流式细胞仪(Flow Cytometer)基本原理

合集下载

流式细胞仪工作原理

流式细胞仪工作原理

流式细胞仪工作原理流式细胞仪(Flow Cytometer)是一种广泛应用于生物医学研究和临床诊断的仪器,它可以快速、准确地分析和计数细胞、细胞群和微粒。

流式细胞仪的工作原理主要包括样本流动系统、激发光源、光学系统、信号检测系统和数据分析系统。

1. 样本流动系统:流式细胞仪的样本流动系统由进样装置、样本流路和废液收集系统组成。

样本通过进样装置被注入到流动细胞仪中,进入样本流路后以恒定的速度流动。

废液收集系统用于收集已经分析过的样本。

2. 激发光源:流式细胞仪通常使用激光器作为激发光源。

激光器产生的单色激光通过光纤传输到流式细胞仪中,激光的波长可以根据需要进行选择。

常用的激光器波长包括488nm、532nm和633nm等。

3. 光学系统:流式细胞仪的光学系统包括激发光源、光学滤光片、透镜、光电倍增管(PMT)和散射光探测器等。

激发光源照射样本时,样本中的细胞或微粒会发生荧光或散射现象。

光学滤光片用于选择特定波长的荧光信号或散射信号,透镜用于聚焦光线,PMT用于接收和放大荧光信号或散射信号。

4. 信号检测系统:流式细胞仪的信号检测系统主要由光电倍增管(PMT)和散射光探测器组成。

PMT是一种高灵敏度的光电探测器,能够将荧光信号或散射信号转换为电信号。

散射光探测器用于检测样本中的散射光信号,可以分析细胞的大小和形状等信息。

5. 数据分析系统:流式细胞仪的数据分析系统主要包括计算机和相关的数据分析软件。

通过数据分析软件,用户可以对采集到的数据进行处理、分析和图形展示。

常用的数据分析软件包括FlowJo、CellQuest和ModFit等。

流式细胞仪的工作原理是基于细胞或微粒在激光照射下发生荧光或散射现象,通过光学系统收集和检测这些信号,并通过数据分析系统对信号进行处理和分析。

流式细胞仪可以实现对细胞的表型、功能和数量等多个方面的分析,广泛应用于免疫学、细胞生物学、肿瘤学等领域。

以上就是流式细胞仪的工作原理的详细介绍。

流式细胞仪(Flow Cytometer)基本原理

流式细胞仪(Flow Cytometer)基本原理

流式细胞术的特点
检测对象:单细胞悬液或生物颗粒; 检测参数:多参数; 检测特点:单细胞水平分析; 检测速度:高速,最高达上万个细胞/秒; 检测结果:精度高、准确性好; 可对目标细胞进行分选;
2、流式细胞术光信号检测
光信号的类型 散射光信号:与标记荧光素无关,
是细胞的固有参数。
FL1-FITC stain
D、 FMO对照
多色实验中,阴性对照和单染对照并不是严谨的设门对照, FMO对照区分阴性群体和阳性群体更准确。
Fluorescence Minus One 荧光减一对照
(-) PE
FITC
PE
补偿调节引起背景荧光增强。 颜色越多背景荧光越强,限制了多色流式技术的发展。
C、 单标对照 Single Staining Control
由于荧光素的宽发射谱特点,荧光通道间有光谱重叠现象。 多色流式实验的时候需要通过补偿调节消除光谱重叠影响。
FL1 530/30 FL2 585/42
FITC 发射谱
PE 发射谱
Wavelength
补偿调节方法:
FL-2(PE)
1、流式细胞术简介
流式细胞术(Flow Cytometry,FCM)是以流式细胞仪为检 测手段的一项能快速、精确的对单个细胞(或生物学颗粒)的 理化特性进行多参数定量分析和分选的技术。
流式细胞仪(Flow Cytometer )是集细胞与分子生物学、 流体力学、激光技术、光电子技术、计算机技术、细胞荧光 化学技术、单克隆抗体技术为一体的一种高科技仪器。
粘连 细胞 死细胞
死细胞 或碎片
肿瘤细胞株FSC/SSC散点图
加药处理后FSC/SSC散点图

