中考数学综合习题(六)
中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在平面直角坐标系中直线y=−x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.−12B.−32C.−2D.−142.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°3.如图,在Rt△ABC中AD是∠BAC的平分线,DE⊥AB垂足为E.若BC=8cm,BD=5cm则DE的长为()A.2√3cm B.3cm C.4cm D.5cm4.如图,矩形纸片ABCD中AD=8cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=10cm,则AB的长为()A.12cm B.14cm C.16cm D.18cm5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.15°6.如图,锐角∠ABC的两条高BD,CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°7.下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,28.如图,在∠ABC中AB=AC,BE=CD,BD=CF,若∠A=40°,则∠EDF等于()A.40°B.50°C.60°D.70°9.若点O是等腰∠ABC的外心,且∠BOC=60°,底边BC=2,则∠ABC的面积为() A.2+√3B.2√3C.2+√3或2-√3D.4+2√3或2-√3310.如图,等边ΔABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°11.如图,在△ABC中∠A=30°,∠ABC=100°,观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.12厘米二、填空题13.如图,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.14.如图1,点P从△ABC的项点A出发,以每秒2个单位长度的速度沿A→B→C→A的方向匀速运动到点A.图2是点P运动时线段AP的长度y随时间t(s)变化的关系图象,其中点M为曲线部分的最低点,则△ABC的面积是.15.如图,在正方形ABCD中AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD于点F,∠BED=120∘,则∠EFD的度数为.16.如图,△ABC中∠A=40°,D、E是AC边上的点,把△ABD沿BD对折得到△A′BD,再把△BCE沿BE对折得到△BC′E,若C′恰好落在BD上,且此时∠C′EB=80°,则∠ABC=.17.如图,测量三角形中线段AB的长度为cm.判断大小关系:AB+AC BC(填“ >”,“ =”或“ <”).18.如图,已知AB是∠O的弦,AB=8,C是∠O上的一个动点,且∠ACB=45°.若M,N分别是AB,BC的中点,则线段MN长度的最大值是三、综合题19.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为∠ABC三边的长.(1)如果x=﹣1是方程的根,试判断∠ABC的形状,并说明理由;(2)如果∠ABC是等边三角形,试求这个一元二次方程的根.20.如图,在Rt∠OAB中∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形.21.已知一次函数y=2x−2的图像为l1,函数y=12x−1的图像为l2.按要求完成下列问题:(1)求直线l1与y轴交点A的坐标;求直线l2与y轴的交点B的坐标;(2)求一次函数y=2x−2的图象l1与y=12x−1的图象l2的交点P的坐标;(3)求由三点P、A、B围成的三角形的面积.22.在图中利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)图中AC与A′C′的关系怎样?(3)记网格的边长为1,则△A′B′C′的面积为多少?23.如图,在∠ABC中点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD 于点M,连接AM.(1)求证:EF= 12AC;(2)若EF∠AC,求证:AM+DM=CB.24.如图①,Rt△ABC中∠C=90°,AC=6cm.动点P以acm/s的速度由B出发沿线段BA 向A运动,动点Q以1cm/s的速度由A出发沿射线AC运动.当点Q运动2s时,点P开始运动;P点到达终点时,P、Q一起停止.设点P运动的时间为ts,△APQ的面积为ycm2,y与t的函数关系图像如图②所示.(1)点P运动的速度a=cm/s,AB=cm;(2)当t为何值时,△APQ的面积为12cm2;(3)是否存在t,使得直线PQ将Rt△ABC的周长与面积同时平分?若存在,求出t的值;若不存在,请说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】C11.【答案】C12.【答案】D13.【答案】2014.【答案】1215.【答案】105º16.【答案】60°17.【答案】2.0;>18.【答案】4√219.【答案】(1)解:ΔABC是等腰三角形;理由:把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以ΔABC为等腰三角形(2)解:∵ΔABC为等边三角形∴a=b=c∴方程化为x2+x=0解得x1=0,x2=−1.20.【答案】(1)6;135°(2)证明:∵∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1∴∠AOA1=90°,∠OA1B1=90°,OA1=A1 B1=OA=6∴∠AO A1=∠O A1B1∴OA∠A1B1∵A1B1=OA∴四边形OAA1B1是平行四边形.21.【答案】(1)解:当x =0时,y= -2,即直线l 1与y 轴交点A 的坐标为(0,−2)当x =0时,y= -1,即直线l 2与y 轴交点B 的坐标为(0,−1);(2)解:∵一次函数y =2x −2的图象l 1与y =12x −1的图象l 2相交∴2x −2=12x −1∴x =23∴y =2×23−2=−23∴交点P 的坐标为(23,−23);(3)解:三点P 、A 、B 围成的三角形,如下图,作PD ⊥AB 交y 轴于点DAB =|−1−(−2)|=1△ABP 的高DP 为:23∴S △ABP =12AB ×DP =12×1×23=13即由三点P 、A 、B 围成的三角形的面积:13.22.【答案】(1)解:如图,∠A′B′C′为所作;(2)解:线段AC 与A′C′的位置关系是平行,数量关系是相等 (3)解:∠A′B′C′的面积=12×4×4=8.23.【答案】(1)证明:连接CE∵CD=CB,点E为BD的中点∴CE⊥BD∵点F为AC的中点∴EF=12AC;(2)解:∵点F是AC中点∴AF=FC,又EF⊥AC∴∠AFM=∠CFM,且AF=FC∴ΔAFM≅ΔCFM(SAS)∴AM=CM∵BC=CD=DM+CM=DM+AM.24.【答案】(1)1;10(2)解:当运动时间为t时,AQ=t+2,BP=t,AP=10−t 如图,作PH⊥AC,则△APH∽△ABC∴PH=APAB·BC=4(10−t)5∴S△APQ=12AQ·PH=12(t+2)4(10−t)5=2(t+2)(10−t)5∴△APQ的面积为12cm2时,解方程12=2(t+2)(10−t)5,得t1=4+√6∴当t=4+√6或4−√6时,△APQ的面积为12cm2;(3)解:∵S△ABC=24cm2,C△ABC=6+8+10=24cm∴12S△ABC=12cm2①当0<t≤4时由(2)可知,当t=4−√6时,△APQ的面积为12cm2此时,AQ=4−√6+2=6−√6∴AP+AQ=6+√6+6−√6=12,即AP+AQ=12C△ABC∴t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;②当4<t≤10时设PQ与BC交于点N,作PM⊥BC则有:△PBM∽△ABC∴PM AC=BPBA=BMBC,∴PM=3t5,BM=4t5,MC=8−4t5∵PM QC=MNCN,∴MN=3t2−30t25−10t当BN+BP=12时,解方程4t5+3t2−30t25−10t+t=12,得t=5或t=4(舍去)此时,PM=3,BM=4,BP=5∴BN=4+3=7∴当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分;∴综上,当t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分.第11页共11页。
2020年中考数学专题训练六 与四边形相关问题

2020年中考数学专题训练六与四边形相关问题[考点导航][猜押题专练]1.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒2cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′,设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值是()A.1.5B C.D.32.如图,在四边形ABCD中,如果AD//BC,AE//CF,BE=DF,那么下列等式中错误的是()A.∠DAE=∠BCF B.AB=CD C.∠BAE=∠DCF D.∠ABE=∠EBC3.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米4.如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB′C′D′的位置,B′C′与CD相交于点M,则M的坐标为()A .(1B .(﹣1C .(1D .(﹣1 5.已知,在△ABC 中,点D 为AB 上一点,过点D 作DE ∥BC ,DH ∥AC 分别交AC 、BC 于点E 、H ,点F 是延长线BC 上一点,连接FD 交AC 与点G ,则下列结论中错误的是( )A .AD AE DB DH = B .CF DH DE CG =C .FD EC FG CG = D .CH AE BC AC= 6.如图,将△ABC 沿DE 、EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO+∠CFO=106°,则∠C 的度数( )A .40°B .37°C .36°D .32°7.如图,在矩形ABCD 中,BC ,ADC ∠的平分线交边BC 于点E ,AH DE ⊥于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O ,给出下列命题:()()12AEB AEH DH ∠=∠=,,()()1342OH AE BC BF =-=,,其中正确命题的序号( )A .()()()123B .()()()234C .()()24D .()()138.如图,已知AB =12,点C 、D 在线段AB 上且AC =3,DB =2;P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G .当点P 从点C 运动到点D 时,中点G 移动路径的长是_____.9.在平行四边形ABCD中,内角BADBE ,V的平分线AE交该平行四边形的一边BC于点E,若3平行四边形ABCD的周长是16,则EC的长为____________10.