水中铅和镉的测定PPT课件
水中铅离子检测 PPT课件

水中微量重金属的检测
实验结果:
在pH=1时,峰电流最大, 随着pH的增大,峰电流 不断地减小;
当pH=3~5时,峰电流 几乎为0,这是因为H+ 的浓度越大,氨基与 Pb2+形成的配合物的稳 定性就越差,这样Pb2+ 越容易溶出。
因此,我们选择的最佳 溶出条件是pH=1的HCl 溶液。
水中微量重金属的检测
水中微量重金属的检测
2 实验部分
2.1 修饰电极的制备 用AEPTMS对精制的坡缕石粘土矿物进行表面修饰
把2.0g的凹土溶解于15mL的甲苯,然后在氮气氛围下搅 拌10分钟。然后继续在氮气氛围下逐滴加入4mL的AEPTMS。 在磁力搅拌的条件下,让刚才的混合溶液回流3小时。将混 合物经过过滤,洗涤获得的产物,放在100℃下,干燥一晚 上,即得到修饰后的凹土(称为Amino-AT,氨基凹土)。
水中微量重金属的检测
3.3富集酸度的影响 实验步骤: 用示差脉冲阳极溶出法(ASDPV),以和
GCE/Amino-AT为工作电极,Ag/AgCl为参比电 极(饱和KCl溶液),Pt为辅助电极,并且实 验在室温下进行,扫描速率为100mV/s。 把工作电极放于10-5mol/L的Pb2+溶液中富集 2min,不断搅拌,富集电位-0.9V到-1.1V, 改变盐酸的pH值(pH=1~9)进行酸度的选择 实验。以富集的酸度为横坐标,峰电流为纵 坐标,作出富集酸度与峰电流的关系图。
水中微量重金属的检测
3.8干扰试验 实验步骤:
固定Pb2+浓度为10-11M,分别加入不同离子,控制相对 误差±5%。 0.5倍(相对Pb2+浓度)的Cd2+、Hg2+、Cu2+、Co2+、Tl+、 In3+; 2倍的Cd2+、Hg2+、Cu2+、Co2+、Tl+、In3+; 5倍的Cd2+、Hg2+、Cu2+、Co2+、Tl+、In3+; 10倍的Cd2+、Hg2+、Cu2+、Co2+、Tl+、In3+; 用示差脉冲阳极溶出法(ASDPV)测得各种离子的伏安 曲线,并与在相同条件下,只有Pb2+的伏安曲线比较。
水中镉、铅、铬离子的检测

水中镉、铅、铬离子的检测一、镉与铅离子的测定1.实验方案:原子吸收分光光度法(AAs)2.原理:将含待测元素的溶液通过原子化系统喷成细雾,随载气进入火焰,并在火焰中解离成基态原子,当相应离子空心阴极灯辐射出待测元素特征波长光通过火焰时,被其吸收,在一定条件下,特征波长光强的变化与火焰中待测元素基态原子的浓度有定量关系,也符合朗伯-比尔定律,即:A = K× C,则吸光度与待测离子浓度C成正比。
3.分析条件的选择1> 灯的工作电流,测定最灵敏的吸收线,狭缝宽度等最佳工作条件。
2> 选择试样的溶解方法和稀释倍数,并作标准加入的回收试验,已确定试样中是否有干扰,以便选择适当的方法控制和消除干扰。
4.实验内容1)标准曲线法:配制相同基体的含有不同浓度待测元素的系列标准溶液,分别测其吸光度,绘制标准曲线,在同样操作条件下,测定试样溶液的吸光度,从标准曲线上查得浓度。
2)标准加入法:取若干(不少于4份)体积相同的试样溶液,从第二份开始依次加入不同等份量的待测元素的标准溶液(如10、20、40μg),然后用蒸馏水稀释至相同体积后摇匀。
在相同的实验条件下依次测得各溶液的吸光度为Ax、A1、A2、A3。
以吸光度A为纵坐标,以加入标准溶液的量(浓度、体积、绝对含量)为横坐标,作出A-C曲线(不过原点),外延曲线与横坐标相交于一点Cx,此点与原点的距离,即为所测试样溶液中待测元素的含量。
注:当直接测量是灵敏达不到要求时可采用萃取富集测定法。
二、铬的测定1.实验方案:二苯碳酰二肼分光光度法(适用于铬含量较少时)2.原理:在酸性介质中,六价铬与二苯碳酰二肼(DPC)反应,生成紫红色络合物,于540nm 处进行比色测定。
本方法最低检出浓度为0.004mg/L,使用10mm比色皿,测定上限为1mg/L。
