匀速圆周运动的典型模型

合集下载

物理圆周运动8种模型

物理圆周运动8种模型

物理圆周运动8种模型
1、天体绕行模型。

2、汽车过桥模型。

3、绳模型。

4、杆模型。

5、火车转弯模型。

6、圆锥摆模型。

7、飞车走壁模型。

8、物块随圆盘一起转动模型。

其中杆模型也就是物体在竖直平面内做圆周运动,有支撑,如:小球和杆相连、小球在弯管内运动。

例题如下:
一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R的圆周运动,则下列说法正确的是(A)
A、小球过最高点时,杆所受到的弹力可以等于零。

B、小球过最高点的最小速度是√gR。

C、小球过最高点时,杆对球的作用力一定随速度增大而增大。

D、小球过最高点时,杆对球的作用力一定随速度增大而减小。

解析:
轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,
当小球过最高点的速度v=√gR时,杆所受的弹力等于零,A正确,B错误;若v<√gR,则杆在最高点对小球的弹力竖直向上,mg-F=mv2/R,随v增大,F减小,若v>√gR,则杆在最高点对小球的弹力竖直向下,
mg+F=mv2/R,随v增大,F增大,故C、D均错误。

杆模型的运动规律:
1、小球在最高点的速度v可以等于零。

2、当小球的速度v=√gR,杆对小球的支持力为零,小球只受重力。

3、当小球的速度v<√gR时,杆对小球有支持力。

4、当小球的速度v>√gR时,杆对小球有拉力。

圆周运动的几个模型

圆周运动的几个模型

圆周运动的几个模型一、水平方向的圆盘模型1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度时,细绳的拉力。

(2)当转盘的角速度时,细绳的拉力。

图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为,则,解得。

(1)因为,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即。

(2)因为,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力,由牛顿的第二定律得:,解得。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为,离轴心,B 的质量为,离轴心,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力?角速度为多大?()图2.02(1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()解析:(1)较小时,A、B均由静摩擦力充当向心力,增大,可知,它们受到的静摩擦力也增大,而,所以A受到的静摩擦力先达到最大值。

再增大,AB间绳子开始受到拉力。

由,得:(2)达到后,再增加,B增大的向心力靠增加拉力及摩擦力共同来提供,A增大的向心力靠增加拉力来提供,由于A增大的向心力超过B增加的向心力,再增加,B所受摩擦力逐渐减小,直到为零,如再增加,B所受的摩擦力就反向,直到达最大静摩擦力。

如再增加,就不能维持匀速圆周运动了,A、B就在圆盘上滑动起来。

设此时角速度为,绳中张力为,对A、B受力分析:对A有对B有联立解得:3.如图2.03所示,两个相同材料制成的靠摩擦传动的轮A和轮B水平放置,两轮半径,当主动轮A匀速转动时,在A轮边缘上放置的小木块恰能相对静止在A轮边缘上。

六种圆周运动模型 ppt课件

六种圆周运动模型 ppt课件

F合
mg
tan
F心
F心
mv2 r
mw2r
解得:
v gr
tan
w g
tan r
规律:稳定状态下,小球所处的位置越高,半径r越
大,角速度越小,线速度越大,而小球受到的支持
力和向心力并不随位置六的种圆变周运化动而模型变化。
4
三、火车转弯模型:
六种圆周运动模型
5
四、汽车过桥模型:
F向
ma
ห้องสมุดไป่ตู้
mv2 R
F向
ma
mv2 R
FN
G mv2 R
六种圆周运动模型
6
五、轻绳模型
1、安全通过最高点的临界条件:
v临 = gR
2、对最高点分析:
v>
gR
:绳子或外轨道对物体的弹力:
v2 F m G
R
方向竖直向下
v = g R :绳子或外轨道对物体的弹力:F=0
v< gR:物体不能过最高点!!!
v = g R 是物体所六种受圆周弹运力动模方型 向变化的临界速度。 7
六种圆周运动模型分析
六种圆周运动模型
1
一、圆盘模型:
F合f F心mr2vm2w r
当f最大值时: f mg 线速度有最大值:v gr
g
角速度有最大值:w r
六种圆周运动模型
2
二、圆锥摆模型: 由拉力F和重力G的合力提供向心力
六种圆周运动模型
3
倒置圆锥摆模型:
1.如果内壁光滑,由重力和支持力的合力提供向心力