如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1),对角线交于点M.规定“把正方形ABCD 先沿x轴翻折,再向左平移1个单位”为一次变换,那么经过两次变换后,点M的坐标变为____________,连续经过2015次变换后,点M的坐标变为___________.11.如图,点C是线段AB上的一点,分别以AC.BC为边在AB的同侧作正方形ACDE和正方形CBFG,连接EG.BG.BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,……,以此类推,当BC=n时,△BEG的面积记为S n,则S2020-S2019的值为____.12.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③AE2=AD•AF;④AF=AB+CF.其中正确结论为是______.(填写所有正确结论的序号)13.如图,矩形ABCD中,AD=3,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是_____.14.在四边形ABCD中,BC=CD,连接AC、BD,∠ADB=90°.(1)如图1,若AD=BD=BC,过点D作DF⊥AB于点F,交AC于点E:①∠DAC=°;②求证:EC=EA+ED;(2)如图2,若AC=BD,求∠DAC的度数.15.在矩形ABCD中,AB=1,BC=2,对角线AC、BD相交于点O,点A绕点O按顺时针方向旋转到A′,旋转角为α(0°<α<∠AOD),连接A′C.(1)如图①,则△AA′C的形状是;(2)如图②,当∠α=60°,求A′C长度;(3)如图③,当∠α=∠AOB时,求证:A′D∥AC.16.在习题课上,老师让同学们以课本一道习题“如图1,A,B,C,D四家工厂分别坐落在正方形城镇的四个角上.仓库E和Q分别位于AD和DC上,且ED=QC.证明两条直路BE=AQ且BE⊥AQ.”为背景开展数学探究.(1)独立思考:将上题条件中的ED=QC去掉,将结论中的BE⊥AQ变为条件,其他条件不变,那么BE=AQ还成立吗?请写出答案并说明理由;(2)合作交流:“祖冲之”小组的同学受此问题的启发提出:如图2,在正方形ABCD内有一点P,过点P作EF⊥GH,点E、F分别在正方形的对边AD、BC上,点G、H分别在正方形的对边AB、CD上,那么EF 与GH相等吗?并说明理由.(3)拓展应用:“杨辉”小组的同学受“祖冲之”小组的启发,想到了利用图2的结论解决以下问题:如图3,将边长为10cm的正方形纸片ABCD折叠,使点A落在DC的中点E处,折痕为MN,点N在BC 边上,点M在AD边上.请你画出折痕,则折痕MN的长是;线段DM的长是.17.综合与实践:问题发现:学完四边形的有关知识后,创新小组的同学进一步研究特殊的四边形,发现了一个结论.如图1,已知四边形ABCD 是正方形,根据勾股定理和正方形的性质,很容易能够证明222222 AC BD AB BC CD AD +=+++.问题探究:(1)如图2,已知四边形ABCD 是矩形,若 4,3AB BC ==,则 2 2 AC BD +的值是 ;2 222 AB BC CD AD +++的值是 ;(2)如图3,已知四边形ABCD 是菱形,证明:222222AC BD AB BC CD AD +=+++;拓广探索:(3)智慧小组看了创新小组交流后,提出了一个猜想,如图4,在ABCD Y 中,222222AC BD AB BC CD AD +=+++,你认为这个猜想正确吗?请说明理由;(4)请用文字语言叙述()3中得出的结论.18.如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(8,8),将正方形ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG .(1)求证:△CBG ≌△CDG ;(2)求∠HCG 的度数;判断线段HG 、OH 、BG 的数量关系,并说明理由;(3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由.19.如图所示,将矩形纸片OABC 放置在直角坐标系中,点A(3,0),点C(0(I).如图,经过点O 、B 折叠纸片,得折痕OB ,点A 的对应点为1A ,求1A OC ∠的度数;(Ⅱ)如图,点M 、N 分别为边OA 、BC 上的动点,经过点M 、N 折叠纸片,得折痕MN ,点B 的对应点为1B①当点B 的坐标为(-1,0)时,请你判断四边形1MBNB 的形状,并求出它的周长;②若点N 与点C 重合,当点1B 落在坐标轴上时,直接写出点M 的坐标.20.在平行四边形ABCD 中,对角线AC ,BD 交于点O ,E 是BC 上一点,连接DE ,点F 在边CD 上,且AF ⊥CD 交DE 于点G ,连接CG .已知∠DEC =45°,GC ⊥BC .(1)若∠DCG =30°,CD =4,求AC 的长.(2)求证:AD =CG DG .21.如图,在平行四边形ABCD 中,点E 、F 别在BC ,AD 上,且BE DF =.(1)如图①,求证:四边形AECF 是平行四边形;(2)如图②,若90BAC ∠=︒,且3AB =.4AC =,求平行四边形ABCD 的周长.22.在△ABC 中,AD ⊥BC 于点D ,点E 为AC 边的中点,过点A 作AF ∥BC ,交DE 的延长线于点F ,连接CF .(1)如图1,求证:四边形ADCF 是矩形;(2)如图2,当AB =AC 时,取AB 的中点G ,连接DG 、EG ,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF ).23.如图,已知四边形ABCD 是矩形,点E ,G 分别是AD ,BC 边的中点,连接BE ,CE ,点F ,H 分别是BE ,CE 的中点连接FG ,HG .(1)求证:四边形EFGH 是菱形;(2)当AB AD= 时,四边形EFGH 是正方形.24.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积;(2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.参考答案1.A2.D3.D.4.B5.B6.B7.D8.3.59.210.(0,2);(-2013,-2)11.4039 212.②③④13.14.(1)①15°;②;(2)∠DAC=30°.15.m.16.(1)BE=AQ;(2)EF=GH;;154 17.18.;(3)四边形AEBD 可为矩形,H 点的坐标为(83,0)19.(Ⅱ)30°;(Ⅱ)①四边形1B MBN 为菱形,周长为192;②,0)或0). 20.(1)AC =26;(2)21.22.(1);(2)四边形ABDF、四边形AGEF、四边形GBDE、四边形AGDE、四边形GDCE都是平行四边形.23.24.(1)2452cm ;(2)22331624(0)22588020016(4)3335x x x y x x x ⎧--+≤<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)存在,使得AA B ''△成为等腰三角形的x 的值有:0秒、32秒、95.。
中考数学直角三角形的边角关系综合练习题附答案

中考数学直角三角形的边角关系综合练习题附答案一、直角三角形的边角关系1.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.2.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BAD BF平分∠ABC∴∠BAE=∠EAF ∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF∴∠BAE=∠AEB ∠AFB=∠ABF∴AB=BE AB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数3.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定4.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.【答案】(1)∠BME=15°;(2BC=4;(3)h≤2时,S=﹣h2+4h+8,当h≥2时,S=18﹣3h.【解析】试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.试题解析:解:(1)如图2,∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).∴OA=OB,∴∠OAB=45°,∵∠CDE=90°,CD=4,DE=4,∴∠OCE=60°,∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,∴∠BME=∠CMA=15°;如图3,∵∠CDE=90°,CD=4,DE=4,∴∠OBC=∠DEC=30°,∵OB=6,∴BC=4;(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,∵CD=4,DE=4,AC=h,AN=NM,∴CN=4﹣FM,AN=MN=4+h﹣FM,∵△CMN∽△CED,∴,∴,解得FM=4﹣,∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.考点:1、三角形的外角定理;2、相似;3、解直角三角形5.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF 沿对角线BD 翻折得到△QDF ,QF 交AD 于点E .求证:△DEF 是等腰三角形;(2)如图2,将△PDF 绕点D 逆时针方向旋转得到△P'DF',连接P'C ,F'B .设旋转角为α(0°<α<180°).①若0°<α<∠BDC ,即DF'在∠BDC 的内部时,求证:△DP'C ∽△DF'B . ②如图3,若点P 是CD 的中点,△DF'B 能否为直角三角形?如果能,试求出此时tan ∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②12或33. 【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF ,所以△DEF 是等腰三角形;(2)①由于PF ∥BC ,所以△DPF ∽△DCB ,从而易证△DP′F′∽△DCB ;②由于△DF'B 是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ , ∵PF ∥BC , ∴∠DFP=∠ADF , ∴∠DFQ=∠ADF , ∴△DEF 是等腰三角形;(2)①若0°<α<∠BDC ,即DF'在∠BDC 的内部时, ∵∠P′DF′=∠PDF ,∴∠P′DF′﹣∠F′DC=∠PDF ﹣∠F′DC , ∴∠P′DC=∠F′DB ,由旋转的性质可知:△DP′F′≌△DPF , ∵PF ∥BC , ∴△DPF ∽△DCB , ∴△DP′F′∽△DCB ∴''DC DP DB DF , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示,∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意; 当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°,∴tan ∠DBF′=3.