3.实验试剂:3%高锰酸钾;2%亚硝酸钠;20%尿素溶液;9mol/L硫酸溶液;7.5%磷酸溶液;0.2%氢氧化钠;5%铜铁试剂4.水样的预处理:1)一般清洁水样可直接用高锰酸钾氧化后测定。
水质铜、锌、铅、镉的测定--原子吸收分光光度法

1适用范围本标准规定了测定水中铜、锌、铅、镉得火焰原子吸收分光光度法。
本标准分为两部分。
第一部分为直接法•适用于测定地下水、地面水与废水中得铜、 锌、铅、镉;第二部分为螯合萃取法•适用于测定地下水与清洁地面水中低浓度得铜铅、 镉。
2定义2、1溶解得金属■未酸化得样品中能通过0、45 U m 滤膜得金属成分。
2、2金属总量:未经过滤得样品经强烈消解后测得得金属浓度•或样品中溶解与悬 浮得两部分金属浓度得总量。
3试剂与材料除非另有说明,分析时均使用符合国家标准得分析纯试剂;实验用水QB/T 6 6 82, 二级。
I 硝酸:P (HNO3)=1、42 gZmL.优级纯。
3、3 硝酸:P (HNO3)=1、4 2g/mL,分析纯。
3、3 高氯酸:P (HClOi) =1 . 67 g / inL,优级纯。
3、4燃料:乙烘■用钢瓶气或山乙烘发生器供给,纯度不低于9 9、6%。
3、5氧化剂:空气,一般山气体压缩机供给■进入燃烧器以前应经过适当过滤■以除去其中得水、油与其她杂质。
用硝酸(3、2)配制。
用硝酸(3、1)配制。
称取1、000 g 光谱纯金属,准确到0、001 S 用硝酸(3、1)溶解,必要时加热,直至溶 解完全,然后用水稀释定容至1 0 0 0 m L 。
3、9中间标准溶液。
用硝酸溶液3、7稀释金属贮备液3、8配制,此溶液中铜、锌、铅、镉得浓度分别为 50、0 0、10、00、100、0 0、10、0 Omg/Lo3、 3、 6硝酸溶液:I +1 O3、 7硝酸溶液:I +499。
3、 8金属储备液:1、OOOg/Lo4采样与样品4、1用聚乙烯塑料瓶釆集样品。
采样瓶先用洗涤剂洗净,再在硝酸溶液3、6中浸泡, 使用前用水冲洗干净。
分析金属总量得样品,采集后立即加硝酸3、I酸化至PH=1~2・正常情况下■每1 0 OOmL样品加2ml硝酸3、1。
4、2试样得制备分析溶解得金属时•样品釆集后立即通过0、45 um滤膜过滤,得到得滤液再按4、I中得要求酸化。
水质 铜、锌、铅、镉的测定--原子吸收分光光度法

1 适用范围本标准规定了测定水中铜、锌、铅、镉得火焰原子吸收分光光度法。
本标准分为两部分。
第一部分为直接法,适用于测定地下水、地面水与废水中得铜、锌、铅、镉;第二部分为螯合萃取法,适用于测定地下水与清洁地面水中低浓度得铜铅、镉。
2定义2、1溶解得金属,未酸化得样品中能通过0、45um滤膜得金属成分。
2、2金属总量:未经过滤得样品经强烈消解后测得得金属浓度,或样品中溶解与悬浮得两部分金属浓度得总量。
3试剂与材料除非另有说明,分析时均使用符合国家标准得分析纯试剂;实验用水,GB/T 6682,二级。
3、1硝酸:ρ(HNO3)=1、42 g/mL,优级纯。
3、3 硝酸:ρ(HNO3)=1、42 g/mL,分析纯。
)=1、67 g/mL,优级纯。
3、3 高氯酸:ρ(HClO43、4燃料:乙炔,用钢瓶气或由乙炔发生器供给,纯度不低于99、6%。
3、5 氧化剂:空气,一般由气体压缩机供给,进入燃烧器以前应经过适当过滤,以除去其中得水、油与其她杂质。
3、6硝酸溶液:1+1。
用硝酸(3、2)配制。
3、7 硝酸溶液:1+499。
用硝酸(3、1)配制。
3、8 金属储备液:1、000g/L。
称取1、000g光谱纯金属,准确到0、001g,用硝酸(3、1)溶解,必要时加热,直至溶解完全,然后用水稀释定容至1000mL。
3、9中间标准溶液。
用硝酸溶液3、7稀释金属贮备液3、8配制,此溶液中铜、锌、铅、镉得浓度分别为50、00、10、00、100、00、10、00mg/L。