圆周运动的三种模型

圆周运动的三种模型

圆周运动的三种模型一、圆锥摆模型:如图所示:摆球的质量为m,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成θ角,对小球受力分析,正交分法解得:竖直方向:水平方向:F X=最终得F合=。

用力的合成法得F合=。

半径r=,圆周运动F向==,由F合=F向可得V=,ω=圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。

分析方法同样适用自行车,摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。

共同点是由重力和弹力的合力提供向心力,向心力方向水平。

1、小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。

(小球的半径远小于R)2、如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。

求(取g=10m/s2,结果可用根式表示):(1)若要小球离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大?二.轻绳模型(一)轻绳模型的特点:1. 轻绳的质量和重力不计;2. 只能产生和承受沿绳方向的拉力;(二)轻绳模型在圆周运动中的应用小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: = ,v 临界 =2. 小球能通过最高点的条件: v v 临界(此时,绳子对球产生 力)3. 不能通过最高点的条件: v v 临界 (实际上小球还没有到最高点时,就脱离了轨道)练习:质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是( )A . 0 B. mg C .3mg D 5mg三.轻杆模型:(一)轻杆模型的特点:1.轻杆的质量和重力不计;2.能产生和承受各方向的拉力和压力(二)轻杆模型在圆周运动中的应用轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:1. 小球能通过最高点的最小速度v= ,此时轻杆对小球的作用力N= ( N 为 力)2. 当 =R v m 2临界( 轻杆对小球的作用力N= 0 ),gR v 临界3 当 (即0<v< v 临界)时,有 =Rv m 2( 轻杆对小球的作用力N 为 力) 4 当(即v>v 临界)时,有 =R v m 2(轻杆对小球的作用力N 为 力) 练习:半径为R=0.5m 的管状轨道,有一质量为m=3kg 的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则( )A. 外轨道受到24N 的压力B. 外轨道受到6N 的压力C. 内轨道受到24N 的压力D. 内轨道受到 6N 的压力一.轻绳模型(一)轻绳模型的特点:1. 轻绳的质量和重力不计;2. 只能产生和承受沿绳方向的拉力;(二)轻绳模型在圆周运动中的应用小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:2. 小球能通过最高点的条件:(当时,绳子对球产生拉力)3. 不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)例:质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力是()A . 0 B. mg C .3mg D 5mg分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型当小球经过最高点的临界速度为v ,则当小球以2v的速度经过最高点时,轨道对小球产生了一个向下的压力N ,则因为所以根据牛顿第三定律,小球对轨道压力的大小也是,故选c.1.轻杆的质量和重力不计;2.能产生和承受各方向的拉力和压力(二)轻杆模型在圆周运动中的应用轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:1. 小球能通过最高点的临界条件:v=0 ,N=mg (N为支持力)2. 当时,有(N为支持力)3 当时,有(N=0 )4 当时,有(N 为拉力)例:半径为R=0.5m 的管状轨道,有一质量为m=3kg的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则()A. 外轨道受到24N的压力B. 外轨道受到6N的压力C. 内轨道受到24N 的压力D. 内轨道受到6N的压力分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型:当小球到最高点轨道对其作用力为零时:有则, =>2m/s所以,内轨道对小球有向上的支持力,则有代入数值得:N=6N根据牛顿第三定律,小球对内轨道有向下的压力大小也为6N ,故选D三.圆锥摆模型:圆锥摆模型在圆周运动中的应用:如图所示:摆球的质量为m,摆线长度为L ,摆动后摆线与竖直方向成θ角,则分析:摆球在水平面上做匀速圆周运动,加速度必定指向圆心,依据牛顿第二定律,对摆球受力分析,得:圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。