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.6.在等腰△ABC 中,∠B=90°,AM 是△ABC 的角平分线,过点M 作MN ⊥AC 于点N ,∠EMF=135°.将∠EMF 绕点M 旋转,使∠EMF 的两边交直线AB 于点E ,交直线AC 于点F ,请解答下列问题:(1)当∠EMF 绕点M 旋转到如图①的位置时,求证:BE+CF=BM ;(2)当∠EMF 绕点M 旋转到如图②,图③的位置时,请分别写出线段BE ,CF ,BM 之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan ∠BEM=,AN=+1,则BM= ,CF= .【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣【解析】【分析】(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,NC=NM=BM进而得出结论;(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;(3) 在Rt△ABM和Rt△ANM中,,可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.【详解】(1)证明:∵△ABC是等腰直角三角形,∴∠BAC=∠C=45°,∵AM是∠BAC的平分线,MN⊥AC,∴BM=MN,在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,∵∠ENF=135°,,∴∠BME=∠NMF,∴△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵CN=CF+NF,∴BE+CF=BM;(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=NF﹣CF,∴BE﹣CF=BM;针对图3,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=CF﹣NF,∴CF﹣BE=BM;(3)在Rt△ABM和Rt△ANM中,,∴Rt△ABM≌Rt△ANM(HL),∴AB=AN=+1,在Rt△ABC中,AC=AB=+1,∴AC=AB=2+,∴CN=AC﹣AN=2+﹣(+1)=1,在Rt△CMN中,CM=CN=,∴BM=BC﹣CM=+1﹣=1,在Rt△BME中,tan∠BEM===,∴BE=,∴①由(1)知,如图1,BE+CF=BM,∴CF=BM﹣BE=1﹣②由(2)知,如图2,由tan∠BEM=,∴此种情况不成立;③由(2)知,如图3,CF﹣BE=BM,∴CF=BM+BE=1+,故答案为1,1+或1﹣.【点睛】本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.7.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若31)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.【解析】分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴AF=AC.∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD.∵AD∥BF,∴∠EFB=90°.∵EF=BF,∴∠FBE=45°, ∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵AC=3BD ,CD=3AE ,∴3AC CDBD AE ==. ∵BD=AF ,∴3AC CDAF AE==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,∴3AC AD BFAF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.在Rt △EFB 中,tan ∠FBE=3EF BF =, ∴∠FBE=30°, ∴∠APE=30°,(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形, ∴BE=DH ,EH=BD . ∵AC=3BD ,CD=3AE ,∴3AC CDBD AE==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,∴3AD ACAH EH==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.在Rt △DAH 中,tan ∠ADH=3AHAD=, ∴∠ADH=30°, ∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.8.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<;(3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.9.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =35,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q . (1)求点D 坐标;(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值; (3)在直线l 移动过程中,是否存在t 值,使S =320ABCD S 菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)3或. 【解析】 【分析】(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -+= 【详解】解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35, 10cos OBBC B∴==8OC ∴==∵四边形ABCD 为菱形,CD ∥x 轴,∴点D 的坐标为(10,8).(2)∵AB =BC =10,点B 的坐标为(﹣6,0), ∴点A 的坐标为(4,0). 分两种情况考虑,如图1所示. ①当0≤t ≤4时,PQ =OC =8,OQ =t ,∴S =12PQ •OQ =4t , ∵4>0,∴当t =4时,S 取得最大值,最大值为16;②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0),D (10,8)代入y =kx +b ,得:4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-, 41648(10)333PQ t t ⎛⎫∴=--=- ⎪⎝⎭21220233S PQ OP t t ∴=⋅=-+22202502(5),033333St t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为503. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)33t t tt t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)S 菱形ABCD =AB •OC =80. 当0≤t ≤4时,4t =12, 解得:t =3; 当4<t ≤10时,222033t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =320ABCD S 菱形,t 的值为3或5+7.【点睛】考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.10.现有一个“Z “型的工件(工件厚度忽略不计),如图所示,其中AB 为20cm ,BC 为60cm ,∠ABC =90,∠BCD =60°,求该工件如图摆放时的高度(即A 到CD 的距离).(结果精确到0.1m ,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm . 【解析】 【分析】过点A 作AP ⊥CD 于点P ,交BC 于点Q ,由∠CQP =∠AQB 、∠CPQ =∠B =90°知∠A =∠C=60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ =BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.11.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++;(3)50105-.【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH =ACsinC =8,同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,DA =25x ,则BD =45﹣25x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ5,sinβ5, EB =BDcosβ=(525x )5=4﹣25x ,∴PD ∥BE ,∴EB BFPD PF=,即:2024588x y x xx -+--=,整理得:y 25xx 8x 803x 20-++(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q是弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=5设圆的半径为r,在△ADG中,AD=2rcosβ5DG5AG=2r,5=52r51,则:DG550﹣5相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.12.如图所示,小华在湖边看到湖中有一棵树AB,AB与水面AC垂直.此时,小华的眼睛所在位置D到湖面的距离DC为4米.她测得树梢B点的仰角为30°,测得树梢B点在水中的倒影B′点的俯角45°.求树高AB(结果保留根号)【答案】AB=(8+43)m . 【解析】【分析】设BE=x ,则BA=x+4,B′E=x+8,根据∠ADB′=45°,可知DE=B′E=x+8,再由tan30°=BE DE 即可得出x 的值,进而得到答案,【详解】如图:过点D 作DE ⊥AB 于点E ,设BE=x ,则BA=x+4,B′E=x+8,∵∠ADB′=45°,∴D E=B′E=x+8,∵∠BDE=30°,∴tan30°=38BE x DE x ==+ ,解得x=4+43 , ∴AB=BE+4=(8+43 )m .【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答此题的关键。
中考数学参分式方程与不等式组综合专题练习题

