粘度对温度的敏感性有所不同。

(5)压力对粘度的影响
聚合物熔体在注塑时,无论是预塑阶段,还是注射阶段,熔体都要经受内部静压力和外部动压力的联合作用。

保压补料阶段聚合物一般要经受1500~2000kgf/cm2压力作用,精密成型可高达4000kgf/cm2,在如此高的压力下,分子链段间的自由体积要受到压缩。

由于分子链间自由体积减小,大分子链段的靠近使分子间作用力加强即表现粘度提高。

在加工温度一定时,聚合物熔体的压缩性比一般液体的压缩性要大,对粘度影响也较大。

由于聚合物的压缩率不同,所以粘度对压力的敏感性也不同;压缩率大的敏感性大。

聚合物也由于压力提高会使粘度增加,能起到和降低熔体温度一样的等效作用。

(6)分子量对粘度的影响
一般情况下粘度随分子量增加而增加,由于分子量增加使分子链段加度,分子链重心移动越慢,链段间的相对们移抵消?嵩蕉啵肿恿吹娜嵝约哟蟛岬阍龆啵吹慕馔押突评选J沽鞫讨υ龃螅枰氖奔浜湍芰恳苍黾印?BR>由于分子量增加引起聚合物流动降低,使注塑困难,因此常在高分子量的聚合物中加入一些低分子物质,如增塑剂等,来降低聚合物的分子量,以达到减小粘度,改善加工性能。

相关文档
最新文档