4 采样与样品4、1用聚乙烯塑料瓶采集样品。
采样瓶先用洗涤剂洗净,再在硝酸溶液3、6中浸泡,使用前用水冲洗干净。
分析金属总量得样品,采集后立即加硝酸3、1酸化至PH=1~2,正常情况下,每1000mL样品加2ml硝酸3、1。
4、2试样得制备分析溶解得金属时,样品采集后立即通过0、45um滤膜过滤,得到得滤液再按4、1中得要求酸化。
5适用范围5、1测定浓度范围与仪器得特性有关。
重金属检测方法ppt课件

表3 各种反应器的检测线性范围和检出限
生物传感器类别 线性范围/( μmol /L) 酶生物传感器 ( 葡萄糖氧化酶) 微生物传感器 Hg2+: 2.5 ~22.5 Cu2+: 0.16 ~1.6 检出限/( μmol /L) 5 2.5 1×10-4 测定对象 Hg2+ Cu2+ Cd2+
表1 传统的仪器分析方法功能及价格
分析方法 检出限/ (g/L) 精密度 AFS 10-9 高
AAS 火焰
10-7 高 否 否 七十多种 几到几十
ICP
石墨炉 ICP–AES ICP–MS
10-9 10-9 高 可以 可以 八十多种 几十到几百 10-10
电化学方 法 10-8 较高 可以 可以 几十种 几到十几
2.1 酶分析方法 2.2 免疫分析方法 2.3 生物传感器
2.新型方法
二、 具体应用
1.1原子吸收光谱法(AAS)
这种方法根据蒸气相中被测元素的基态原子 对其原子共振辐射的吸收强度来测定试样中被测元 素的含量。AAS具有检出限低,灵敏度高。火焰原 子吸收法的检出限可达到ppb级,石墨炉原子吸收 法的检出限可达到 μ g/L ,甚至更低。此外还有分 析精度好、分析速度快、应用范围广(可测定的元 素达 70 多个)、仪器较简单,操作方便等优点, 原子吸收光谱法的不足之处是多元素同时测定尚有 困难。
同时多元 可以 素分析 元素价态 可以 分析 分析金属 二十几种 数目 仪器价格 十几到几十 /万元
1.6 酶分析法
酶分析法的基本原理是重金属离子对于某些 酶的活性中心具有特别强的亲和力,与之结合后会 改变酶活性中心的结构与性质,引起酶活性下降, 从而使底物-酶系统产生一系列的变化,诸如使显 色剂的颜色、电导率、pH 值和吸光度等发生变化, 这些方法可以直接用肉眼加以辨别或者是通过电信 号、光信号被检测到,这样可以判断重金属的存在 或者测定其浓度。目前已经有多种酶用于重金属离 子的测定,如脲酶、磷酸酯酶、过氧化氢酶、葡萄 糖氧化酶等,最常用的是脲酶。
《食品中镉测定》课件

数据清洗
去除异常值和不符合要求 的数据,确保数据准确性 。
数据转换
将数据转换成适合图表绘 制的格式,如折线图、柱 状图等。
结果分析与解读
对比分析
将实验结果与标准值或预 期值进行对比,分析差异 原因。
趋势分析
根据图表呈现的数据趋势 ,分析镉在食品中的分布 和变化规律。
镉污染的预防措施
建立严格的工业排放标准
制定和实施严格的工业排放标准 ,限制镉等重金属的排放,从源 头上防止镉污染。
提高公众环保意识
加强环保宣传教育,提高公众对 镉污染的认识和环保意识,倡导 绿色生活。
加强环境监测与评估
建立完善的环境监测体系,定期 对环境中的镉含量进行监测和评 估,及时发现并处理镉污染问题 。
原理
利用原子吸收特定波长的 光辐射,测量辐射的吸收 量,确定镉的含量。
优点
高灵敏度、高精度、可同 时测定多种元素。
缺点
仪器昂贵、操作复杂,需 要专业人员操作。
分光光度法
STEP 01
原理
STEP 02
优点
利用镉离子与显色剂反应 生成有色物质,通过测量 有色物质的吸光度,确定 镉的含量。
STEP 03
加强镉污染源的管理
对排放镉的工业企业进行严格监 管,确保其达到排放标准,防止 镉污染的扩散。
国际合作与政策建议
加强国际交流与合作
制定国际统一的镉排放标准
与其他国家和地区开展交流与合作,共同 研究和应对全球性的镉污染问题。