中考数学参分式方程与不等式组综合专题练习题1(一外2021级初三上期中测试)若正数a 使得关于x 的方程3222ax x -=--的解为整数,且关于y 的不等式组122320y y y a -⎧+≥⎪⎨⎪+-≤⎩,有偶数解且至多有3个偶数解,则所有符合条件的整数a 的和为( ) A.12- B.-9 C.12 D.152(南开2021级初三上期中测试)若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组213232()x x x x a +-⎧≤⎪⎨⎪-<-⎩的解集为7x ≥,则符合条件的整数a 有( )个. A.2 B.3 C.4 D.53(育才2020级初三上期中考试)若关于x 的一元一次不等式组3+1140x x x a ⎧>-⎪⎨⎪-≤⎩的解集为x a ≤,且关于y 的分式方程52=122y a yy y--+--有正整数解,则所有满足条件的整数a 的和为( ) A.2 B.3 C.7 D.84(一中共同体2021级初三上期中测试)如果二次函数2112y x ax =-+,当1x ≤时,y 随x 的增大而减小,且关于x 的分式方程4311x ax x++=--有正整数解,则所有符合条件的a 的值之和为( ) A.-8 B 8C.4D.35(巴蜀2021级初三上期中测试)若整数a 使得关于x 的分式方程12322ax xx x -+=--有整数解,且使得二次函数2(2)2(1)1y a x a x a =-+-++的值恒为非负数,则满足所有条件的整数阿德值之和是( )A.12B.15C.17D.206(八中2021级初三上期中测试)若a 使关于x 的分式方程1212-=----xx x a 的解为整数,且使关于y 的不等式组⎪⎩⎪⎨⎧+<≥-+62762)1(3ay y y 有且仅有2个整数解,则所有符合条件的整数a 的值之和是( )A .1 B .3 C .4 D .77(南开2021级初三上阶段测试二)如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510yy a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为(). A. 3 B. 7 C. 8 D. 128(十八中2021级初三上周测五)若关于x 的分式方程11322ax x x --=---有正整数解,且关于y 的不等式组23(1)1522y a y y --<-⎧⎪⎨+>-⎪⎩有解,则整数a 的值有( )个A.1B.2C.3D.49(八中2021级九上周测六)若数a 使关于x 的分式方程12111ax x x--=--有整数解,且使二次函数2(1)3y x a x =--+,当12x >时,y 随x 的增大而增大,那么满足所有条件的a 的值之和为( ) A.-1 B.1 C.2 D.310(八中2021级九上定时训练八)若整数a使关于x的不等式组1102341x xx a x--⎧≤⎪⎨⎪->+⎩有且只有3个整数解,且使关于y的方程2260111y ay y+++=++的解为非正数,则a的值为()A.-61或-28B.-61或-59C.-60或-59D.-61或-60或-5911(一中2021级初三上国庆作业一)若关于x的不等式组1223122310x xx x a-⎧+≤⎪⎪⎨⎪-<-⎪⎩有且仅有5个整数解,且关于y的分式方程2344a yy y-=+--有正整数解,则满足条件的所有整数a的个数为()A. 6B. 5C. 4D. 312(一中2021级初三上入学测试)若关于x的一元一次不等式组53212xxx a+⎧≥+⎪⎨⎪≤⎩有解且最多有7个整数解;且关于y的分式方程23111y aay y+++=--有非负数解,则所有满足条件的整数a有()个.A.1 B.2 C.3 D.413(一中2020级初三下定时训练七)若关于x 的不等式组12333114312x x a x ⎧+>⎪⎪⎨+--⎪->-⎪⎩的解集为3x >,且关于x 的分式方程133x a ax x +-=+-的解为非正数,则所有符合条件的整数a 的和为( ) A.11 B .14 C .17 D .2014(重庆一中2020级九下定时训练一)已知a 为实数,关于y x ,的二元一次方程组⎩⎨⎧-=+=-ay x ay x 212532的解的乘积小于零,且关于x 的分式方程22231--=-x a x x 有非负数解,则下列a 的值全都符合条件的是( ) A .1,1,2-- B .2,1,1- C .1,32,1- D .2,0,1-15.如果关于x 的方程2121=-++-x x x ax 有整数解,且关于x 的函数()2211y ax a x a =+-++与x 轴有交点,那么满足条件的整数a 的个数是( ▲ ).A. 2B. 3C. 4D. 516.已知关于x 的分式方程012321=--+--x x ax 有整数解,且关于x 的不等式组⎪⎩⎪⎨⎧<---≥a x x x x 212)1(34有且只有3个负整数解,则符合条件的所有整数a 的个数为( ) A .1 B .2 C .3 D .417.如果数m 使关于x 的方程(m +1)x 2﹣(2m ﹣1)x +m =0有实数根,且使关于x 的分式方程有正分数解,那么所有满足条件的整数m 的值的和为( ) A .﹣6B .﹣5C .﹣4D .﹣ 3。
中考数学第六章 实数知识点及练习题含答案

中考数学第六章 实数知识点及练习题含答案一、选择题1.已知: 表示不超过的最大整数,例:,令关于的函数 (是正整数),例:=1,则下列结论错误..的是( ) A .B .C .D .或1 2.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣53.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( )A .4mB .4m +4nC .4nD .4m ﹣4n4.已知无理数7-2,估计它的值( )A .小于1B .大于1C .等于1D .小于0 5.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2019次后,则数2019对应的点为( )A .点AB .点BC .点CD .这题我真的不会6.下列说法正确的是( )A .14是0.5的平方根 B .正数有两个平方根,且这两个平方根之和等于0 C .27的平方根是7D .负数有一个平方根 7.下列命题是假命题的是( )A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣1 8.在实数227-911π38中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个9.下列运算正确的是( ) A 42=± B 222()-=- C 382-=-D .|2|2--= 10.7和6- )A B C + D .-二、填空题11.若()2320m n ++-=,则m n 的值为 ____.12.观察下列各式:5=;11=;19=;a =,则a =_____.13.一个正数的平方根是21x -和2x -,则x 的值为_______.14.观察下列算式:16+4=20;40+4=44;…__________15.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.16.一个数的立方等于它本身,这个数是__.17.__________0.5.(填“>”“<”或“=”)18________.19.下列说法: -10=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________20.如果a =b 的整数部分,那么ab =_______.三、解答题21.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 .②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.22.对于实数a ,我们规定:用符号为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.23.对于有理数a ,b ,定义运算:a ⊕b =ab -2a -2b +1.(1)计算5⊕4的值;(2)计算[(-2)⊕6]⊕3的值;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.24.定义☆运算:观察下列运算:两数进行☆运算时,同号 ,异号 .特别地,0和任何数进行☆运算,或任何数和0进行☆运算, .(2)计算:(﹣11)☆ [0☆(﹣12)]= .(3)若2×(﹣2☆a )﹣1=8,求a 的值.25.已知32x y --的算术平方根是3,26x y +-的立方根是的整数部分是z ,求42x y z ++的平方根.26.是无理数,而无理数是无限不循环小数,﹣1的小数部的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为2<3的整数部分为2﹣2) 请解答:(1)10的整数部分是,小数部分是;(2)如果5的小数部分为a,13的整数部分为b,求a+b﹣5的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据新定义的运算逐项进行计算即可做出判断.【详解】A. ==0-0=0,故A选项正确,不符合题意;B. ===,=,所以,故B选项正确,不符合题意;C. =,= ,当k=3时,==0,= =1,此时,故C选项错误,符合题意;D.设n为正整数,当k=4n时,==n-n=0,当k=4n+1时,==n-n=0,当k=4n+2时,==n-n=0,当k=4n+3时,==n+1-n=1,所以或1,故D选项正确,不符合题意,故选C.【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.B【分析】根据a ★b=a 2-ab 可得(x+2)★(x -3)=(x+2)2-(x+2)(x -3),进而可得方程:(x+2)2-(x+2)(x -3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x -3)=5,x 2+4x+4-(x 2-x -6)=5,x 2+4x+4-x 2+x+6=5,5x=-5,解得:x=-1,故选:B .【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a ★b=a 2-ab 所表示的意义.3.C解析:C【分析】根据题意得到m ,n 的相反数,分成三种情况⑴m ,n ;-m ,-n ⑵m ,-m ;n ,-n ⑶m ,-n ;n ,-m 分别计算,最后相加即可.【详解】解:依题意,m ,n (m <n )的相反数为﹣m ,﹣n ,则有如下情况:m ,n 为一组,﹣m ,﹣n 为一组,有A =|m +n |+|(﹣m )+(﹣n )|=2m +2nm ,﹣m 为一组,n ,﹣n 为一组,有A =|m +(﹣m )|+|n +(﹣n )|=0m ,﹣n 为一组,n ,﹣m 为一组,有A =|m +(﹣n )|+|n +(﹣m )|=2n ﹣2m所以,所有A 的和为2m +2n +0+2n ﹣2m =4n故选:C .【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.4.A解析:A【分析】首先根据479<<可以得出23<<2的范围即可. 【详解】∵23<<,∴22232-<<-,∴021<<,2-的值大于0,小于1.所以答案为A 选项.本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.5.A解析:A【分析】根据题意得出每3次翻转为一个循环,2019能被3整除说明跟翻转3次对应的点是一样的.【详解】翻转1次后,点B所对应的数为1,翻转2次后,点C所对应的数为2翻转3次后,点A所对应的数为3翻转4次后,点B所对应的数为4经过观察得出:每3次翻转为一个循环÷=∵20193673∴数2019对应的点跟3一样,为点A.