流式细胞仪工作原理

流式细胞仪工作原理

流式细胞仪工作原理流式细胞仪(Flow Cytometer)是一种用于细胞分析和排序的仪器。

它可以快速、高效地分析和计数细胞,同时还能够检测细胞的大小、形状、荧光强度等特征。

流式细胞仪的工作原理主要包括样本处理、细胞悬浮液注入、细胞流动、激发光源、荧光信号检测和数据分析等步骤。

1. 样本处理:在使用流式细胞仪之前,需要对样本进行处理。

通常,样本可以是细胞悬液、细胞培养物或组织样本。

处理包括细胞的收集、离心、洗涤和染色等步骤,以确保样本中的细胞均匀分散并且具有所需的荧光标记。

2. 细胞悬浮液注入:处理后的样本被注入到流式细胞仪的样本室中。

样本室是一个细长的管道,具有一个小孔,称为流动汇聚点。

细胞悬浮液通过流动汇聚点进入流动汇聚室。

3. 细胞流动:细胞悬浮液在流动汇聚室中形成一个窄而稳定的流动柱。

这是通过使用压力或重力来维持的。

细胞流动的速度可以根据需要进行调整。

4. 激发光源:流式细胞仪使用激光或其他光源来激发细胞中的荧光物质。

激发光源通常是单色或多色的,并且具有特定的波长。

当细胞通过激发光源时,荧光标记的分子会吸收光能并发射出特定的波长的荧光。

5. 荧光信号检测:流式细胞仪使用一组光学器件来检测细胞发出的荧光信号。

这些光学器件包括滤光片、光学透镜和光电倍增管。

滤光片用于选择特定波长的荧光信号,光学透镜用于聚焦荧光信号,光电倍增管用于将荧光信号转化为电信号。

6. 数据分析:流式细胞仪将检测到的荧光信号转化为数字信号,并将其传输到计算机上进行数据分析。

数据分析软件可以对细胞进行计数、分类和排序,同时还可以生成细胞分析报告。

流式细胞仪的工作原理基于细胞的荧光特性和光散射特性。

荧光标记的抗体、荧光染料或荧光蛋白可以与特定的细胞成分结合,并通过检测发出的荧光信号来分析细胞的特征。

此外,细胞的大小、形状和复杂性也可以通过检测散射光来进行分析。

总结起来,流式细胞仪通过将样本中的细胞悬浮液注入到流动柱中,利用激发光源激发荧光标记物,通过荧光信号检测器检测荧光信号,并将其转化为数字信号进行数据分析。

流式细胞仪(FlowCytometer)基本原理汇总.

流式细胞仪(FlowCytometer)基本原理汇总.
SSC方向与激光束和液流形成的平面相垂直,亦称90度散射 光,其信号强度反映细胞内部颗粒度和精细结构的变化。
散射光的作用
实验中,常利用FSC和SSC这两种参数的组合,区分不同的细 胞群体,去除碎片、死细胞和粘连细胞的干扰。
红细胞、死细胞和碎片
粒细胞 单核细胞 淋巴细胞
通过FSC/SSC散点图,gate出目标细胞进行分析。
1、流式细胞术简介
流式细胞术(Flow Cytometry,FCM)是以流式细胞仪为检 测手段的一项能快速、精确的对单个细胞(或生物学颗粒)的 理化特性进行多参数定量分析和分选的技术。
流式细胞仪(Flow Cytometer )是集细胞与分子生物学、 流体力学、激光技术、光电子技术、计算机技术、细胞荧光 化学技术、单克隆抗体技术为一体的一种高科技仪器。
FL1
5% 默认阈值
32% 升高阈值后
荧光素和荧光信号
荧光: 荧光素的电子吸收光的能量由低能态转变为高能态, 再回到低能态时释放出的光。
< 激发波长
Excitation wavelength
发射波长(荧光波长) Emission wavelength
常用荧光素
<499nm :蓝色荧光(Blue);
流式细胞术的特点
检测对象:单细胞悬液或生物颗粒; 检测参数:多参数; 检测特点:单细胞水平分析; 检测速度:高速,最高达上万个细胞/秒; 检测结果:精度高、准确性好; 可对目标细胞进行分选;
2、流式细胞术光信号检测
光信号的类型 散射光信号:与标记荧光素无关,
是细胞的固有参数。 前向散射光(forward scatter, FSC); 侧向散射光(side scatter, SSC)。

