69谐振腔的纵模及驻波条件.

合集下载

光学谐振腔的选频纵模沿光学谐振腔纵向形成的每一种稳定的谱线

光学谐振腔的选频纵模沿光学谐振腔纵向形成的每一种稳定的谱线

2)横模
激光光强沿谐振腔横向的每一种稳定的模式
产生横模的主要原因:谐振腔两端反射镜的衍射作用和初始自发辐射的多样性
基模 轴 对 称 分 布 旋 转 对 称 分 布
高阶横模
基横模在激光光束的横截面上各点的相位相同, 空间相干性最好。
基横模光束质量高 高阶横模输出功率大
没有特殊要求通常都选择基横模输出 基横模输出的特点: •亮度高 •发散角小 •光束横截面上径向光强分布较均匀 •横截面上各点的相位相同 空间相干性最好
1.3 10 9 Hz
v c / 3 10 /(0.632810 )
8 6
5 103 10 14 5 10
9
而为什么He—Ne激光器输出激光的
Δ

会小到10 - 15 呢?
原因: 光在谐振腔两端来回反射要产生干涉
k=1
可以存在的纵模频率为
k=2
k=3 L
k
相邻两个纵模频率的间隔为 c k 2nL
谐振腔类型
激光器有两个反射镜,它们构成一个光学谐振腔。
激励能源

全反射镜
激光
部分反射镜
2. 光学谐振腔—模
光在激光谐振腔中振荡的特定形式称为激光的模式。 纵模:激光器输出频率的个数 横模:激光束横截面的光强分布规律 纵模: 单纵模、多纵模 横模: 基模、高阶模
对 0.6328 m ——R1、R2大, ——Gm 小(易满足阈值条件,形成激光) ;
对 1.15 m 、3.39 m ——R1、R2小
—— Gm大(不满足阈值条件,不能形成激光)。
小结: 激光器的三个主要组成部分
1.激活介质: 有合适的能级结构
能实现粒子数反转

浅谈光学谐振腔

浅谈光学谐振腔

浅谈光学谐振腔摘要:光学谐振腔是激光器的基本组成部分之一,是用来加强输出激光的亮度, 调节和选定激光的波长和方向的装置,从真空紫外到远红外的绝大部分激光系统都使用了光学谐振腔。

本文从光的传播矩阵推导了谐振腔的稳定条件和光腔损耗,并解释了横模形成的原因。

最后介绍了自由电子激光器谐振腔、微腔和X 射线激光腔。

关键词:激光;谐振腔;自由电子激光腔;微腔1激光1.1激光简介激光器的发明是20世纪科学技术的一项重大成就。

激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。

激光具有方向性好、单色性好能量集中、相干性好等特点。

正因为激光器具备的这些突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破[1]。

1.2激光器的分类(1)按工作物质分类:根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体激光器(晶体和玻璃);②气体激光器;③液体激光器;④半导体激光器;⑤自由电子激光器。

(2)按激励方式分类:①光泵式激光器;②电激励式激光器;③化学激光器;④核泵浦激光器。

(3)按运转方式分类:由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。

①连续激光器;②单次脉冲激光器;③重复脉冲激光器;④可调激光器;⑤锁模激光器;⑥单模和稳频激光器;⑦可调谐激光器[2]。

(4)按输出波段范围分类:根据输出激光波长范围之不同,可将各类激光器区分为以下几种:①远红外激光器;②中红外激光器;③近红外激光器;④可见激光器;⑤近紫外激光器;⑥真空紫外激光器;⑦X射线激光器,目前软X 射线已研制成功,但仍处于探索阶段[1]。

1.3激光器的组成任何一种激光器,其基本结构都可以分为三部分:(1)工作物质,用来产生受激发射;(2)激励(泵浦)装置,用来激励工作物质以获得粒子数反转;(3)光学共振腔,用来维持受激发射的持续振荡,并限制产生振荡的光子的特征(行进方向、波长等)。