故选:A.【点睛】本题是一道找规律的题目,关键是通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.6.B解析:B【分析】根据0.5是0.25的一个平方根可对A进行判断;根据一个正数的平方根互为相反数可对B 进行判断;根据平方根的定义对C、D进行判断.【详解】A、0.5是0.25的一个平方根,所以A选项错误;B、正数有两个平方根,且这两个平方根之和等于0,所以B选项正确;C、72的平方根为±7,所以C选项错误;D、负数没有平方根.故选B.【点睛】本题考查了平方根:若一个数的平方定义a,则这个数叫a的平方根,记作a≥0);0的平方根为0.7.B解析:B【分析】分别根据平方根的定义、无理数的定义、算术平方根的定义、负整数逐一判断即可.【详解】解:A、0的平方根为0,所以A选项为真命题;B、无限不循环小数是无理数,所以B选项为假命题;C 、算术平方根最小的数是0,所以C 选项为真命题;D 、最大的负整数是﹣1,所以D 选项为真命题.故选:B .【点睛】本题考查平方根的定义、无理数的定义、算术平方根和负整数,掌握无理数指的是无限不循环小数是解题的关键.8.B解析:B【解析】分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.详解:无理数有:11、π共2个. 故选B .点睛:本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有特定规律的数. 9.C解析:C【分析】 分别计算四个选项,找到正确选项即可.【详解】A. 42=,故选项A 错误;B. 2(2)42-==,故选项B 错误;C. 3338(2)=2-=--,故选项C 正确;D. |2|2--=-,故选项D 错误;故选C .【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.10.C解析:C【分析】在数轴上表示7和-6,7在右边,-6在左边,即可确定两个点之间的距离.【详解】如图,7和67在右边,6在左边,和-().故选:C.【点睛】本题考查了数轴,可以发现借助数轴有直观、简捷,举重若轻的优势.二、填空题11.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n=(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.12.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181n=求解即可.观察各式得出其中的规律,再代入12【详解】由题意得()31=⨯++n nn=代入原式中将12a==⨯+=12151181故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.13.-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-解析:-1【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可.【详解】解:∵一个正数的平方根是2x-1和2-x,∴2x-1+2-x=0,解得:x=-1.故答案为:-1.【点睛】本题主要考查的是平方根的性质以及解一元一次方程,熟练掌握平方根的性质是解题的关键.14.【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】解:==1084.故答案为:1084.【点睛】解析:【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】==1080+4=1084.故答案为:1084.【点睛】本题考查了算术平方根,读懂题目信息,观察出计算结果等于首尾两个偶数的乘积加上4是解题的关键.15.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.17.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.18.6【分析】求出在哪两个整数之间,从而判断的整数部分.∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.19.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】①10=,故①错误; ②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误; ④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.20.12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】6a==<<479<<<<23∴b=的整数部分是2,即2ab=⨯=则6212故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b的值是解题关键.三、解答题21.(1)①21,②6,m n +;(2)35b =;(3)65a =【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得;(2)由f (10m+n )=m+n ,可求k 的值,即可求b ;(3)根据题意可列出等式,可求出x 、y 的值,即可求a 的值.【详解】解:(1)①∵对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.∴“奇异数”为21;②f (15)=(15+51)÷11=6,f (10m+n )=(10m+n+10n+m )÷11=m+n ;(2)∵f (10m+n )=m+n ,且f (b )=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根据题意有()f a x y =+∵()510a f a -=∴()10510x y x y +-+=∴5410x y -=∵x 、y 为正数,且x≠y∴x=6,y=5∴a=6×10+5=65故答案为:(1)①21,②6,m n +;(2)35b =;(3)65a =【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键.22.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴5<6,∴]=[2]=2,]=5,故答案为2,5;(2)∵12=1,22=4,且]=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,]=1,∴对255只需进行3次操作后变为1,∵,,]=2,]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.23.(1)3;(2)-24;(3)成立.【解析】【分析】(1)按照给定的运算程序,一步一步计算即可;(2)先按新定义运算,先计算(-2)⊕6、再将所得结果-19与3计算规定运算可得;(3)成立,按新定义分别运算即可说明理由.【详解】(1)5⊕4=5×4-2×5-2×4+1=20-10-8+1=2+1=3.(2)原式=[-2×6-2×(-2)-2×6+1]⊕3=(-12+4-12+1)⊕3=-19⊕3=-19×3-2×(-19)-2×3+1=-24.(3)成立.∵a⊕b=ab-2a-2b+1,b⊕a=ab-2b-2a+1,∴a⊕b=b⊕a,∴定义的新运算“⊕”交换律还成立.【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.24.(1)得正,再把绝对值相加;得负,再把绝对值相加;等于这个数的绝对值;(2)-23;(3)a=-52 【分析】(1)通过观察表中各算式,然后从两数的符号关系或是否有0出发归纳出☆运算的法则; (2)根据(1)归纳的☆运算的法则进行计算,注意先算括号内的,再与括号外的计算; (3)根据(1)归纳出的运算法则对a 的取值进行分类讨论即可得到答案.【详解】(1)由表中各算式,可以得到:同号得正,再把绝对值相加; 异号得负,再把绝对值相加;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值; (2)由(1)归纳的☆运算的法则可得:原式=(﹣11)☆|-12|=(﹣11)☆12= -(|(﹣11)|+|12|)= -23;(3)①当a=0时,左边=()22012213⨯--=⨯-=☆,右边=8,两边不相等,∴a≠0; ②当a>0时,2×(﹣2☆a)﹣1=2×[-(2+a )]﹣1=8,可解得132a =-(舍去), ③当a<0时,2×(﹣2☆a)﹣1=2×(|﹣2|+|a|)﹣1=8,可解得a=52-, 综上所述:a=-52. 【点睛】本题考查新定义的实数运算,通过观察实例归纳出运算规律是解题关键. 25.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题.【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩, 解得54x y =⎧⎨=⎩,36<<67∴<<,6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±.【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义.26.(1)3,﹣3;(2)1.【分析】<解答即可;(1)根据34(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可.【详解】<<,(1)∵343﹣3,故答案为:3﹣3;(2)∵23,a2,∵34,∴b=3,a+b2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.。
中考特训浙教版初中数学七年级下册第六章数据与统计图表综合测试练习题(名师精选)

初中数学七年级下册第六章数据与统计图表综合测试(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图2、某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A.得分在70~80分的人数最多B.该班的总人数为40C.人数最少的得分段的频数为2 D.得分及格(≥60分)的有12人3、为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是()A.32000名学生是总体B.1600名学生的体重是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查4、在下列调查中,适宜采用全面调查的是()A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率5、为了估计湖里有多少条鱼,小刚先从湖里捞出了100条鱼做上标记,然后放回湖里去.经过一段时间,带有标记的鱼完全混合于鱼群后,小刚又从湖里捞出200条鱼,如果其中15条有标记,那么估计湖里有鱼()A.1333条B.3000条C.300条D.1500条6、为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工7、下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查8、荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人9、要调查你校学生学业负担是否过重,选用下列哪种方法最恰当( )A.查阅文献资料B.对学生问卷调查C.上网查询D.对校领导问卷调查10、下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查二、填空题(5小题,每小题4分,共计20分)1、2020年末,我国完成了第7次人口普查,国家统计局采取的调查方式是_______.(填“全面调查”“抽样调查”)2、如图是某广告商制作甲、乙两种酒的价格变化的折线统计图,则酒的价格增长比较快的是__________.(填“甲”或“乙”)3、牛奶里含有丰富的营养成分,某品牌牛奶所含营养成分如图所示.若同学们每天喝一支200克的这种牛奶,则能补充的蛋白质为________克.4、要想了解中国疫情的变化情况,最好选用 ___统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用 ___统计图.5、如图,小强同学统计了他家5月份的长途电话明细清单,按通话时间画出直方图,观察直方图,通话时间不超过5min的次数是________次.三、解答题(5小题,每小题10分,共计50分)1、电视台需要在本市调查某节目的收视率,每个看电视的人都要被问到吗?对一所中学学生的调查结果能否作为该节目的收视率?你认为对不同地区、不同年龄、不同文化背景的人进行的调查结果会一样吗?2、小明想了解本校九年级学生对“书画、器乐、艺术、棋类”四项“校本课程”的喜欢情况,随机抽取了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图.请结合统计图解答下列问题:(1)求本次抽取的学生的人数.(2)请根据以上信息直接在答题卡中补全条形统计图.(3)求扇形统计图中a的值.(4)求扇形统计图中喜欢器乐的学生人数所对应的圆心角的度数.3、某校为了解学生“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人必须报且只能报一项)进行调查.下面是根据调查数据绘制的两幅不完整的统计图请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名学生;(2)扇形统计图中“艺术鉴赏”部分的圆心角是多少度;(3)选“数学思维”的人数比“科技制作”的人数多几分之几?4、某校为了调查学生视力变化情况,从该校2010年入校的学生中抽取了部分学生进行连续三年的视力跟踪调查,将所得数据进行处理,制成折线统计图和扇形统计图(如图1、图2所示).(1)该校被抽查的学生共有多少名?(2)现规定视力达到5.0及以上为合格,若被抽查年级共有500名学生,估计该年级在2012年有多少名学生视力合格.5、某地区随机抽调了一部分市民进行了一次法律知识测试,测试成绩(得分取整数)进行整理后分成五组,并绘制成频数直方图:(1)这次活动共抽取了多少人测试?(2)测试成绩的整体分布情况怎样?---------参考答案-----------一、单选题1、A【详解】根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选A.2、D【详解】试题分析:A、得分在70~80分之间的人数最多,有14人,此选项正确;B、该班的总人数为4+12+14+8+2=40人,此选项正确;C、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;D、及格(≥60分)人数是12+14+8+2=36人,此选项错误.故选D.点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3、B【详解】试题分析:A、总体是:某市参加中考的32000名学生的体质情况,故本选项错误,B、样本是:1600名学生的体重,故本选项正确,C、每名学生的体重是总体的一个个体,故本选项错误,D、是抽样调查,故本选项错误,故选B.考点:1.总体、个体、样本、样本容量;2.全面调查与抽样调查.4、B【详解】试题分析:采用全面调查时,调查的对象要小,A、C、D三个选项的调查对象庞大,不宜适用全面调查,只能采用抽样调查的方式.考点:调查的方式.5、A【分析】在样本中“捕捞200条鱼,发现其中15条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【详解】设湖中有x条鱼,则:15:200=100:x解得:x=40003≈1333(条).故选A.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6、C【详解】【分析】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.根据样本的确定方法与原则,结合实际情况,依次分析选项可得答案.【详解】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故选C.【点睛】本题考查了样本的确定方法,明确样本要具有代表性和广泛性是解题的关键.7、D【详解】试题分析:A.人数不多,容易调查,适合普查.B.对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C.班内的同学人数不多,很容易调查,因而采用普查合适;D.数量较大,适合抽样调查;故选D.考点:全面调查与抽样调查.8、D【详解】【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【详解】A、本次抽样调查的样本容量是200040%=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误,故选D.【点睛】本题考查了条形统计图、扇形统计图,熟悉样本、用样本估计总体等知识是解题的关键,另外注意学会分析图表.9、B【详解】要调查你校学生学业负担是否过重,A、查阅文献资料,这种方式太片面,不合理;B、对学生问卷调查,比较合理;C、上网查询,这种方式不具有代表性,不合理;D、对校领导问卷调查,这种方式太片面,不具代表性,不合理,故选B.【点睛】本题考查了调查特点,关键是在选取样本时,选取的样本要全面,具有代表性.10、B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似来进行判断.【详解】A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题1、全面调查【分析】根据全面调查和抽样调查的概念判断即可.解:为了全面的、可靠的得到我国人口信息,所以国家统计局采取的调查方式是全面调查,故答案为:全面调查.【点睛】本题考查的是全面调查和抽样调查,解题的关键是掌握通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查,其二,调查过程带有破坏性,其三,有些被调查的对象无法进行普查.2、乙【分析】根据折线统计图中的数据判断即可.【详解】解:由折线统计图知,甲种酒从2012年到2020年价格增长量是60840-=2.5元,乙种酒从2016年到2020年价格增长量是60440-=5元,故乙种酒价格增长速度比甲快,故答案为:乙.【点睛】此题主要考查了折线统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键,折线统计图表示的是事物的变化情况,如增长率.3、12【分析】根据扇形统计图的数据直接求解即可.⨯=2006%12故答案为:12【点睛】本题考查的是扇形统计图的概念,理解概念是解题的关键.4、折线扇形【分析】根据折线统计图不仅能够表示数量的多少而且能够表示数量的增减变化趋势;扇形统计图能够表示部分与整体之间的关系进行解答即可.【详解】解:根据统计图的特点可知:要想了解中国疫情,既要知道每天患病数量的多少,又要反映疫情变化的情况和趋势,最好选用折线统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用扇形统计图.故答案为:折线,扇形.【点睛】此题考查了统计图的选择,掌握三种统计图的特点和作用是解答此题的关键.5、30【分析】根据频数分布直方图所反映的数量信息可得答案.【详解】解:由频数分布直方图可知,通话时间不超过5min的次数为30次,故答案为:30.【点睛】本题考查频数分布直方图,从频数分布直方图中获取信息是解决问题的关键.三、解答题1、见解析【分析】利用样本的代表性,并且被抽查的样本容量要合适,即可作出判断.【详解】解:一般而言,在一个城市调查某电视节目的收视率,不可能对每个看电视的人都进行调查,因为一个城市的人口太多,调查量太大,不合适;一所中学的学生不具有代表性,其调查结果不能作为该节目的收视率;对不同地区、不同年龄、不同文化背景的人所进行的调查结果是不一样.【点睛】此题考查了抽样调查的对象的选取问题.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析.2、(1)200人;(2)图见解析;(3)20;(4)144︒.【分析】(1)根据喜欢棋类的学生的条形统计图和扇形统计图信息即可得;(2)先根据(1)的结果求出喜欢书画的学生人数,再补全条形统计图即可得;(3)利用喜欢艺术学生的人数除以调查的总人数即可得;(4)利用喜欢器乐的学生人数所占百分比乘以360︒即可得.【详解】解:(1)3015%200÷=(人),答:本次抽取的学生有200人;(2)喜欢书画的学生人数为20025%50⨯=(人),由此补全条形统计图如下:(3)40200100%20%÷⨯=,则20a=;(4)80200100%360144÷⨯⨯︒=︒,答:喜欢器乐的学生人数所对应圆心角的度数为144︒.【点睛】本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.3、(1)50人;(2)144度;(3)选“数学思维”的人数比“科技制作”的人数多三分之一.【分析】(1)用阅读写作的人数除以其所占百分比即可得到总人数;(2)用360°乘以艺术鉴赏的所占百分比即可得到答案;(3)先求出数学思维的人数,由此进行求解即可.【详解】解:(1)由题意得:调查的人数=50÷25%=200人,答:得出人数为50人;(2)80360144200⨯=,答:扇形统计图中“艺术鉴赏”部分的圆心角是144度;(3)数学思维的人数:200﹣80﹣30﹣50=40人,科技制作的30人,(40﹣30)÷3013=,答:选“数学思维”的人数比“科技制作”的人数多三分之一.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,解题的关键在于能够准确根据题意求出总人数.4、(1)该校被抽查的学生共有300名;(2)估计该年级在2012年有300名学生视力合格.【分析】(1)利用折线图中10年的视力为5.0以下人数120和扇形图中的百分比40%,即可求出总人数;(2)用样本估计总体可直接求算结果.【详解】解:(1)120÷40%=300人.故该校被调查的学生共有300名.(2)500×(10%+20%+30%)=300人.估计该年级在2012年有300名视力合格.【点睛】本题考查的是折线统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.5、(1)48人;(2)测试成绩为70至80分的人数最多,不及格和90分以上的人相对较少.【分析】(1)将每一组的频数相加即可求出这次活动共抽取的人数;(2)根据统计图可知每一组的人数的多与少,进而即可作答.【详解】解:(1)根据题意得:3+12+18+9+6=48(人),答:这次活动共抽取了48人测试;(2)根据统计图可知:测试成绩为70至80分的人数最多,不及格和90分以上的人相对较少.【点睛】此题考查了频数(率)分布直方图,正确读懂频数分布直方图是解本题的关键.。
