PID控制参数对系统性能影响的分析报告

合集下载

《自动控制原理》自动控制PID实验报告

《自动控制原理》自动控制PID实验报告

《自动控制原理》自动控制PID实验报告课程名称自动控制原理实验类型:实验项目名称:自动控制PID一、实验目的和要求1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和频率域仿真的方法。

2、通过仿真实验研究并总结PID 控制规律及参数对系统特性影响的规律。

3、实验研究并总结PID 控制规律及参数对系统根轨迹、频率特性影响的规律,并总结系统特定性能指标下根据根轨迹图、频率响应图选择PID 控制规律和参数的规则。

二、实验内容和原理一)任务设计如图所示系统,进行实验及仿真程序,研究在控制器分别采用比例(P)、比例积分(PI)、比例微分(PD)及比例积分微分(PID)控制规律和控制器参数(Kp、Ki、Kd)不同取值时,控制系统根轨迹和阶跃响应的变化,总结pid 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。

具体实验容如下:1、比例(P)控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。

总结比例(P)控制的规律。

2、比例积分(PI)控制,设计参数Kp、Ki 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;3)被控对象两个极点的右侧(不进入右半平面)。

分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Ki 的变化情况。

总结比例积分(PI)控制的规律。

3、比例微分(PD)控制,设计参数Kp、Kd 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;66 3)被控对象两个极点的右侧(不进入右半平面)。

分别绘制三种情况下的根轨迹图,在根轨迹图上确定控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Kd 的变化情况。

PID各参数对系统的影响分类分析

PID各参数对系统的影响分类分析

PID各参数对系统的影响分类分析PID(比例-积分-微分)控制器是一种常用的反馈控制器,广泛应用于工业控制中。

它通过调整比例(P)、积分(I)、微分(D)三个参数来实现对控制系统的影响。

下面将从数学模型、实际应用和参数调整三个方面介绍PID各参数对系统的影响分类分析。

一、数学模型PID控制器根据当前误差e(假设为系统输出值和设定值之差)计算控制量u,并通过调整PID参数来改变控制器的动态特性。

PID控制器的数学模型可以表示为:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,u(t)是控制量,Kp、Ki和Kd分别是比例、积分和微分参数,e(t)是当前误差,de(t)/dt是误差的变化率。

根据这个模型,可以分析各参数对系统的影响。

1.比例参数:Kp比例参数Kp决定了控制器对误差的放大程度,即控制响应的速度。

较大的Kp使得控制器对误差的放大程度增加,系统的响应速度加快,但可能引发系统震荡和不稳定性;较小的Kp则导致系统响应速度较慢,但更稳定。

2.积分参数:Ki积分参数Ki调整了控制器对误差积分的程度,即控制响应的持续时间。

较大的Ki使得积分效果增强,误差的积累更多,系统能够更精确地追踪设定值,但也容易导致系统超调和震荡;较小的Ki则减少了积分效果,使得系统响应更平滑。

3.微分参数:Kd微分参数Kd调整了控制器对误差变化率的响应程度,即控制响应的抑制效果。

较大的Kd可以使控制器对快速变化的误差更敏感,提高系统的稳定性,但也容易引起过度抑制、响应迟滞和系统震荡;较小的Kd则减少了对误差变化率的响应,使得系统响应更平滑。

二、实际应用PID控制器广泛应用于各种工业控制系统,如温度控制、水位控制、速度控制等。

1.温度控制在温度控制中,比例参数Kp决定了加热或冷却速率,积分参数Ki影响了温度的稳定性,微分参数Kd可以抑制温度的快速变化。

2.水位控制在水位控制中,比例参数Kp控制了供水或排水的速度,积分参数Ki 确保水位的稳定性,微分参数Kd可以调整水位变化的抑制效果。

PID自动控制系统参数整定实验报告

PID自动控制系统参数整定实验报告

T13. PID自动控制系统参数整定(化工仪表与自动化,指导教师:卢红梅)实验一:一阶单容上水箱对象特性测试实验实验二:上水箱液位PID整定实验一、实验目的1)、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2)、分析分别用P、PI和PID调节时的过程图形曲线。

3)、定性地研究P、PI和PID调节器的参数对系统性能的影响。

4)、通过实验熟悉单回路反馈控制系统的组成和工作原理。

5)、分析分别用P、PI和PID调节时的过程图形曲线。

6)、定性地研究P、PI和PID调节器的参数对系统性能的影响。

二、实验设备THKJ100-1型过程控制实验装置配置:上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。