匀速圆周运动之绳杆模型

匀速圆周运动之绳杆模型
第3讲 匀速圆周运动及其应用
匀速圆周运动 角速度、线速度、向心加速度 Ⅰ (考纲要求)
1.匀速圆周运动
(1)定义:做圆周运动的物体,若在相等 的时间内通过的圆弧长_相__等__,就是匀 速圆周运动.
(2)特点:加速度大小_不__变__ ,方向始终 指向_圆__心__ ,是变加速运动. (3)条件:合外力大小_不__变__ 、方向始终 与_速__度__方向垂直且指向圆心.
B.人和车的速度为 grsin θ
C.桶面对车的弹力为cmosgθ
D.桶面对车的弹力为smingθ
思路导图
解析 对人和车进行受力分析如图所示.根据直角三角形的 边角关系和向心力公式可列方程:
Ncos θ=mg, mgtan θ=mvr2. 解得 v= grtan θ,N=cmosgθ. 答案 AC
展身体,以单杠为轴做圆周运动.此过程中,
运动员到达最低点时手臂受的拉力至少约为(忽
略空气阻力,g=10 m/s2)
( ).
A.600 N
B.2 400 N
C.3 000 N
D.3 600 N
图4-3-9
教你审题
关键点:运动员以单杠为轴做圆周运动 属于竖直面内圆周运动的杆模型
牛顿第二定律和机械能守恒定律
坚直平面内圆周运动的绳杆模型考基自主落实考基自主落实核心考点透析核心考点透析物理建模指导物理建模指导活页限时训练活页限时训练高考快乐体验高考快乐体验轻绳模型轻杆模型常见类型过最高界条件由mgmgr由小球能运动即可得v考基自主落实考基自主落实核心考点透析核心考点透析物理建模指导物理建模指导活页限时训练活页限时训练高考快乐体验高考快乐体验轻绳模型轻杆模型讨论分析1过最高点时绳轨道对球产生弹力fgr在到达最高点前小球已经脱离了圆轨道背向圆心随v的增大而减小的增大而增大考基自主落实考基自主落实核心考点透析核心考点透析物理建模指导物理建模指导活页限时训练活页限时训练高考快乐体验高考快乐体验如图439所示质量为60kg的体操运动员做单臂大回环用一只手抓住单杠伸展身体以单杠为轴做圆周运动

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。

此时,圆盘上该点所受的向心力最大,达到极限值。

热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。

球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。

单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。

这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。

球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。

双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。

这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。

热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。

热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。

在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。

圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。

在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。

车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。

2020年暑期高一物理空课(02)圆周运动

2020年暑期高一物理空课(02)圆周运动

2020年暑期高一物理空课学案(二)(主要内容:圆周运动)班级:高一()班姓名:时间:2020年月月◤【知识要点】◢►一、圆锥摆类问题分析圆锥摆是一种典型的匀速圆周运动模型,基本的圆锥摆模型和受力情况如图甲所示,拉力(或弹力)和重力的合力提供球做圆周运动的向心力F 合=F n =mgtan θ=m v 2R图甲图乙图丙图丁其运动情况也相似,都在水平面内做圆周运动,圆心在水平面内,常见的圆锥摆类模型还有:火车转弯(如图乙所示);杂技节目“飞车走壁”(如图丙丁所示);飞机在水平面内的盘旋(如图丁所示)1.圆锥摆的向心加速度a =g tan α设摆球质量为m ,摆线长为L ,摆线与竖直方向夹角为α,由图可知,F 合=mg tan α又F 合=ma 向,故a 向=g tan α可见摆球的向心加速度完全由α决定,与摆线长无关,即与运动的半径无关.2.圆锥摆的周期T =2πhg由F 合=m 4π2T2·L sin α和F 合=mg tan α可推理得圆锥摆的周期T =2πL cos αg设摆球圆周运动的平面到悬点的距离为h ,则h =L cos α,故T =2πh g由此可见,圆锥摆的周期完全由悬点到运动平面的距离决定,与小球的质量、摆线长度无关.►二、竖直面内的圆周运动问题分析1.绳(单轨,无支撑,水流星模型):绳只能给物体施加拉力,而不能有支持力(如图所示).这种情况下有F +mg =mv 2R≥mg ,所以小球通过最高点的条件是v ≥gR ,通过最高点的最小速度v min =gR .(1)当v >gR 时,绳对球产生拉力,轨道对球产生压力.(2)当v <gR 时,球不能通过最高点(实际上球没有到最高点就脱离了轨道)2.外轨(单轨,有支撑,汽车过拱桥模型),只能给物体支持力,而不能有拉力.有支撑的汽车,弹力只可能向上,在这种情况下有:mg -F =mv 2R≤mg ,所以v≤gR ,物体经过最高点的最大速度v max =gR ,此时物体恰好离开桥面,做平抛运动.3.杆(双轨,有支撑):对物体既可以有拉力,也可以有支持力,如图所示.(1)过最高点的临界条件:v =0.(2)在最高点,如果小球的重力恰好提供其做圆周运动的向心力,即mg =mv 2R,v =gR ,杆或轨道内壁对小球没有力的作用.当0<v <gR 时,小球受到重力和杆(或内轨道)对球的支持力.当v >gR 时,小球受到重力和杆向下的拉力(或外轨道对球向下的压力).►三、圆周运动中的临界问题1.有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程中存在着临界点.2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程中存在着“起止点”,而这些起止点往往就是临界点.3.若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点.◤【典型例题】◢►题型一圆锥摆类问题分析【例1】如图所示,“旋转秋千”装置中的两个座椅A 、B 质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响.当旋转圆盘绕竖直的中心轴匀速转动时,下列说法中正确的是A .A 的速度比B 的大B .A 与B 的向心加速度大小相等C .悬挂A 、B 的缆绳与竖直方向的夹角相等D .悬挂A 的缆绳所受的拉力比悬挂B 的小【例2】两根长度不同的细线下面分别悬挂两个小球,细线上端固定在同一点。