流式细胞仪工作原理

流式细胞仪工作原理

流式细胞仪工作原理流式细胞仪(Flow Cytometry)是一种广泛应用于生物医学研究领域的仪器,它能够对单个细胞进行快速、高效的分析和排序。

流式细胞仪的工作原理是利用激光照射细胞,测量细胞在流动状态下的荧光和散射信号,从而获取细胞的多种特征信息。

本文将详细介绍流式细胞仪的工作原理,以及其在生物医学研究中的应用。

首先,流式细胞仪的工作原理基于细胞在流动状态下对激光的反射和荧光发射。

当细胞悬浮在流体中通过激光束时,细胞会散射激光光线并发出荧光信号。

流式细胞仪通过收集这些散射光和荧光光信号,并对其进行检测和分析,从而获得细胞的多种信息,如大小、形状、表面标记物、细胞器的含量等。

其次,流式细胞仪的核心部件包括激光系统、光学系统、流体系统和信号检测系统。

激光系统用于产生激光束,不同波长的激光可用于激发不同荧光染料;光学系统用于聚焦激光束和收集散射光和荧光光信号;流体系统用于将细胞悬浮液以单个细胞的方式输送到激光束中;信号检测系统则用于检测和记录细胞发射的光信号。

这些部件协同工作,使得流式细胞仪能够高效地对细胞进行分析和排序。

流式细胞仪在生物医学研究中有着广泛的应用。

首先,它可以用于表征和分析不同类型的细胞。

通过对细胞的大小、形状、表面标记物等特征进行分析,可以帮助科研人员更好地了解细胞的功能和特性。

其次,流式细胞仪还可以用于细胞的分选和分离。

科研人员可以根据细胞的特征,利用流式细胞仪将不同类型的细胞进行分选和分离,从而获得纯度较高的细胞群。

此外,流式细胞仪还可以用于检测和分析细胞内的蛋白质、核酸和其他生物分子,对于疾病诊断、药物筛选等方面有着重要的应用价值。

总之,流式细胞仪通过激光照射细胞,测量细胞在流动状态下的荧光和散射信号,从而获取细胞的多种特征信息。

它在生物医学研究中有着广泛的应用,可以帮助科研人员更好地了解细胞的特性,进行细胞的分选和分离,以及分析细胞内的生物分子。

随着技术的不断进步,流式细胞仪将在生物医学研究领域发挥越来越重要的作用。

流式细胞术基本原理与实用技术

流式细胞术基本原理与实用技术

流式细胞术基本原理与实用技术流式细胞术(Flow Cytometry)是一种常用的细胞分析技术,它基于光学、电子和计算机技术,能够对单个细胞进行快速、准确的多参数分析。