型参数为串联釜数N三、实验原理实验一原理:阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过控制器或其他操作器,手动改变对象的输入信号(阶跃信号)。

同时,记录对象的输出数据或阶跃响应曲线,然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。

实验二原理:图13.1单回路上水箱液位控制系统图13.1为单回路上水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

因此,当一个单回路系统组成好以后,如何整定好控制器参数是一个很重要的实际问题。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

PID控制参数对系统性能的影响研究

PID控制参数对系统性能的影响研究
现在我们对系统 G0(s)=1(/ (s+2)2+(s+3))进行不同的 比例系数控制,取 Kp=1,3.14,7,10,16 和 18,系统的单位 阶跃响应如图 2(a)所示。从图中可以看出,比例控制系数不 断增大,稳定下来的值接近 1,即稳态的误差越来越小。比例 控制可以减小系统的静态误差,改善系统的稳定性能 [4],但同 时达到稳态所用的时间变长。对于不同的比例系数,用 Matlab 绘制的系统的根轨迹如图 2(b)所示。由图可知,当比例控制 系数 Kp>95.5 时,系统的根轨迹将延伸到 S 平面的右侧,系统 变得不稳定,所以增大比例控制系数 Kp 将会使系统的稳定性 变差,因此对于不同的控制系统需要不断仿真来求取最恰当 的值。 1.3 微分控制对系统的影响
干扰;积分调节能够消除静态误差,但会使响应速度变慢,影响已有串联积分系统的稳定性。
关键词:PID控制;系统函数;根轨迹;稳定性
中图分类号:TP273
文献标识码:A
文章编号:2095-1302(2018)04-0095-04
0引言
PID(比例积分微分)控制自产生以来就一直是工业生产
中应用最广泛的控制方法,随着电子计算机和科学技术的发
DOI:10.16667/j.issn.2095-1302.2018.04.030
智能处理与应用
Intelligent Processing and Application
Hale Waihona Puke PID控制参数对系统性能的影响研究
余明亮,彭菊红
(湖北大学 计算机与信息工程学院,湖北 武汉 430062)
摘 要:文中基于Matlab仿真平台,采用阶跃响应分析法和根轨迹图研究了PID控制器的三个参数KP,KI,KD对控制系 统的影响。比例系数影响控制系统的调控速度与系统稳定性;微分调节可提高系统的相对稳定性,抑制超调,但会引入高频

PID各参数对系统的影响

PID各参数对系统的影响

I:积分速度(积分常数)的大小对调节过程影响增大积分速度调节阀的速度加快,但系统的稳定性降低当积分速度大到超过某一临界值时,整个系统变为不稳定,出现发散的振荡过程。

S0愈大,则调节阀的动作愈快,就愈容易引起和加剧振荡,而最大动态偏差则愈来愈小。

减小积分速度调节阀的速度减慢,结果是系统的稳定性增加了,但调节速度变慢当积分常数小到某一临界值时,调节过程变为非振荡过程。

无论增大还是减小积分速度,被调量最后都没有残差P:余差(或静差)是指:被调参数的新的稳定值与给定值不相等而形成的差值。

余差的大小与调节器的放大系数K或比例带δ有关放大系数越小,即比例带越大,余差就越大;放大系数越大,即比例带越小,比例调节作用越强,余差就越小。

比例带对于调节过程的影响a)δ大调节阀的动作幅度小,变化平稳,甚至无超调,但余差大,调节时间也很长b)δ减小调节阀动作幅度加大,被调量来回波动,余差减小c)δ进一步减小被调量振荡加剧d)δ为临界值系统处于临界稳定状态e)δ小于临界值系统不稳定,振荡发散比例调节的特点:(1)比例调节的输出增量与输入增量呈一一对应的比例关系,即:u = K e(2)比例调节反应速度快,输出与输入同步,没有时间滞后,其动态特性好。

(3)比例调节的结果不能使被调参数完全回到给定值,而产生余差。

比例带的一般选择原则:若对象较稳定(对象的静态放大系数较小,时间常数不太大,滞后较小)则比例带可选小些,这样可以提高系统的灵敏度,使反应速度加快一些;相反,若对象的放大系数较大,时间常数较小,滞后时间较大则比例带可选大一些,以提高系统的稳定性。