推动国际社会制定统一的镉排放标准,促 进全球环境保护事业的发展。
推广先进的镉污染防治技术
解读结论
第六章 水中的重金属PPT课件

第一节 天然水中重金属的来源及毒性
重金属概念
(1)相对密度大于5(有人认为大于4)为重金属 (2)周期表中原子序数大于20者即从21起为重金属 (3)重金属指相对原子质量大于40并具有相似外层电子 分布特征的一类金属
0. 1
> 0.
m
μ m
1
μ
m
2.影响水中金属形态的因素
水中金属离子的水解作用 水中溶解态无机阴离子
配位作用 水中的溶解有机物
生成稳定性不同的配合物或螯合物 水体中的悬浮颗粒物 吸附
四、水中重金属的毒性及其影响因素
水中重金属的毒性:
1. 金属本身的毒性,取决于金属的电负性; 2. 金属间的协同或拮抗作用; 3. 利用活化作用或非活化作用决定的物理化学参数
汞的甲基化:水中的二价汞离子能经过微生物的作 用转变为有剧毒性的甲基汞,称为汞的甲基化。
产物有:一甲基汞和二甲基汞。
2CH3HgCl+H2S (CH3Hg)2S
(CH3Hg)2S+2HCl (CH3)2Hg+HgS
汞的甲基化既可在厌氧条件下发生,也可在 好氧条件下发生。在厌氧条件下,主要转化为二甲 基汞。在好氧条件下,主要转化为一甲基汞。
金属离子对鱼类的毒性分为急性毒性、亚急 性毒性和慢性毒性,并且这方面的研究受到广泛 重视,多见报道。
部分金属污染物顺序为:Hg>Cu>Zn、Cd>Pb
水中污染物的分布和存在形态
污染物进入水体后通常以可溶态或悬浮态存在,其在水体 中的迁移转化及生物可利用性均直接与污染物存在形态相关。
水质 铜、锌、铅、镉的测定 原子吸收分光光度法

水质铜、锌、铅、镉的测定原子吸收分光光度法本方法规定了测定水中铜、锌、铅、镉的原了吸收光谱法。
本方法分为两部分。
第一部分为直接法,适用于测定地下水、地面水和废水中的铜、锌、铅、镉第二部分为螯合萃取法,适用于测定地下水和清洁地面水中低浓度的铜、铅、镉。
1.定义1.1 溶解的金属:未酸化的样品中能通过0.45µm滤膜的金属成分。
1.2 金属总量:未经过滤的样品经强烈消解后测得的金属浓度,或样品中溶解和悬浮的两部分金属浓度的总量。
2.采样和样品2.1 用聚乙烯塑料瓶采集样品。
采样瓶先用洗涤剂洗净,再在硝酸溶液(5.6)中浸泡,使用前用水冲洗干净。
分析金属总量的样品,采集后立即加硝酸(5.1)酸化至pH=l~2,正常情况下,每1000mL样品加2mL硝酸(5.1)。
2.2 试样的制备分析溶解的金属时,样品采集后立即通过0.45µm滤膜过滤,得到的滤液再按(2.1)中的要求酸化。
第一篇直接法3.适用范围3.1 测定浓度范围与仪器的特性有关,表1列出一般仪器的测定范围。
表 13.2 地下水和地面水中的共存离子和化合物在常见浓度下不干扰测定,但当钙的浓度高于1000mg/L时,抑制镉的吸收,浓度为2000mg/L时,信号抑制达19%。
铁的含量超过100mg/L时,抑制锌的吸收。
当样品中含盐量很高,特征谱线波长又低于350nm时,可能出现非特征吸收。
如高浓度的钙,因产生背景吸收,使铅的测定结果偏高。
4.原理将样品或消解处理过的样品直接吸入火焰,在火焰中形成的原子对特征电磁辐射产生吸收,将测得的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的浓度。
5.试剂除非另有说明,分析时均使用符合国家标准或专业标准的分析纯试剂、去离子水或同等纯度的水。
5.1 硝酸(HNO3):ρ=1.42g/mL,优级纯。
5.2 硝酸(HNO3):ρ= 1.42g/mL,分析纯。
5.3 高氯酸(HClO4):ρ=1.67g/mL,优级纯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-----镉和铅
.