本文将介绍流式细胞术的基本原理和实用技术。

一、基本原理流式细胞术的基本原理是利用细胞在液体中悬浮的特性,在流动状态下通过一个细胞计数器,同时对细胞进行多参数的检测和分析。

其主要包括以下几个步骤:1. 细胞样品的制备:将待检测的细胞样品进行预处理,如离心、洗涤等,以获得单细胞悬浮液。

2. 细胞的进样:将细胞悬浮液通过微细管道进入流式细胞仪的流动系统中,形成单细胞的液体流。

3. 细胞的定位和聚焦:利用激光束对细胞进行定位和聚焦,使其逐个通过探测区域。

4. 细胞的激发和发射:通过激光束的照射,激发细胞中的荧光染料或标记物,使其发射特定波长的荧光信号。

5. 光信号的收集和处理:收集细胞发射的荧光信号,并经过光学系统进行分光、分束、分光和聚焦,最后通过光电倍增管或光电二极管转换为电信号。

6. 数据的获取和分析:将电信号转化为数字信号,并通过计算机系统进行数据采集、存储和分析,得到细胞的各项参数及相关统计学分析。

二、实用技术1. 细胞标记技术:为了能够准确地检测和分析细胞的特定性质,常常需要对细胞进行特异性的染色或标记。

常用的标记方法包括荧光染料、抗体标记和基因表达标记等。

2. 多参数分析技术:流式细胞术可以同时检测多个参数,如细胞大小、形态、表面标记物的表达、细胞周期等。

通过合理选择和配置荧光染料和滤光片组合,可以实现多重标记和多参数分析。

3. 数据分析软件:流式细胞术产生的数据量庞大,需要借助计算机软件进行数据的分析和解读。

常用的数据分析软件有FlowJo、CellQuest、ModFit等,它们可以对细胞的分布、比例、相关性等进行统计学分析和图形展示。

4. 高通量流式技术:随着科学研究的深入和技术的发展,高通量流式技术逐渐兴起。

它通过提高仪器的样品处理速度和自动化程度,实现对大量样品的快速检测和分析,广泛应用于生物医学研究和临床诊断。

流式细胞仪工作原理

流式细胞仪工作原理

流式细胞仪工作原理
流式细胞仪是一种用于细胞分析的高效、准确且灵活的仪器。

它主要通过光学原理和流体力学原理来实现对细胞的分析和计数。

具体来说,流式细胞仪的工作原理如下:
1. 光学系统:流式细胞仪通过激光器产生一束单色、相干、高强度的光束,常用的激光器有氩离子激光器、固态激光器等。

该光束经过特殊的光学透镜系统聚焦成一个细小的光点。

2. 将细胞样品注入流式细胞仪:样品一般为细胞悬液,可通过注射器或管道将其引入流式细胞仪。

为了保持细胞在单一层面通过光束,样品会与缓冲液混合并通过一个细管。

3. 流动系统:样品通过流动系统以一定的速度从流式细胞仪中流过。

流速可根据需要调节,通常为每秒几百到几千个细胞。

4. 切割和激发:当流过的细胞出现在光束中时,光束被活化和切割成小块,使每个细胞都接收到光的作用。

激发光束的颜色和波长取决于所使用的荧光探针。

5. 检测系统:流式细胞仪中的探测器可以检测细胞对光的散射和荧光。

流经的细胞会散射光,通过散射光的强度和角度测量可以获取细胞的大小、形态和复杂性等信息。

另外,如果细胞标记了荧光染料,探测器还可以检测荧光信号的强度和颜色。

6. 数据分析:流式细胞仪通过计算机对检测到的荧光和散射信号进行处理和分析。

可以对细胞进行计数、分类和排序,并生成各种图表和图像来描述细胞的特征和分布。

通过以上步骤,流式细胞仪可以快速、准确地分析细胞的各种参数,如大小、形态、表面标记物的表达水平以及细胞在特定条件下的生存率等,从而提供宝贵的细胞学数据。

流式细胞仪工作原理

流式细胞仪工作原理

流式细胞仪工作原理流式细胞仪(Flow Cytometer)是一种广泛应用于生物医学研究领域的仪器,用于分析和计数细胞、细胞内份子和细胞表面标记物。