当被调参数突然出现较大的偏差时比例调节能立即按比例把调节阀的开度开得很大但积分调节器需要一定的时间才能将调节阀的开度开大或减小如果系统干扰作用频繁,积分调节会显得十分乏力D:如加热炉温度自动调节,当温度低于给定值时,则煤气阀门应开大,这是比例调节作用,但同时发现,温度降低的速度很快,说明出现了较大的扰动,则下一时刻的偏差将会更大,因此应预先采取措施,即提前动作,把煤气阀门的开度开得更大一些,这叫超前作用微分调节的思想:微分调节只与偏差的变化成比例,偏差变化越剧烈,由微分调节器给出的控制作用越大,从而及时地抑制偏差的增长,提高系统的稳定性。

PID控制参数调节对系统性能的影响

PID控制参数调节对系统性能的影响

PID 控制参数对系统性能的影响1. 引言PID (比例积分微分)控制自产生以来就一直是工业生产中应用最广泛的控制方法,随着电子计算机和控制领域的发展,控制器的方案也在不断丰富,但由于PID 控制法(比例、积分、微分控制法)原理简单、适用性强和鲁棒性强等特点至今仍被广泛应用。

本文对不同的受控系统改变PID 调节的各参数,采用单位阶跃响应分析法和根轨迹法对PID 控制系统进行了仿真分析,旨在对PID 调节进行更加深入细致研究。

2. PID 控制原理仿真分析PID 是基于反馈理论的调节方式,通过对误差信号()e t 进行比例、积分和微分运算,再对结果进行适当处理,从而对被控对象进行调节控制,其主要结构如图1 所示。

PID 控制可以抽象为数学模型:()=I P c p D P P D I K K H s K sK K K T s s T s =++++ 式中P K ,I K ,D K 为常数。

我们需要通过设计这些参数使系统达到性能指标。

图1 PID 控制系统框图系统稳定性判据根轨迹法是分析和设计线性定常控制系统的图解方法,它是开环系统某一参数不断变化时,闭环系统特征方程根在S 平面上变化的轨迹。

当开环增益或其他参数改变时,其全部数值对应的闭环节点全部可在根轨迹图上确定。

系统的稳定性由系统闭环极点唯一确定,而系统的稳态性能和动态性能又与闭环零极点在S 平面上的位置密切相关,所以根轨迹不仅可以直接给出闭环系统时间响应的全部信息,还可指明开环零点、极点应该怎样变化才能满足给定闭环系统的性能指标要求。

若根轨迹全部在S 左半平面,则不论参数怎么变化系统都是稳定的;若根轨迹在虚轴上,则系统临界稳定;若根轨迹全部在S 右半平面,则系统是不稳定的;若根轨迹在整个S 平面,则系统稳定性与开环增益K 的大小有关。

比例(P )控制对系统的影响 我们对系统021()(2)(3)G s s s =+⋅+ 调节不同的比例系数进行比例环节控制,则系统00()()()=()c P G s G s G s K G s =⋅⋅ 取P K =1,5,10,15,20和25,系统的单位阶跃响应如图2(a )所示。

PID 控制器参数对控制性能的影响

PID 控制器参数对控制性能的影响

1、比例系数K p对系统性能的影响(1)对系统的动态性能影响:K p加大,将使系统响应速度加快,K p偏大时,系统振荡次数增多,调节时间加长;;K p太小又会使系统的响应速度缓慢。

K p的选择以输出响应产生4:1衰减过程为宜。

(2)对系统的稳态性能影响:在系统稳定的前提下,加大K p可以减少稳态误差,但不能消除稳态误差。

因此K p的整定主要依据系统的动态性能。

2、积分时间T I对系统性能的影响积分控制通常和比例控制或比例微分控制联合作用,构成PI控制或PID控制。

(1)对系统的动态性能影响:积分控制通常影响系统的稳定性。

T I太小,系统可能不稳定,且振荡次数较多;T I太大,对系统的影响将削弱;当T I较适合时,系统的过渡过程特性比较理想。

(2)对系统的稳态性能影响:积分控制有助于消除系统稳态误差,提高系统的控制精度,但若T I太大,积分作用太弱,则不能减少余差。

3、微分时间T D对系统性能的影响积分控制通常和比例控制或比例积分控制联合作用,构成PD控制或PID控制。

(1)对系统的动态性能影响:微分时间T D的增加即微分作用的增加可以改善系统的动态特性,如减少超调量,缩短调节时间等。

适当加大比例控制,可以减少稳态误差,提高控制精度。

但T D值偏大或偏小都会适得其反。

另外微分作用有可能放大系统的噪声,降低系统的抗干扰能力。

(2)对系统的稳态性能影响:微分环节的加入,可以在误差出现或变化瞬间,按偏差变化的趋向进行控制。

它引进一个早期的修正作用,有助于增加系统的稳定性。

PID控制器的参数必须根据工程问题的具体要求来考虑。

在工业过程控制中,通常要保证闭环系统稳定,对给定量的变化能迅速跟踪,超调量小。

在不同干扰下输出应能保持在给定值附近,控制量尽可能地小,在系统和环境参数发生变化时控制应保持稳定。

一般来说,要同时满足这些要求是很难做到的,必须根据系统的具体情况,满足主要的性能指标,同时兼顾其它方面的要求。

PID控制器参数对控制性能的影响

PID控制器参数对控制性能的影响

PID控制器参数对控制性能的影响PID控制器是一种经典的反馈控制器,由比例(Proportional)、积分(Integral)和微分(Derivative)三个控制部分组成。

PID控制器通过调节这三个参数的大小,可以实现对系统的稳定性、快速性和抗干扰能力等性能的调节。

首先,比例参数KP的调整会影响系统的响应特性。

KP的增大可以加快系统的响应速度,使系统更快地达到目标值,但过大的KP可能会引起系统不稳定。

此外,KP的增大会增大系统的超调量,导致系统存在更大的摆动现象。

因此,在调节KP时需要权衡系统的响应速度和稳定性。

其次,积分参数KI的调整影响系统的静态稳定性和抗干扰能力。

KI的增大增强了系统对静态误差的纠正能力,可以消除型号误差和常态干扰。

但是过大的KI会导致系统的积分饱和现象,使系统产生超调和振荡。

因此,需要适当调节KI的大小,以提高系统的稳定性和抗干扰能力,在满足系统静态误差要求的前提下,尽量减小KI的大小。

最后,微分参数KD的调整会影响系统的抗干扰能力和稳定性。

KD的增大可以提高系统对快速变化干扰的响应能力,减小系统的超调量和震荡现象。

但过大的KD可能会引起系统对噪声的敏感性,导致系统抗干扰能力下降。

因此,在调节KD时需要兼顾系统的抗干扰能力和稳定性。

综上所述,KP参数的调整可以改变系统的响应速度和超调量,KI参数的调整可以提高系统的静态稳定性和抗干扰能力,KD参数的调整可以提高系统的抗干扰能力和稳定性。

在实际应用中,需要根据具体的系统要求和控制目标,通过试验和调整来优化PID参数的设置。

此外,还可以通过其他方法对PID控制器的参数进行调整,如Ziegler-Nichols方法和频域方法等。

Ziegler-Nichols方法通过试探性地改变控制器参数来识别系统的动态特性,并通过一些经验公式来确定PID参数。

频域方法则通过对系统频率响应进行分析,设计合适的环形校正器来调整PID参数。

总之,PID控制器参数的调整对控制性能有重要影响,适当地调整这三个参数可以改善系统的稳定性、快速性和抗干扰能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《计算机控制技术》课程三级项目某二阶系统的PID控制器设计及参数整定
报告人:刘宝
指导教师:刘思远
燕山大学机械工程学院机电控制系
2012年9月23日
目录
《计算机控制技术》课程三级项目 (1)
1.1 PID控制的应用现状 (3)
1.2 PID控制器各个参数对系统系能的影响 (3)
K对系统性能的影响 (3)
1.2.1 比例系数P
1.2.2 积分系数K1对系统性能的影响 (4)
1.2.3 微分系数K2对系统性能的影响 (6)
1.3 对给定的系统进行PID控制调节 (7)
1.4 收获与感想 (11)
1.1 PID控制的应用现状
在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

从理论角度而言,PID控制是20世纪40年代开始的调节原理的一种典型代表。

PID控制再世纪控制工程中应用最广,据不完全统计,在工业过程控制、航空航天控制等领域中,PID孔的应用占80%以上。

尽管PID控制已经写入经典教科书,然而由于PID控制的简单与良好的应用效果,人们仍在不断研究PID控制器各种设计方法(包括各种自适应调节、最优化方法)和未来潜力。

由于液压控制系统大功率、高控制精度、技术成熟等特点,在要求精度高的重型机械机构中得到了广泛应用。

在现实工业中比例伺服阀与PID控制器的结合,使得液压控制对于位移、速度、压力等的控制获得更加良好的效果。

1.2 PID控制器各个参数对系统系能的影响
1.2.1 比例系数
K对系统性能的影响
P
(1)对系统的动态性能影响:P K 加大,将使系统响应速度加快,P K 偏大时,系统振荡次数增多,调节时间加长;P K 太小又会使系统的响应速度缓慢。

P K 的选择以输出响应产生4:1衰减过程为宜。

(2)对系统的稳态性能影响:在系统稳定的前提下,加大P K 可以减少稳态误差,但不能消除稳态误差。

因此P K 的整定主要依据系统的动态性能。

调节P的大小对系统动态性能影响如图。

由图可见,当Kp 加大时,可是系统动作灵敏,速度加快,在系统稳定的前提下,系统的稳态误差将减小,却不能完全消除系统的稳态误差。

Kp 偏大时,系统的震荡次数增多,调节时间增长。

Kp 太大时,系统会趋于不稳定。

1.2.2 积分系数K1对系统性能的影响
积分控制通常和比例控制或比例微分控制联合作用,构成PI 控制或PID
控制。

(1)对系统的动态性能影响:对于合适的k1值,可以减小系统的超调量,提高了稳定性,引入积分环节的代价是降低系统的快速性。

(2)对系统的稳态性能影响:积分控制有助于消除系统稳态误差,提高系统的控制精度,但若k1太大,系统可能会产生震荡,影响系统的稳定性。

由此可见,积分作用能够消除稳态误差,提高控制精度,系统积分作用的引入通常使系统的稳定性下降,K1太大时系统将不稳定,K1偏大时系统
的震荡次数较多。

1.2.3 微分系数K2对系统性能的影响
(1)对系统的动态性能影响:微分系数K2的增加即微分作用的增加可以改善系统的动态特性,如减少超调量,缩短调节时间等。

适当加大比例控制,可以减少稳态误差,提高控制精度。

但K2值偏大或偏小都会适得其反。

另外微分作用有可能放大系统的噪声,降低系统的抗干扰能力。

(2)对系统的稳态性能影响:微分环节的加入,可以在误差出现或变化瞬间,按偏差变化的趋向进行控制。

它引进一个早期的修正作用,有助于增加系统的稳定性。

微分控制经常与比例控制或积分控制联合使用。

引入微分控制可以改善系统的动态特性,当K2偏小时,超调量较大,调节时间也较长;当K2合适时可以提高系统响应速度,提高系统稳定性。

1.3 对给定的系统进行PID控制调节
通过改变不同的参数,便可得到在不同参数情况下的系统响应,而且以一个清晰的图像表示出来。

首先取比例系数Kp=30系统响应如图。

由图中可以看出,系统响应较快,满足系统的要求,但是稳态误差较大,需要引入积分环节,进行PI调节。

取比例系数Kp=30,K1=0.4 系统响应如图。

由图可以看出,系统的稳态误差已经达到要求,但是系统的超调量较大,震荡次数较多,调整时间较长,需要引入微分环节,进行PID调节。

取Kp=35,K1=0.4,K2=15 系统响应如图。

由图可以看出,系统的超调量小于2%,调整时间小于0.2s,稳态误差小于5%,很好的满足了系统的要求。

PID控制器的参数必须根据工程问题的具体要求来考虑。

在工业过程控制中,通常要保证闭环系统稳定,对给定量的变化能迅速跟踪,超调量小。

在不同干扰下输出应能保持在给定值附近,控制量尽可能地小,在系统和环境参数发生变化时控制应保持稳定。

一般来说,要同时满足这些要求是很难做到的,必须根据系统的具体情况,满足主要的性能指标,同时兼顾其它方面的要求。

Word格式
在选择采样周期T时,通常都选择T远远小于系统的时间常数。

因此,PID参数的整定可以按模拟控制器的方法来进行。

1.4 收获与感想
通过这次的课程三级项目,我更加深入的了解了PID的控制机理,单纯的学习课本上的理论知识,我们只能大概的了解它的机理,但是其深层含义却无法体会,这次通过matlab程序仿真,通过一次一次的参数整定,了解到每一个参数的变化对系统行性能的影响,这样从实际中了解到这些知识,才能更加领会其中的真正机理,为以后的PID设计工作打下坚实的基础。

通过这次的三级项目,我感到我还有许多工程软件的使用不太熟悉,在接下来的时间里,我要加强这方面的学习,只有好好的掌握了每一个工程软件的使用方法,它们才能更好的为我们的工程分析服务,才能够给我们的设计提高可靠的理论根据。

完美整理。

相关文档
最新文档