光学谐振腔的衍射理论

光学谐振腔的衍射理论

2.数值例:
(1) CO2激光器 : λ=10.6μm λ=0.5145μm
△vF≈108s-1
L=1m
△vq=1.5×108s-1
激光器输出单模 L=1m
(2)氩离子激光器:
△vF≈6×108s-1
△vq=1.5×108s-1
激光器多模输出
形成激光振荡的条件: 1. 满足谐振条件 q q 2L 2. 满足阈值条件
图3-3 横模光斑示意图
(2).(横模) 标记:
TEM mn m, n —— 横模序数
(3)本征值 mn 和单程衍射损耗、单程相移 本征值 mn 的模反映了自再现模在腔内单程渡越时所引起的 功率损耗。
(4)本征值 mn 和单程衍射损耗、单程相移 损耗包括衍射损耗和几何损耗,但主要是衍射损耗,称为 单程衍射损耗,用 表示。定义为 2 2 uq uq1 2 2 mn 1 mn uq uq1 uq 本征值幅角与自再现模腔内单程渡越后所引起的总相移有关。
vF 1500106 m 10 8 vq 1.5 10
2 2q q 1,2,3,
(2).腔内产生驻波的条件 *(光学腔长等于半波长的整数倍)
L L q
'
0 q
2
vq
c
0 q
——谐振频率
其它波长(频率)都被相消干涉所淘汰,只有 0q( v0 q )才能产生 振荡,可通过改变L来选择 0q ( v0 q)故称为选频。 从能量重新分布的角度来考虑,v0 q 的能量被加强了,其他频率的 被减弱了。
c
G a总
3. 落在工作物质原子荧光线宽范围内的频率成分
六.
工作物质饱和效应的影响

17 光学谐振腔基本知识

17 光学谐振腔基本知识

(二)横模:指可能存在于腔内的每一种横向场分布,用 模序数m和n描述。 激光横模式的特征与谐振腔的几何结构紧密相连,知 道了腔的几何参数,如腔长、两个反射镜面的孔径尺寸和 曲率半径,就可以确定腔内可能存在的各种激光模式的性 质,例如场的横向分布、谐振频率、单程衍射损耗率、远 场发散角等。 二、无源腔损耗 激光工作物质被泵浦源激发后,对发光的放大作用主 要表现在他们补偿激光模式的能量损耗,使之满足振荡的 阈值条件,从而形成并维持激光模式的振荡。它对光场的 空间分布、谐振频率。损耗、发散角等模式特征的影响是 次要的。
c v q 2 L
同样长度的谐振腔,固体激光器的本征纵模频率间隔 要小于气体激光器,而同种激光工作物质的激光器,谐振 腔越短,本征纵模的频率间隔就越大。
五、菲涅耳数 在描述光学谐振腔的工作特性时,经常用到菲涅尔数这 个概念,它的定义为:
a2 F L
式中:a——反射镜线度
菲涅耳数的物理意义可以有多种不同的解释,下边我 们分别简单说明: 1. 衍射光的腔内的最大往返次数 ; 2. 从一面镜子的中心看另一面镜子的菲涅耳半波带数;
若腔内各种损耗所引起的腔寿命分别为 τci,则腔的总寿 命为: 1 1 (1-7-31) c i ci (三)腔Q值 与LC谐振电路相似,光学谐振腔与可以用品质因数Q来描 述(1-7-32)
式中:E——储存在腔内的总能量 P——单位时间所损耗的能量 ν——腔内电磁场的振荡频率
(1-7-38)
三、无源腔本征纵模线宽 由于无源腔存在损耗模式的腔内本征纵模的光场振幅 随时间按指数规律衰减。又频谱分析理论可知,这种光场 的谱线有一定的线宽。下面我们来简要推导一下: 因为光强与光场振幅的平方成正比,可以写出光场振 幅随时间的变化规律为:

激光技术——激光谐振腔

激光技术——激光谐振腔
2
平行平面腔中平面波的往返传播

q 驻波条件(光波波长和平行平面腔腔长): L q 2 q 2
谐振频率(频率和平行平面腔腔长):
2009 湖北工大理学院
Байду номын сангаас