中考数学练习题附答案

中考数学练习题附答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. 1.1010010001...C. πD. 0.33333答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是2,那么这个数是:A. 2B. 4C. -2D. -4答案:B4. 下列哪个选项是方程 \( x^2 - 5x + 6 = 0 \) 的解?A. 2B. 3C. 4D. 5答案:A5. 一个圆的半径是5,那么它的面积是:A. 25B. 50C. 78.5D. 100答案:C二、填空题(每题2分,共10分)6. 一个数的立方根是3,这个数是 ______ 。
答案:277. 一个数的相反数是-5,这个数是 ______ 。
答案:58. 一个数的绝对值是4,这个数可以是 ______ 或 ______ 。
答案:4 或 -49. 如果一个角是30°,那么它的余角是 ______ 。
答案:60°10. 一个正数的倒数是1/4,这个数是 ______ 。
答案:4三、计算题(每题5分,共20分)11. 计算 \( 2^3 + 5 \times 4 - 3^2 \) 的结果。
答案:\( 8 + 20 - 9 = 19 \)12. 解方程 \( 3x - 7 = 2x + 8 \)。
答案:\( x = 15 \)13. 化简 \( \frac{3x^2 - 6x}{x - 2} \)。
答案:\( 3x \)14. 计算 \( (2a + 3b)(2a - 3b) \)。
答案:\( 4a^2 - 9b^2 \)四、解答题(每题10分,共20分)15. 一个长方体的长、宽、高分别是8cm、6cm和5cm,求它的体积。
答案:体积 \( V = 8 \times 6 \times 5 = 240 \) 立方厘米16. 一个班级有40名学生,其中20名学生参加了数学竞赛,15名学生参加了物理竞赛,5名学生同时参加了数学和物理竞赛。
2020中考数学大一轮 练习题(毕节专用):第6章 第3节 与圆有关的计算

第三节 与圆有关的计算一、选择题1.如图,正五边形ABCDE 内接于⊙O ,若⊙O 的半径为5,则AB ︵的长度为( B )A .πB .2πC .5πD .10π【解析】 连接OA 、OB ,∵五边形ABCDE 是正五边形,∴∠AOB =360°÷5=72°,∴AB ︵的长度=72×π×5180=2π.2.用圆心角为120°,半径为3 cm 的扁形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( B )A .3 cmB .2 2 cmC .3 2 cmD .4 2 cm【解析】 设圆锥的底面半径长为x cm ,根据题意得2πx =120·π·3180,解得x =1,所以这个纸帽的高=32-12=22(cm).3.(2019·绍兴)如图,△ABC 内接于⊙O ,∠B =65°,∠C =70°.若BC =22,则BC ︵的长为( A )A .πB .2πC .2πD.22π【解析】 连接OB ,O C.∵∠A =180°-∠ABC -∠ACB =180°-65°-70°=45°, ∴∠BOC =90°,∵BC =22,∴OB =OC =2,∴BC ︵的长为90·π·22360=π,故选A. 4.(2019·遵义)圆锥的底面半径是5 cm ,侧面展开图的圆心角是180°,圆锥的高是( A )A .5 3 cmB .10 cmC .6 cmD .5 cm【解析】 设圆锥的母线长为R ,根据题意得2π·5=180πR180,解得R =10.即圆锥的母线长为10 cm ,∴圆锥的高为:102-52=5 3 cm.故选A.5.(2019·广安)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =4,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( D )A.43π- 3 B .23π-32C.13π-32D .13π- 3【解析】 ∵在Rt △ABC 中,∠ACB =90°,∠A =30°, ∴∠B =60°,∴∠COD =120°,∵BC =4,BC 为半圆O 的直径,∴∠CDB =90°, ∴OC =OD =2,∴CD =32BC =23,图中阴影部分的面积=S 扇形COD -S △COD =120·π·22360-12×23×1=4π3-3,故选A.6.120°的圆心角所对的弧长是6π,则此弧所在圆的半径是 ( C ) A .3 B .4 C .9D .18【解析】 根据弧长公式l =n πr180,得r =180×6π120π=9.7.如图,正方形ABCD 的边AB =1,BD ︵和AC ︵都是以1为半径的圆弧,则无阴影两部分的面积之差是( A )A.π2-1 B .1-π4 C.π3-1D .1-π6【解析】 由图可知弧BD 和弧AC 将正方形分成四部分,分别用1、2、3、4表示如图,扇形ABD 和扇形ACD 的面积之和=2S 3+S 1+S 2,正方形的面积=S 1+S 2+S 3+S 4.两式相减可得:S 3-S 4=S 扇形-S 正方形=90π×1×2360-1=π2-1.8.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm ,若纸扇两面贴纸相同,则贴纸的面积为 ( B )A .175π cm 2B .350π cm 2 C.8003π cm 2D .150π cm 2【解析】 S 贴纸=2S 扇环=2(S 扇形BAC -S 扇形DAE )=2[120π·252360-120π·(25-15)2360]=350πcm 2.9.正六边形的边心距与边长之比为( B ) A.3∶3 B .3∶2 C .1∶2D .2∶2【解析】 如图:设六边形的边长是a ,则半径长也是a ;经过正六边形的中心O 作边AB 的垂线OC ,则AC =12AB =12a ,∴OC =OA 2-AC 2=32a ,∴正六边形的边心距与边长之比为:32a ∶a =3∶2.故选B.10.(2019·宁夏)如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE .则图中阴影部分的面积是( B )A .6-43πB .63-83π C .12-3π-43D .123-83π【解析】 ∵正六边形ABCDEF 的边长为2,∴正六边形ABCDEF 的面积是:2×(2sin 60°)2×6=6×2×32=63,∠F AB=∠EDC=120°,∴图中阴影部分的面积是:63-120×π×22360×2=63-8π3,故选B.11.如图,把八个等圆按相邻的两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则S1S2=(B)A.34B.35C.23D.1【解析】设每个等圆的半径为r,∵正八边形的每个内角度数是(8-2)×180°8=135°,∴正八边形外侧每一个阴影扇形的圆心角度数都是360°-135°=225°,∴正八边形内侧八个扇形(无阴影部分)面积之和S1=8×135π×r2360正八边形外侧八个扇形(阴影部分)面积之和S2=8×225π×r2360,∴S1S2=8×135π×r23608×225π×r2360=135225=35.二、填空题12.在半径为6 cm的圆中,120°的圆心角所对的弧长为4πcm.【解析】根据弧长公式得l=120180π×6=4π(cm).13.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O ,A ,B 均为格点,则扇形OAB 的面积大小是5π4.14.(2019·齐齐哈尔)将圆心角为216°,半径为5 cm 的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为 4 cm.【解析】 设圆锥的底面圆的半径为r ,根据题意得2πr =216π×5180,解得r =3,所以圆锥的高=52-32=4(cm).故答案为4.15.如图,分别以正五边形ABCDE 的顶点A ,D 为圆心,以AB 长为半径画BE ︵,CE ︵.若AB =1,则阴影部分图形的周长为 65π+1 (结果保留π).【解析】 阴影部分的周长包括两段弧长加边长BC .∵五边形ABCDE 为正五边形,AB =1,∴AB =BC =CD =DE =EA =1,∠A =∠D =108°,∴BE ︵=CE ︵=108°180°·πAB =35π,∴C 阴影=BE ︵+CE ︵+BC =65π+1.16.(2019·贵阳)如图,用等分圆的方法,在半径为OA 的圆中,画出了如图所示的四叶幸运草,若OA =2,则四叶幸运草的周长是__8π__.【解析】 由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,∴四叶幸运草的周长=2×2π×2=8π;故答案为8π.17.如图,在扇形AOB 中,∠AOB =90°,以点A 为圆心,OA 的长为半径作OC ︵交AB ︵于点C .若OA =2,则阴影部分的面积为3-π3 .【解析】 连接OC 、AC ,过点C 作CH ⊥OA 于点H .根据题意易得,OA =AC =OC ,∴△AOC 为等边三角形,则∠AOC =60°,∴弓形AC 与弓形OC 是全等的图形.∵S 弓形AC =60π×22360-12OA ×CH =23π-12×2×2×sin 60°=23π-3,∴S 弓形OC =23π- 3.又S 扇形OBC =30π×22360=13π,∴S 阴影=S 扇形OBC -S 弓形OC =13π-(23π-3)=3-13π.18.如图,AC 是汽车挡风玻璃前的雨刷器,如果AO =45 cm ,CO =5 cm ,当AC 绕点O 顺时针旋转90°时,则雨刷器AC 扫过的面积为 500π cm 2(结果保留π).【解析】 ∵S 阴影=S 扇形AA ′O +S △A ′OC ′-S △AOC -S 扇形CC ′O ,S △AOC =S △A ′OC ′,∴S 阴影=S 扇形AA ′O -S 扇形CC ′O =14π×452-14π×52=14π×2000=500π.19.(2019·内江)如图,在平行四边形ABCD 中,AB <AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为 2π3+3 .【解析】 如图,连接OE ,作OF ⊥DE 于点F , ∵四边形ABCD 是平行四边形,且∠A =150°, ∴∠D =30°,则∠COE =2∠D =60°,∵CD =4,∴CO =DO =2,∴OF =12OD =1,DF =OD cos ∠ODF =2×32=3, ∴DE =2DF =23,∴图中阴影部分的面积为60·π·22360+12×23×1=2π3+3,故答案为 2π3+ 3. 20.如图,在△ABC 中,BC =6,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F ,点P 是优弧EF ︵上的一点,且∠EPF =50°,则图中阴影部分的面积是 6-109π .【解析】 连接AD ,则AD ⊥BC ,AD =2,∴S △ABC =12×6×2=6,∵∠EPF =50°,∴∠EAF =100°,∴S 扇形EAF =100×π×22360=109π,∴S阴影=S △ABC -S 扇形EAF =6-109π.三、解答题21.如图,在△ABC 中,∠ACB =90°,O 是边AC 上一点,以O 为圆心,OA 为半径的圆分别交AB ,AC 于点E ,D ,在BC 的延长线上取点F ,使得BF =EF ,EF 与AC 交于点G .(1)试判断直线EF 与⊙O 的位置关系,并说明理由; (2)若OA =2,∠A =30°,求图中阴影部分的面积.【解析】(1)EF是⊙O的直径.要证直线EF与⊙O的位置关系,连接OE,只需证明OE⊥EF.根据等腰三角形的性质证出∠A=∠AEO,∠B=∠BEF,根据∠ACB =90°,得出∠A+∠B=90°,可证得∠AEO+∠BEF=90°,根据切线的判定即可证得结论.具体如下:连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(2)根据圆周角定理可证得∠AED=90°,∠EOD=60°,再利用解直角三角形求出EG的长,然后根据阴影部分的面积=△OEG的面积-扇形EOD的面积,计算即可得出答案.∵AD是⊙O的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∴AO=2,∴OE=2,∴EG=23,∴阴影部分的面积=12×2×23-60π×22360=23-23π.22.图①是小明在健身器材上进行仰卧起坐锻练时的情景.图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin 20°≈0.342,cos 20°≈0.940,tan 20°≈0.364).(1)求AB的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径MN的长度(结果保留π)【解析】本题考查了解直角三角形的应用及弧长的计算,构造所给锐角所在的直角三角形是解决本题的关键.(1)过B作BE⊥AC于E,如此不难得到四边形BECD是矩形,接下来求出AE,解直角三角形求出AB即可.如下图所示.过B作BE⊥AC于E,交MO的延长线于点F.∵BE ⊥AC ,BD ⊥CD ,AC ⊥CD ,∴四边形BECD 是矩形,∴AE =AC -BD =0.66米-0.26米=0.4米.∵∠AEB =90°,∴AB =ABsin ∠ABE =0.4sin 20°≈1.17(米).(2)先根据α的度数可得∠MON 的度数,然后由弧长公式求解即可.∵∠MON =90°+20°=110°,∴MN ︵的长度是110π×0.8180=2245π(米). 23.(2019·张家界)如图,AB 为⊙O 的直径,且AB =43,点C 是AB ︵上的一动点(不与A ,B 重合),过点B 作⊙O 的切线交AC 的延长线于点D ,点E 是BD 的中点,连接E C.(1)求证:EC 是⊙O 的切线;(2)当∠D =30°时,求阴影部分面积.【解析】 (1)如图,连接BC ,OC ,OE ,∵AB 为⊙O 的直径,∴∠ACB =90°,在Rt △BDC 中,∵BE =ED ,∴DE =EC =BE ,∵OC =OB ,OE =OE ,∴△OCE ≌△OBE (SSS),∴∠OCE =∠OBE ,∵BD 是⊙O 的切线,∴∠ABD =90°,∴∠OCE=∠ABD=90°,∵OC为半径,∴EC是⊙O的切线;(2)∵OA=OB,BE=DE,∴AD∥OE,∴∠D=∠OEB,∵∠D=30°,∴∠OEB=30°,∠EOB=60°,∴∠BOC=120°,∵AB=43,∴OB=23,∴BE=23·3=6.∴四边形OBEC的面积为2S△OBE=2×12×6×23=123,∴阴影部分面积为S四边形OBEC-S扇形BOC=123-120·π×(23)2360=123-4π.24.如图①,在矩形纸片ABCD中,AB=3+1,AD= 3.(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为6;(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为3-12;(3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得到△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长.(结果保留π)【解析】 (1)6 (2)3-12(3)∵∠C =90°,BC =3,EC =1,∴tan ∠BEC =BC CE =3,∴∠BEC =60°,由翻折可知:∠DEA =45°, ∴∠AEA ′=75°=∠D ′ED ″, ∴D ′D ″=75×π×3180=5312π. 答:弧D ′D ″的长为5312π.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学综合习题(六)
一、
填空题
1、计算:(2)--=
;15-
= ;1
3()2
-= . 2、计算:(52)(52)+-= . 3、计算:2sin60°= .
4、将3
2
x xy -分解因式的结果为 .
5、一个圆锥形容器的底面半径为12cm ,母线长为15cm ,那么这个圆锥形容器的高为 cm.
6、如图,将边长为8cm 的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动三次后,正方形ABCD 的中心经过的路线长是 cm.
选择题(7~12题为单项选择题;13~15题为多项选择题) 7、下列计算正确的是( )
A 、3
2
5
2a a a +=
B 、32
6
(2)4a a -= C 、2
2
2
()a b a b +=+ D 、623
a a a ÷=
8、下列各图中,∠1大
于∠2的
是( )
9、下列运算中,错误..
的是( )
A 、
(0)a ac c b bc =≠ B 、1a b a b --=-+ C 、0.55100.20.323a b a b
a b a b
++=
-- D 、x y y x x y y x --=++ 10、将不等式841
13822
x x x x +<-⎧⎪
⎨≤-⎪⎩的解集在数轴上表示出来,正确的是(
)
11、在下面的四个几何体中,它们各自的左视图与主视图不一样的是(
)
12、已知某种品牌电脑的显示器的大约为4
210⨯小时,这种显示
寿命
器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是(
)
13、下列说法正确的是(
)
A 、9的算术平方根是3
B 、设a 是实数,则a a -的值可能是正数,也可能是负数
C 、点(2,3)P -关于原点的对称点的坐标是(2,3)--
D 、抛物线2
6y x x =--的顶点在第四象限 14、如图,反映的是某中学七(3)班学生外出乘车、步行、骑车的人数直方图(部分)和扇形分布图,则下列说法正确的是( )
A 、七(3)班外出步行的有8人
B 、七(3)班外出的共有40人
C 、在扇形统计图中,步行人数所占的圆心角度数为82°
D 、若该校七年级外出的学生共有500人,那么估计全年级外出骑车的约有150人
15、如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中正确的有( )
A 、∠ADE=∠CDE
B 、DE ⊥E
C C 、AD·BC=BE·DE
D 、
CD=AD+BC
三、解答下列各题
A B C
D
E
F
12 20 乘车50% 步行
20%
骑车30% 乘车 步行 骑车
个等边三角形ACE ∆和BCF ∆,连结BE ,AF.
求证:BE=AF.
17、某城区中学5月份开展了与农村偏远学校“手拉手”的活动.九(3)班苗苗同学积极响应学校的号召,用自己的零花钱买了圆株笔和钢笔共8支,准备送给偏远山区的同学,共用去了20元钱,其中圆珠笔每支1元,钢笔每支5元.你知道苗苗同学买了圆珠笔和钢笔各多少支吗?
18、在5月27日结束的第49届世界乒乓球锦标赛中,男子单打决赛在我国选手马琳和五励勤之间展开,双方苦
.
的观众,都能参加“乒乓大礼包”的投资活动,据不完全统计,有32320名观众参与了此次短信互动活动,其中有50%的观众预测王励勤获胜.刘敏同学参加了本次“短信互动”活动,并预测了王励勤获胜,如果从中抽取20名幸运观众,并赠送“乒乓达大礼包“一份,那么刘敏同学中奖的概率有多大?
19、如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为点B ,点D 是⊙O 上的一点,且AD ∥OC.
求证:AD·BC=OB·BD
20.传销是一种危害极大的非法商业诈骗活动,国这胆明令禁止的.与传销活动的人,最终是要上当受骗的.据报道,某公司利用传销活动诈骗投资人,谎称“每西半球投资者每投资一股450元,买到一件价值10元的商品后,另外可得到530元的回报,每一期投到期后,若投资人继续投资,下一期追加的投资股数必须是上一期的2倍”. 退休的张大爷先资了1股,以后每期到期时,不断追加投资,当张大爷某一期追加的投资数为16股后时,被告知该公司破产了.
(1) 假设张大爷在该公司破产的前一期停止投资,他的投资回报率是多少?(回报率
=
100% 回报金额-投资金额
投资额
)
(2) 试计算张大爷在参与这次传销活动中共损失了多少元钱?
21、张宇同学是一名天文爱好者,他通过查阅资料得知:地球、火星的运行轨道可以近似地看成是以太阳为圆的两个同心圆,且这两个同心圆在同一平面上(如图所示).由于地球和火星的运行速度不同,所以二者的位置不断发生变化.当地球、太阳和火星三者处在一条直线上,且太阳位于地球、火星中间时,称为“合”;当地球、太阳和火星三者处在一条直线上,且地球于太阳与火星中间时,称为“冲”.另外,从地球上看火星与太阳,当两条视线互相垂直时,分别称为“东方照”和“西方照”.已知地球距太阳15(千万千米),火星距太阳20.5(千万千米).
(2)如果从地球上发射宇宙飞船登上火星,为了节省燃料,应选择在什么位置时发射较好,说明你的理由. (注:从地球上看火星,火星在地球左、右两侧时分别叫做“东方照”、“西方照”.)
22.我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).(年获利=年销售额—生产成本—投资成本)
(1)直接写出y与x之间的函数关系式;
(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
(3)若该公司希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利不低于1842元,请你确定此时销售单价的范围.在此情况下,要使产品销售量最大,销售单价应定为多少元?
23.已知:如图,在平面直角坐标系中,四边形ABCO 是菱形,且∠AOC=60°,点B 的坐标是(0,83),点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,设(08)t t <≤秒后,直线PQ 交OB 于点D. (1)求∠AOB 的度数及线段OA 的长;
(2)求经过A ,B ,C 三点的抛物线的解析式;
(3)当4
3,33
a OD ==时,求t 的值及此时直线PQ 的解析式; (4)当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆相似?当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆不相似?请给出你的结论,并加以证明.
8。