匀速圆周运动的数学模型

匀速圆周运动的数学模型

匀速圆周运动的数学模型
匀速圆周运动是物理学中的一种基本运动形式,其数学模型是描述一个点绕圆心做速度大小不变的圆周运动。

该模型在数学上通常使用极坐标系来描述,其中半径r和角度θ是两个重要的参数。

在这个模型中,点在圆周上运动,其速度v的大小恒定,方向始终垂直于半径。

因此,速度v可以表示为:v = w×r,其中w是角速度,表示单位时间内转过的角度。

同时,向心加速度a n表示点向圆心运动的趋势,其大小为a n = v²/r。

另外,向心力F表示点受到的使它做圆周运动的力,其大小为F = m ×v²/r,其中m是点的质量。

而离心力则表示点离开圆心运动的趋势,其大小为F = m×w²×r。

这些公式构成了匀速圆周运动的数学模型,可以用来描述和分析圆周运动的各种性质和规律。

例如,通过向心加速度和向心力公式可以推导出角速度和半径之间的关系,也可以用来计算物体在圆周运动中的轨迹和运动规律。

总之,匀速圆周运动的数学模型是一个重要的工具,可以用来描述和分析圆周运动的各种性质和规律,在物理学、工程学等领域有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

vmax=
fmax+mgsin mcos θ
θr≈35.6
m/s。
[答案] (1)不会 (2)35.6 m/s
作业:
1、复习完善第二章笔记; 2、完成三维设计章末小结(看)p31页;阶段检测(二)
高一年级必修2第一章测试题
4.物体竖直上抛后又落向地面,设向上为速度的正方向,
则它在整个过程中速率v跟时间t的关系是图中的( A )
13.在研究平抛物体运动的实验中,用一张印有小方格的 纸记录轨迹,小方格的边长 L=1.6 cm.若小球在平抛运 动途中的几个位置如图中的 a、b、c、d 所示,则小球平 抛的初速度为 v0=_____,小球在 b 点的速率为_______。 (以上结果均保留两位有效数字, g=10 m/s2)
13. 0.80m/s;1.0m/s
[解析] (1)赛车在水平场地转弯时,由静
摩擦力提供其转弯所需的向心力。当 v=72
km/h=20 m/s 时,赛车所需的向心力
v2 F=m r =400 N<600 N, 可见静摩擦力可以提供圆周运动所需的向心力,故赛车
不会发生侧移。
图 2-1
(2)若将场地建成外高内低的圆形,则赛车做匀速圆周
运动的向心力由重力 mg、支持力 N 和静摩擦力的合力来提
Fb=mω2·2R=2mω2R。 (2)对球M,受力如图乙所示,其做圆周运动的半径为R,根 据牛顿第二定律有 Fa-Fb′=mω2R Fb=Fb′ 解得Fa=Fb′+mω2R=3mω2R。 答案:(1)2mω2R (2)3mω2R
课时跟踪训练质量检测(二)p101页
答案:A
F拉D
A.它们的位移s甲=s乙 B.它们落地时的速度v甲=v乙 C.它们的速度增量Δv甲=Δv乙 D.它们在空中运动的时间t甲<t乙
12. 如图所示,小车A以速度v水平向右匀速
运动牵引物体B上升,在此过程中(BC )
A.物体B减速上升 B.物体B加速上升 C.绳子的拉力大于物体B的重力 D.绳子的拉力小于物体B的重力
平抛+圆周运动模型
作业: 1、完成三维设计及课时跟踪训练; 2、整理错题集并做好第一次段考的复习,段考之后 将对每个人的笔记本(包括错题集)、三维设计进行 一次大检查,尤其是物理平时不交作业的并且成绩不 理想的。
水流星(无支撑)
过山车(无支撑)
(二)杆模型(有支撑) 能过最高点的条件: v 0
匀速圆周问题的解题步骤 (1)确定做圆周运动的物体为研究对象。 (2)找出物体做圆周运动的轨道平面、圆心位置和半径。 (3)对研究对象进行受力分析,画出受力示意图。 (4)运用平行四边形定则或正交分解法求出外界提供的合 力 F 合。 (5)根据向心力公式 F=ma=mvr2=mrω2=mr4Tπ22=mvω, 选择一种形式确定物体所需要的向心力。 (6)根据 F 合=F 建立方程求解。
匀速圆周运动的常见模型分类
1.汽车在水平路面上转弯
N
F
G
向心力F由车轮与路面间的静摩 擦力来提供。如果转弯时汽车速 度过快,则这个静摩擦力不足以 提供汽车所需的向心力,汽车就 容易滑出路面,造成交通事故。
2.汽车(或火车)在倾斜路面上转弯
mg tan m v临2
R
v临
gR tan
(1)当v等于 gR tan时不受摩擦力(或压力)
[例证1] 某游乐场里的赛车场地为圆形水平面,半径 为100 m,一选手和赛车的总质量为100 kg,车轮与地面间 的最大静摩擦力为600 N。
(1)若赛车的速度达到72 km/h,这辆车在运动过程中会 不会发生侧移?
(2)若将场地建成外高内低的圆形,且倾角θ=30°,并 假设车轮和地面之间的最大静摩擦力不变,为保证赛车的 行驶安全,赛车最大行驶速度应为多大?(取g=10 m/s2)
供,图 2-1 所示为赛车做圆周运动的后视图(赛车正垂直
纸面向里运动)。赛车以最大速度 vmax 行驶时,地面对赛车的 摩擦力为最大静摩擦力 fmax。受力分析如图所示,利用正交分 解法列方程
水平方向有 Nsin θ+fmaxcos θ=mvmrax2 竖直方向有 Ncos θ-fmaxsin θ-mg=0 联立以上两式得
r
(超重)
4.圆锥摆问题
F拉
l
F向
mg
r l sin
F向 mg tan
F向 mg tan
F向
mg
tan
5. 竖直面内圆周运动的临界问题
关于物体在竖直平面内做变速圆周运动的问题,中学物理中只研
究物体通过最高点和最低点时的情况,并且经常出现临界状
态。
(一)绳模型(无支撑)
生活中的绳模型(无支撑)
三维设计章末小结:专题冲关 p30页第3题
3.如图2-7所示,OM=MN=R。两个 小球M、N质量都是m,a、b为水平 轻绳,且沿同一条半径。两小球正随 水平圆盘以角速度ω匀速同步转动。 小球和圆盘间的摩擦力可以不计。求: (1)绳b对小球N的拉力大小; (2)绳a对小球M的拉力大小。
解析:(1)对球N,受力如图甲所示,其做圆周运动的半径为 2R,根据牛顿第二定律有
(2)当v大于 gR tan时受到指向内侧的摩擦力(或压力)
(3)当v小于 gR tan时受到指向外侧的摩擦力(或压力)
3.拱形桥问题
(1)凸形路面 N
v
a向
G
v2
GN m
r
N G m v2 (失重)
r
注:当 v gr
时汽车对桥的压力为零。
(2)凹形路面 N
a向
v
G
N G m v2 r
v2 N Gm G
(空气阻力不考虑)
6.在平面上运动的物体,其x方向分速度vx和y方向分速度 vy随时间t变化的图线如左图中的(a)和(b)所示,则
右图中最能反映物体运动轨迹的是 ( C )
vx
0
(a)
t
vy
0
(b)
t
11. 在同一高度处,分别以相等的速率竖直上抛 物体甲、竖直下抛物体乙,最后都落到地面.那
么( AB )
相关文档
最新文档