1
1. 样品的采集 2. 预处理及保存
3. 测定方法及原理
4. 典型事例
水样
• 根据水种类:天然水(河、湖、海、地下);用 水(引用、工业用、灌溉);排放水(工业废水、 城市污水)。
• 根据分析项目要求。
• 采样多变性:河水—上、中、下(大河:左右两 岸和中心线;中小河:三等分,距岸1/3处); 湖水---从四周入口、湖心和出口采样;海水---粗 分为近岸和远岸;生活污水---与作息时间和季节 性食物种类有关;工业废水---与产品和工艺过程 及排放时间有关
.
18
3、测定 将未添加铅镉标准液的水样置于电解池中,通氮气5 min后,放入清洁的
2、试液配制
取两份 25.0 mL水样置于2个 50 mL容量瓶中,分别 加入 1 mL HCl 5 mL,5 × 10-3mol/L硝酸汞 1.0 mL。在 其中一个容量瓶中加入 1.0 × 10-5 mol/L 的铅离子标
准液 1.0 mL和 1.0×10-5mol/L 的镉离子标准液 1.0 mL(铅镉标准试液用标准贮备液稀释配制)。均用蒸馏 水稀释至刻度,摇匀。
采用优级或分析纯试剂。
.
11
.
12
测定方法
一.阳极溶出伏安法测定水样中铅镉含量
1.实验原理(一)
溶出伏安法(Stripping voltammetry)包含电解富集和电解 溶出两个过程,其电流-电位曲线如图1所示。首先将工作电 极固定在产生极限电流的电位上进行电解,使被测物质富集 在电极上。经过一定时间的富集后,停止搅拌,再逐渐改变 工作电极电位,电位变化的方向应使电极反应与上述富集过 程电极反应相反。记录所得的电流-电位曲线,称为溶出曲 线,呈峰状,峰电流的大小与被测物质的浓度有关。电解时 工作电极作为阴极,溶出时作为阳极,称为阳极溶出伏安法; 反之,工作电极作为阳极进行富集,而作为阴极进行溶出, 称为阴极溶出伏安法。溶出伏安法具有很高的灵敏度,对某 些金属离子或有机物的检测可达10-10 ~ 10 -15 mol·L-1, 因此,应用非常广泛。
洗干净。装测有机物水样的容器,先用洗优
涤剂清洗,再用自来水冲净,然后用蒸馏水
清洗干净。贴好标签备用. 。
4
采样器
多通道自动采水器 .
自动采水器 5
采样
采集河流、湖泊等表层水可用适当的
容器从上方直接采集,注意不能混 入浮于水面上的物质。
一定深度的水可用直立式或有机玻璃 采水器;
泉水、井水可在涌口处采集,有停滞 水的必须等新水更替后采集;
图2 .盐酸介质中铅、镉 离子的溶出伏安曲线
.
中国专业PPT领跑者——锐1普6PPT论坛
实验相关设备及仪器
实验台及设备
饱和甘汞电极
电解池
.