2L q 2
光腔中的驻波
C q q 2L
9
纵模-纵向的稳定场分布

激光的纵模(轴模):由整数q所表征的腔内纵向稳定场分布 整数q称为纵模的序数,驻波系统在腔的轴线上零场强度的数目
湖北工大理学院
一般球面腔 R<L<2R
5
第一节 光学谐振腔的作用
1. 提供光学正反馈作用 :
使得振荡光束在腔内行进一次 时,除了由腔内损耗和通过反 射镜输出激光束等因素引起的 光束能量减少外,还能保证有 足够能量的光束在腔内多次往 返经受激活介质的受激辐射放 大而维持继续振荡。


2. 产生对振荡光束的控制作用
光学谐振腔的构成
光学谐振腔的种类



谐振腔的开放程度,闭腔、开腔、气体波导腔 开放式光学谐振腔(开腔)通常可以分为稳定腔、 非稳定腔 反射镜形状,球面腔与非球面腔,端面反射腔 与分布反馈腔 反射镜的多少,两镜腔与多镜腔,简单腔与复 合腔
2009
湖北工大理学院
2
闭腔、开腔、气体波导腔
这是激光技术历史上最早提 出的平行平面腔(F-P腔)。 后来又广泛采用了由两块具 有公共轴线的球面镜构成的 谐振腔。从理论上分析这些 腔时,通常认为侧面没有光 学边界,因此将这类谐振腔 称为开放式光学谐振腔,简 称开腔
第一节 光学谐振腔的构成
最简单的光学谐振腔是在激活介质两端恰当地放置两个镀有高反射率的反射 镜构成。

激光原理简答题整理

激光原理简答题整理

1.什么是光波模式答:光波模式:在一个有边界条件限制的空间内,只能存在一系列独立的具有特定波矢的平面单色驻波。

这种能够存在于腔内的驻波(以某一波矢为标志)称为光波模式。

2.如何理解光的相干性何谓相干时间、相干长度答:光的相干性:在不同的空间点上、在不同的时刻的光波场的某些特性的相关性。

相干时间: 光沿传播方向通过相干长度所需的时间,称为相干时间。

相干长度:相干光能产生干涉效应的最大光程差,等于光源发出的光波的波列长度。

3.何谓光子简并度,有几种相同的含义激光源的光子简并度与它的相干性什么联系答:光子简并度:处于同一光子态的光子数称为光子简并度。

光子简并度有以下几种相同含义: 同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。

联系: 激光源的光子简并度决定着激光的相干性,光子简并度越高,激光源的相干性越好。

4.什么是黑体辐射写出公式,并说明它的物理意义。

答:黑体辐射:当黑体处于某一温度的热平衡情况下,它所吸收的辐射能量应等于发出的辐射能量,即黑体与辐射场之间应处于能量(热)平衡状态,这种平衡必然导致空腔内存在完全确定的辐射场,这种辐射场称为黑体辐射或平衡辐射。

物理意义:在单位体积内,频率处于附近的单位频率间隔中黑体的电磁辐射能量。

5.描述能级的光学跃迁的二大过程,并写出它们的特征和跃迁几率。

答:(1)自发辐射:处于高能级的一个原子自发的向跃迁,并发射一个能量为hv的光子,这种过程称为自发跃迁,由原子自发跃迁发出的光波称为自发辐射。

特征:a)自发辐射是一种只与原子本身性质有关而与辐射场无关的自发过程,无需外来光。

b)每个发生辐射的原子都可看作是一个独立的发射单元,原子之间毫无联系而且各个原子开始发光的时间参差不一,所以各列光波频率虽然相同,均为V,各列光波之间没有固定的相位关系,各有不同的偏振方向,而且各个原子所发的光将向空间各个方向传播,即大量原子的自发辐射过程是杂乱无章的随机过程,所以自发辐射的光是非相干光。

第二章 激光谐振腔技术选模及稳频技术

第二章 激光谐振腔技术选模及稳频技术

从波动光学观点来看,由于腔反射镜面几何尺寸是入其他光 学元件,还应当考虑其边缘或孔径的衍射引起的损耗。通常将这类损耗称 为衍射损耗,其大小与腔的菲涅耳数、腔的几何参数以及横模阶数等有关。
激光谐振腔设计基础
光学谐振腔的损耗
t L' c
I 0e

t
R
τR称为腔的时间常数,是描述光腔性质的重要参数,当t =τR时,
I(t ) I 0 / e
激光谐振腔设计基础
光学谐振腔的损耗
τR的物理意义
经过τR时间后,腔内光强衰减为初始值的1/e。δ愈大,τR愈小,说明腔的损 耗愈大,腔内光强衰减得愈快。 可以将τR解释为“光子在腔内的平均寿命”。设t时刻腔内光子数密度为N,N 与光强I(t)的关系为:
激光腔模式及选模技术
激光腔模式
由于腔内电磁场的本征态由Maxwell方程组和腔的边界条件决定,因 此不同类型和结构的谐振腔的模式也将各不相同。一旦给定了腔的 具体结构,其中振荡模的特征也就随之确定下来。光学谐振腔理论 就是研究腔模式的基本特征,以及模与腔结构之间的具体依赖关系。 原则上说.只要知道了腔的参数,就可以唯一地确定模的上述 特征。 腔内电磁场的空间分布可分解为沿传播方向(腔轴线方向)的分布和在 垂直于传播方向的横截面内的分布。其中,腔模沿腔轴线方向的稳定 场分布称为谐振腔的纵模,在垂直于腔轴的横截面内的稳定场分布称 为谐振腔的横模
c c 2nL 2 L '
激光腔模式及选模技术
激光腔模式
(2)横模 这种稳态场经一次往返后,唯一可能的变化仅是,镜面上各点场的振幅按 同样的比例衰减,各点的相位发生同样大小的滞后。 镜面上各点场的振幅按同样的比例衰减,各点的相位发生同样大小的滞后。 这种在腔反射镜面上形成的经过一次往返传播后能自再现的稳定场分布称 为自现模或横模。 对于两个镜面完全相同的对称腔来说,这种稳定场分布经单程传播后即可 实现自再现。 综上所述,激光的横模,实际上就是谐振腔所允许的(也就是在腔内往返 传播,能保持相对稳定不变的)光场的各种横向稳定分布。

第10讲 光学谐振腔-纵模、横模要点

第10讲 光学谐振腔-纵模、横模要点

10.1.3 腔内的多纵模振荡
• 频率漂移
2 L – 对某个腔内纵模q: – 由此可知,当腔长L或者折射率η发生 变化时,纵模的谐振频率也会发生变化。 q 这种振荡频率随外界环境变化而发生缓 慢变化的现象称为频率漂移。 T 0 – 假设腔内纵模频率会随温度发生变化, 如图所示,当温度为T0时,只有νq能 t0 够振荡;当温度为T2时,νq漂出ΔνT 的范围,而νq+1漂进ΔνT ,则腔内模 式发生了变化,称为跳模现象
u 2 ( x, y )


S2 L
10.3 开腔衍射理论分析
• 经过q次传播后: • 将第一个假设带入其中有:
ik uq 1( x, y) 4

S1
uq( x ', y ')
e ik

(1 cos )ds '
• 由开腔理论中描述的自再现模的定义可知,在开腔内稳定 传输的光波模式应满足关系: 1 u • 在稳定情况下,uq从镜面S1传播到S2时,除 q 1 uq 了一个表示振幅衰减和相位移动的、与坐标 1 uq 2 uq 1 无关的复常数因子γ外, 其分布能够被 uq+1再现。
i ik uq 1( x, y ) uq ( x ', y ')e ds ' L S1
10.3 开腔衍射理论分析
i ik uq ( x, y ) uq ( x ', y ')e ds ' L S ik uq 1( x, y ) i uq 1( x ', y ')e ds ' L S
10.2 开腔模式的物理概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档