它通过将细胞或者颗粒悬浮液通过一个细长的流动通道,并使用激光束照射样本,测量样本中的荧光和散射信号来获取细胞的信息。

流式细胞仪的工作原理可以分为以下几个步骤:1. 细胞或者颗粒的制备:样本通常是细胞悬液,可以从组织、血液或者其他样本中获得。

在进入流式细胞仪之前,样本需要经过预处理步骤,如细胞溶解、染色或者标记。

2. 样本注射:样本通过一个注射器被注入到流动通道中。

为了保持单个细胞的分离,样本注射速度需要控制在一定范围内。

3. 细胞定位:样本进入流动通道后,细胞会以单个细胞的形式通过激光束。

流式细胞仪中的光学系统包括一个激光器和一组光学镜片,用于聚焦激光束并将其定位在流动通道中。

4. 光散射和荧光检测:当细胞通过激光束时,它们会散射出光线,并且某些细胞还会发出荧光。

流式细胞仪使用一组光学镜片和探测器来采集这些散射和荧光信号。

光散射信号提供了关于细胞大小和形状的信息,而荧光信号则提供了关于细胞内份子的信息。

5. 数据分析:流式细胞仪采集到的信号会被转化为数字信号,并通过计算机进行处理和分析。

使用专业的流式细胞仪分析软件,可以对细胞进行分类、计数和分析。

流式细胞仪的工作原理基于光学原理和细胞生物学原理。

通过测量细胞的光散射和荧光信号,可以获得关于细胞的许多信息,如大小、形状、表面标记物的表达水平等。

这使得流式细胞仪成为生物医学研究中不可或者缺的工具,广泛应用于细胞生物学、免疫学、肿瘤学等领域。

流式细胞仪的工作原理使得研究人员能够更深入地了解细胞的结构和功能,从而推动了生物医学研究的发展。

它的高通量、高灵敏度和多参数分析的特点使得研究人员能够更加全面地研究细胞的特性和相互关系,为疾病诊断和治疗提供了重要的依据。

流式细胞仪的工作原理的不断改进和创新将进一步推动生物医学研究的发展,为人类健康做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FL-2(-)
FITC 单标
FL2 - %FL1
Before Compensation
FL-1(FITC)
FL-1(FITC)
PE 单标
FL-2(PE)
FL1 - %FL2
FL-2(PE)
After Compensation
FL-1(FITC)
FL-1(-)
什么样的补偿最合适?
单染管的阴性群体和阳性群体在所需调节通道的荧光Median 值相等时为最合适的补偿。
非特异性染色
抗体的Fc段可以与细胞表面的Fc受体非特异性结合; 抗体进入胞内,不容易洗脱,造成非特异性染色。
同型对照是指使用与实验抗体相同种属来源、相同剂量及同 种免疫球蛋白的相同亚型的抗体作为对照,用于消除抗体非 特异性结合到细胞上而产生的背景荧光。
实验抗体:FITC-CD3单克隆抗体为鼠IgG1亚型抗体; 同型对照:未免疫小鼠血清纯化的IgG1,并标记FITC,相同剂量。
侧向散射光SSC
SSC方向与激光束和液流形成的平面相垂直,亦称90度散射 光,其信号强度反映细胞内部颗粒度和精细结构的变化。
散射光的作用
实验中,常利用FSC和SSC这两种参数的组合,区分不同的细 胞群体,去除碎片、死细胞和粘连细胞的干扰。
粒细胞
单核细胞
淋巴细胞
红细胞、死细胞和碎片
通过FSC/SSC散点图,gate出目标细胞进行分析。
1、流式细胞术简介
流式细胞术(Flow Cytometry,FCM)是以流式细胞仪为检 测手段的一项能快速、精确的对单个细胞(或生物学颗粒)的 理化特性进行多参数定量分析和分选的技术。
流式细胞仪(Flow Cytometer )是集细胞与分子生物学、 流体力学、激光技术、光电子技术、计算机技术、细胞荧光 化学技术、单克隆抗体技术为一体的一种高科技仪器。
多色实验中,弱表达抗原必须设置FMO作为gating control。
双标试验中,单染管相当于FMO对照。 Treg检测中CD4/CD25/IgG即为FMO对照。
FL3 APC 4 6 10 15
每个细胞检测5个参数,那么获取10000个细胞,容量为 5×10000(字或双字)。
流式数据的显示方式
• 常用分析软件
– MACSQuantify – CellQuest
• 单参数直方图(Histogram)
• 双参数数据显示:
散点图(Dot Plot)
– Diva
4、 流式图和流式结果
流式数据的存储:列表模式(list mode),记录了每个细 胞的所有参数的信息。
Event #
1 2 3 4 ……
FSC
100 110 90 95
SSC
500 505 480 490
FL1 FITC 10 700 720 15
FL2 PE 650 700 670 720
荧光素分子 FITC PE 激发光波长 (nm) 490 488 发射光波长 (nm) 520 575 中文名 异硫氰酸荧光素 藻红蛋白
PerCP
APC PE-Cy5 PE-Cy7 Alexa Flour 488 Alexa Flour 647
490
650 496/546 496/546 495 650
Hoechst(343, 450)常见为Hoechst33342和Hoechst33258,非嵌入的方 式与DNA链上的A-T碱基对结合。能对活细胞染色,用于活细胞DNA定量分 析,如精子分选;还用于侧群细胞的分选。
PY(派若宁 560, 573) RNA染料,能进入活细胞。 AO(吖啶橙 509, 525) DNA、RNA染料,染色后DNA呈黄绿色荧光,RNA呈 橙黄色荧光,可进行DNA/RNA双参数分析。
―FSC前向散射光:反映细胞的体积大小和活力; ―SSC侧向散射光:反映细胞的颗粒度。
CD4 APC-Cy7
CD8a Alexa Fluor 700
SSC-A
FSC-A
双参数散点图比直方图更“可靠”
有的抗原荧光太弱,或背景荧光太强,双参数散点图更能反 映真实情况。
设门技巧:多用矩形门
粘连细胞的去除
前向散射光(forward scatter, FSC); 侧向散射光(side scatter, SSC)。
荧光信号
自发荧光:微弱(核黄素、色素分子等); 特异荧光:荧光素分子发出的的荧
光比自发荧光强很多倍。
前向散射光FSC
激光器正前方1 -6度方向上有比较强的衍射光,即前向散射 光,FSC强度是d/λ的函数( λ表示波长,d指细胞大小), 所以FSC反映被测细胞的体积大小和活力。
– FlowJo – WinMDI
伪彩图(Pseudo-color Plot)
等高线图(Contour Plot) 密度图(Density Plot) 假三维图(Pseudo 3D Plot)
– FCS Express
• 三维图(3D Plot)
直方图 Histogram
细胞的某一单参数数据的统计分布图,横坐标表示荧光信号 或散射光信号相对强度的值,单位是道数,纵坐标一般是细 胞数。
Event # 1 2 3 4
FL1 FITC
10 700 720 15
……
Counts
0…………10…………100…………1000
FITC荧光强度
直方图 Histogram
横坐标既可以是线性的,也可以是对数的。
DNA倍体分析
抗原表达分析
Overlay图
散点图 Dot Plot
散点图中每个点代表一个细胞,X轴与Y轴分别代表一种参 数,优点是比直方图直观。
粘连 细胞 死细胞
死细胞 或碎片
肿瘤细胞株FSC/SSC散点图
加药处理后FSC/SSC散点图
阈值:Threshold/Trigger
阈值:溶液中的杂质或者死细胞,很容易产生微小的干扰信号,所以必 须设置阈值,排除杂质、细胞碎片或体积较小的死细胞。 FSC反映细胞体积的大小,FCM应用时常选取FSC设定阈值。
FL1-FITC stain
D、 FMO对照
多色实验中,阴性对照和单染对照并不是严谨的设门对照, FMO对照区分阴性群体和阳性群体更准确。
Fluorescence Minus One 荧光减一对照
(-) PE
FITC
PE
补偿调节引起背景荧光增强。 颜色越多背景荧光越强,限制了多色流式技术的发展。
流式细胞术的特点
检测对象:单细胞悬液或生物颗粒; 检测参数:多参数; 检测特点:单细胞水平分析; 检测速度:高速,最高达上万个细胞/秒; 检测结果:精度高、准确性好; 可对目标细胞进行分选;
ቤተ መጻሕፍቲ ባይዱ
2、流式细胞术光信号检测
光信号的类型 散射光信号:与标记荧光素无关,
是细胞的固有参数。
设置空白对照(未染色的细胞),用以区分细胞的自发荧光和特异 性荧光,避免假阳性的结果。
001
001
002
流式结果中荧光强弱是一个相对值,光电
倍增管电压越大,电子信号越强;电压越
小,信号越弱。 通过调节电压,使阴性对照管的荧光强度 处于阴性的位置,实验组的荧光值都是相
对对照组。
B、同型对照 Isotype Control
FL2
FL1
散点图和伪彩图
等高图和密度图
等高图:类似于地图中的等高线,同一条线上的细胞数目相等,越在里 面的曲线代表细胞数目越多。
密度图:点密度越大的地方细胞越多,点密度越小的地方细胞少。
假三维图和三维图
Counts
SSC →
流式结果
十字门 线性门
流式分析常见问题
FSC和SSC很重要
流式分析的是单细胞,粘连细胞影响实验结果。
―周期分析时,双联体细胞的去除; ―流式分选时,粘连细胞的去除。
G0/ G1双联体细胞
G2/M细胞
FL2-H
FL2-H
FL2-A
FL2-W
FL2-W
FL2-W
电脉冲信号的面积A、高度H和宽度W
Width = Area/Height
Pulse Height
Volts
Pulse Area
0 Pulse Width
Time
Creation of a Voltage Pulse
Quantification of a Voltage Pulse
A、H和W的组合去粘连细胞
5、流式对照的设置
A、空白对照 Negative Control
细胞内物质自身也发出荧光,能被FCM灵敏的检测到,这种未染色的 细胞自身发出的一些荧光称为自发荧光。
5%
32%
默认阈值
升高阈值后
荧光素和荧光信号
荧光: 荧光素的电子吸收光的能量由低能态转变为高能态, 再回到低能态时释放出的光。
激发波长 Excitation wavelength

发射波长(荧光波长) Emission wavelength
常用荧光素
<499nm :蓝色荧光(Blue); 500-549nm:绿色荧光(Green); 550-584nm:黄色荧光(Yellow); 585-615nm:橙色荧光(Orange); 616-700nm:红色荧光(Red); ≥700nm:远红外荧光(Far-Red)。 标记抗体的荧光素
675
660 670 767 519 665
多甲藻叶绿素蛋白
别藻青蛋白 藻红蛋白-花青素5 藻红蛋白-花青素7
核酸荧光染料
PI(碘化丙啶 535, 623) 可选择性的插入核酸双螺旋碱基对中。常用 于DNA分析,需要用RNase处理细胞排除RNA对DNA荧光定量的影响;PI不 能透过活细胞膜,常用于鉴定死细胞。 7-AAD(7-氨基放线菌素D 545, 647 ) 以插入的方式与DNA链的G-C碱基 对结合,不能透过活细胞膜,常用于鉴定死细胞。 DAPI(4,4,6-二脒基二苯基吲哚 358, 456) 可以非嵌入方式与DNA链上 的A-T碱基对特异性结合。变异系数明显小于其他染料,一种理想的DNA 定量染料。
相关文档
最新文档