17
四、实验步骤
1、工作电极处理
将玻碳电极先用 1200# 金相砂纸上打磨,然后分 别用1 μm,0.3 μm,0.05 μm Al2O3 进行抛光处理, 用蒸馏水清洗干净后,在1:1 HNO3、无水乙醇、 蒸馏水中各超声清洗 5 min ,室温晾干备用。
溶出伏安法根据溶出时工作电极发生氧化反应还是 还原反应,分为阳极溶出伏安法(ASV)和阴极溶 出伏安法(CSV)。本实验采用阳极溶出伏安法,
其M 两2 个(P 过b 程2 可\C 表d 示2 为) :2 e H g 富 溶 集 出 M (H g )
.
15
图 1 .溶出伏安法的富集 和溶出过程
.
3
采样器的准备
• 采样器与水样接触部份材质应采用聚乙烯、 有机玻璃塑料或硬质玻璃。应先用洗涤剂除 去油污,自来水冲净,再用10%硝酸或盐 酸洗刷,自来水冲净后备用。
• 容器的准备:采用聚乙烯塑料或硬质玻璃容
器。装测金属类水样的容器,先用洗涤剂清
洗,自来水冲净,再用10%硝酸或盐酸浸
泡8小时 ,用自来水冲净,然后用蒸馏水清
于电极表面层中的镉已被氧化得差不多了,而
电极内部的镉又还来不及扩散出来,所以电流
就迅速减小,这样就形成了峰状的溶出伏安曲
线。同样,当悬汞电极的电位继续变正,达到
铅汞齐的氧化电位时,也得到相应的溶出峰,
如图2所示。其峰电流与被测物质的浓度成正
比,这是溶出伏安法定量.分析的基础。
14
Pb2+、Cd2+ 阳极溶出伏安法两过程
实验原理(二)
在盐酸介质中测定水中铅、镉时,先将悬汞 电极的电位固定在-0.8 V,电解一定的时间, 此时溶液中的一部分铅、镉在电极上还原,并
生成汞齐,富集在悬汞滴上。电解完毕后,使
悬汞电极的电位均匀地由负向正变化,首先达
到可以使镉汞齐氧化的电位,这时,由于镉的
氧化,产生氧化电流。当电位继续变正时,由
• a.减缓生物作用 • b.减缓化合物或者络合物的水解及氧
化还原作用 • c.减少组分的挥发.和吸*生附态损学基失础实验* 10
水样保存
• 保存措施:
• a.选择适当材料的容器
• b.控制溶液的pH
• c.加入化学试剂抑制氧化还原反应和生化 作用
• d.冷藏或冷冻以降低细菌活性和化学反应 速度
• 对添加剂的要求:待测金属元素的水样,
.
7
水样的预处理
• 水样的保存和预处理:对于不同测定项目,采用不同 目的的预处理。
• 无悬浮物的地下水、洁净地表水可直接测定。 • 较混浊的水样:加少量稀硝酸微沸消煮、过滤、定容。 • 有悬浮物、有机杂质的水样:加硝酸、高氯
酸消煮至近干,冷却后用稀硝酸溶解、过滤、定容。
பைடு நூலகம்
.
8
水样的保存
• ⑴水样保存 • 为得到准确的实验结果,水样采集后应
自来水或抽水设备的水应放水数分钟 后不规则采集。
.
6
采样注意事项
采样时不搅动底部沉积物。
采样时应保证采样点位置准确。必要 时可用GPS定位。
洁净的容器在装入水样前,应先用该 采样点的水冲洗3次,然后装入水样。 并按要求加入相应的固定剂,填写标 签。
待测溶解氧的水样应严格不接触空气,
其它水样也应尽量少接触空气。
尽快进行分析,为尽量避免水样发生变 化,在尽可能缩短运输时间的同时,必 须采用相应的保存方法,以控制物理、 化学、生物因素的影响。因此往往采取 冷藏或冷冻保存、加入化学保存剂保存 等。
.
9
水样保存
• 水样允许保存的时间,与水样的性质、 分析的项目、溶液的酸度、贮存容器、 存放温度等多种因素有关。
• 保存水样的基本要求: