生物脱氮除磷技术及其发展趋势

生物脱氮除磷技术及其发展趋势
生物脱氮除磷技术及其发展趋势

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 1 引言 氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物 降解,大部分的可溶性含碳有机物被去除。同时产生N NH -3、N NO --3和- 34PO 和-24 SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。 2 生物脱氮除磷机理 2.1 生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝 态氮,即,将3NH 转化为N NO --2和N NO --3。在缺氧条件下通过反硝化作用将硝氮转 化为氮气,即,将N NO -- 2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。 ○ 1硝化——短程硝化:O H HNO O NH 22235.1+→+ 硝化——全程硝化(亚硝化+硝化):O H HNO O NH 22235.1+???→?+亚硝酸菌 3225.0HNO HNO O ??→?+硝酸菌 ○ 2反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+ ][35.122233H O H N HNO NH ++→+

生物脱氮除磷工艺技术的应用

生物脱氮除磷工艺技术的应用班级: 学号: 作者:

生物脱氮除磷工艺技术的应用 摘要:生物脱氮除磷技术是技术上可行、经济上合理的新的水处理技术,其在城市生活污水和工业废水处理中得到推广使用。重点介绍了生物脱氮除磷的基本理论,并对近年来我国生物脱氮除磷技术在城市生活污水处理、工业废水处理、中水回用方面的应用进展进行了综述。 关键词:生活污水处理;生物脱氮除磷;机理 前言: 随着国家经济的快速发展,水体污染也越来越严重。大量的研究已经证明,污水中的氮和磷是导致水体富营养化的主要原因之一,脱氮除磷已迫在眉睫。经过实验和工程经验表明,生物脱氮除磷工艺是消除水体富营养化的有效方法。许多发达国家对日常排放的污水中的氮和磷的含量都做了限定,并要求污水处理厂达到除氮除磷的要求。而且对于中国这么一个水资源本来就十分短缺的国家来说,严格控制含氮、磷污水的超标排放是十分必要的。 一、生物脱氮除磷的基本原理 1.1 生物脱氮的基本原理 生物脱氮通过氨化、硝化、反硝化三个步骤完成: 1、氨化反应 有机氮化合物在氨化细菌的作用下分解,转化为氨态氮,这一过程称为“氨化反应”。以氨基酸为例,其反应式为: RCHNH2COOH+O2 ? ?→ ?氨化菌 RCOOH+CO2+NH3 2、硝化反应 在硝化细菌的作用下,氨态氮进一步分解、氧化,就此分两个阶段进行。首先,在亚硝化细菌的作用下,使氨(NH4+)转化为亚硝酸氮,亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮。 3、反硝化反应 反硝化反应是指硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮的过程。 1.2 生物除磷的基本原理 所谓生物除磷,是利用聚磷菌一类的微生物,能够过量地、在数量上超过其生理需要的、从外部环境摄取磷,并将磷以聚合物的形态贮藏在菌体内,形成富磷污泥。排出系统外,达到废水中除磷的效果。

生物脱氮除磷工艺简述

生物脱氮除磷工艺简述 摘要:本文对生物脱氮除磷工艺的原理进行了介绍,并对目前常用的脱氮除磷处理工艺进行了简要阐述。 关键词:生物脱氮除磷,氧化沟A/A/O生物处理工艺,SBR法 Abstract: in this paper, the biological denitrification and the principle of dephosphorization technology are introduced, and the common denitrification and phosphorus processing technology are briefly described. Keywords: biological denitrification and phosphorus, the oxidation ditch A/A/O biological treatment technology, SBR method 生物脱氮除磷工艺是目前常见的污水处理工艺,其处理机理及形式如下: 1.生物脱氮除磷原理 1.1生物脱氮 生物脱氮是通过硝化和反硝化两个生化过程来完成的。 污水中含氮化合物经异养性氨化细菌作用分解为NH3-N,然后在好氧条件下,通过亚硝酸菌和硝酸菌的作用,将氨氮氧化成亚硝酸氮(NO2—-N)和硝酸氮(NO3—-N)的过程称为硝化过程。在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,在氢供给体充分的条件下,将亚硝酸氮(NO2—-N)和硝酸氮(NO3—-N)还原成N2排入空气中,同时有机物分解的过程称为反硝化过程。 1.2生物除磷 生物除磷是利用活性污泥中的聚磷菌在厌氧条件下释磷,在好氧条件下过量吸磷的原理来进行的。 1.3同时生物脱氮除磷系统的设计要素 从生物脱氮除磷原理看出,两者要求的有些方面是相互制约的。要正常发挥脱氮除磷系统效率,详细分析进水水质是十分必要的: 进水BOD5浓度:不宜低于150mg/L。

生物脱氮除磷原理

生物脱氮原理 (碳源) (碳源)图1 硝化和反硝化过程 图2 A2/O工艺流程

水体中氮的存在形态 生物脱氮原理 1、氨化作用 在好氧或厌氧条件下,有机氮化合物在氨化细菌的作用下,分解产生氨氮的过程,常称为氨化作用。 有机氮 氨氮 2、硝化作用 以A 2/O 工艺为例,硝化作用主要发生在好氧反应器中,污水中的氨氮NH 4+-N 在亚硝酸 细菌的作用下转化为亚硝酸氮NO 2--N ,亚硝酸氮NO 2--N 在硝酸细菌的作用下进一步转化为硝酸氮NO 3 --N 。(见图 1左边) 亚硝酸细菌和硝酸细菌统称为硝化细菌,属于好氧自养型微生物,不需要有机物作为营养物质。 3、反硝化作用 反硝化作用主要发生在缺氧反应器中,好氧反应器中生成的硝酸氮NO 3--N 和亚硝酸氮NO 2--N 通过内循环回流到缺氧池中,在有一定碳源的条件下,由反硝化细菌先将硝酸氮NO 3--N 转化为亚硝酸氮NO 2--N ,亚硝酸氮再进一步转化为氮气N 2,水体中的氮从化合物转化为氮气进入到空气中,才能最终将污水中TN 降低。(见图1右边) 反硝化细菌是异养兼性缺氧型微生物,其反应需要在缺氧环境中才能进行。 氨化菌

生物除磷原理 磷在自然界以2 种状态存在:可溶态(正磷酸盐PO43-)或颗粒态(多聚磷酸盐)。 所谓除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离。 厌氧释磷 污水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生自身生长所需的所需的能量,称该过程为磷的释放。 好氧吸磷 进入好氧环境后,聚磷菌活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程。 富含磷的污泥通过剩余污泥外排的方式最终使磷得到去除。

污水处理工艺中如何进行脱氮除磷

污水处理工艺中如何进行脱氮除磷? 氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。 生物脱氮分为三步: 1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。 2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。 3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。 生物除磷原理 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。 首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并 大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。 脱氮除磷工艺 1、传统A2/O 法即厌氧→缺氧→好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。 2、氧化沟工艺是一种污水处理工艺形式,因其构造简单、易于维护管理,很快得到广泛应用。主要有Passveer单沟型、Orbal同心圆型、Carrousel循环折流型、D型双沟式和T型三沟式等。传统Passveer单沟型和Carrousel型氧化沟不具备脱氮除磷功能,但是在Carrousel氧化沟前增设厌氧池,在沟体内通过曝气装置的合理设置形成缺氧区和好氧区,形成改良型氧化沟,便具备生物脱氮除磷功能。 3、SBR 法是间歇式活性污泥法,降解有机物,属循环式活性污泥法范围,主要是好氧活性污泥,回流到反应池前部的污泥吸附区,回流污泥中硝酸盐得以反硝化在充分条件下可大量吸附进水中的有机物达到脱氮除磷的效果。 随着对脱氮除磷机理的深入探究,新工艺的不断出现及其可行性, 为水处理工艺提供了新的理论和思路。但社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题,必须朝着最小的COD 氧化、最低的氮磷排放量、最少的剩余污泥排放等可持续污水处理工艺的方向发展。而生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 O H H Cl NH HOCl NH 224++→+++ +-+++→+H O H Cl N HOCl Cl NH 332222 每mgNH 4+--N 被氧化为氮气,至少需要7.5mg 3、选择性离子交换法去除氨氮: 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

三、除磷的物化法(混凝沉淀法) 1、铝盐除磷 4343AlPO PO Al →+++ 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺

脱氮除磷工艺发展

污水脱氮除磷工艺的概述与展望 摘要:近年来,城市污水(以城市生活污水为主)中氮磷营养物的排放使受纳水体中藻类等植物大量繁殖,导致水体富营养化问题越来越严重,对城市污水进行脱氮除磷处理是防止水体富营养化的一种重要措施。目前来看,污水脱氮除磷的主要方法有物理方法、化学方法及生物方法。与物理法、化学法相比,生物法具有适用范围广、投资及运行费用低、效果稳定、综合处理能力强等优点,已成为污水脱氮除磷的最佳选择。本文对现有的生物脱氮除磷工艺进行了系统的介绍和分析,并对今后的发展方向作了展望。 关键词:城市污水,脱氮除磷,工艺技术 1.城市污水脱氮除磷现状 据近年来环境质量公报发布的消息,水体中的主要污染物为含氮磷的有机物。这些污染物进一步加剧了水资源短缺的矛盾,对可持续发展战略的实施带来了严重的负面影响。目前含氮磷污水的处理技术可分为物理法、化学法、物理化学法和生物法。由于化学法与物理化学法成本高,对环境易造成二次污染,所以污水生物脱氮除磷技术是20世纪70年代美国和南非等国的水处理专家们在化学、催化和生物方法研究的基础上提出的一种经济有效的处理技术,该技术由于处理过程可靠,处理成本低,操作管理方便等优点而被广泛使用。微生物脱氮除磷技术按微生物在系统中的不同状态,可分为活性污泥法和生物膜法,通过设立好氧区、缺氧区和厌氧区来实现硝化、反硝化、释磷和放磷以达到脱氮除磷的目的。具体的生物脱氮除磷工艺主要有:A2/O法同步脱氮除磷工艺、生物转盘同步脱氮除磷工艺、SBR工艺、氧化沟工艺、亚硝酸盐生物脱氮工艺、AB法及其变型工艺等。 污水经二级生化处理后,氮的去除率仅为20%~30%左右,磷的去除率则更低。因此脱氮除磷问题在二级处理普及率较高的工业化国家中受到了高度的重视。我国污水厂大多数以二级生物处理为主。二级生物处理厂去除对象主要是和SS,仅有极少数厂(如广州犬坦沙污水厂)有脱氮除磷功能。我国水体富营BOD 5 养化日趋严重,其原因一是城市污水处理率低;二是传统的活性污泥法仅能去除城市污水中20%~40%的氮以及5%~20%的磷。因此,大量兴建城市二级生物处理厂,不但投资大,运行费用高,并且脱氮除磷的效率也并不高。 在实际的工程设计中,根据受纳水体的要求和其他一些实际情况,生物脱氮除磷工艺可以分成以下几个层次 (1)以去除有机物、氨氮为目的的工艺。因对总氮无要求,可以采用生物硝

生物脱氮除磷工艺中的矛盾

5,生物脱氮除磷工艺中的矛盾 (1)泥龄问题 作为硝化过程的主休,硝化菌通常都属于自养型专性好氧菌.这类微生物的一个突出特点是繁殖速度慢,世 代时间较长.在冬季,硝化菌繁殖所需世代时间可长达30d以上;即使在夏季,在泥龄小于5d的活性污泥中硝 化作用也十分微弱.聚磷菌多为短世代微生物,为探讨泥龄对生物除磷工艺的影响,Rensink等(1985年)[23]用表2归纳了以往的研究成果,并指出降低泥龄将会提高系统的除磷效率. 泥龄与除磷率关系表2 泥龄/d 30 17 5.3 4.6 磷去除率/% 40 50 87.5 91 由表2可见聚磷微生物所需要泥龄很短.泥龄在3.0d左右时,系统仍能维持较好的除磷效率.此外,生物除磷 的唯一渠道是排除剩余污泥.为了保证系统的除磷效果就不得不维持较高的污泥排放量,系统的泥龄也不得 不相应的降低.显然硝化菌和聚磷菌在泥龄上存在着矛盾.若泥龄太高,不利于磷的去除;泥龄太低,硝化菌 无法存活,且泥量过大也会影响后续污泥处理.针对此矛盾,在污水处理工艺系统设计及运行中,一般所采用 的措施是把系统的泥龄控制在一个较窄范围内,兼顾脱氮与除磷的需要.这种调和,在实践中被证明是可行 的. 为了能够充分发挥脱氮与降磷两类微生物的各自优势,可采取的其它对策大致上有两类. 第一类是设立中间沉淀池,搞两套污泥回流系统使不同泥龄的微生物居于前后两级(见图4),第一级泥龄很短,主要功能是除磷;第二级泥龄较长,主要功能是脱氮.该系统的优点是成功地把两类泥龄不同的微生物分开.但是,这类工艺也是存在局限性.第一,两套污泥回流系统,再加上中间沉淀池和内循环,使该类工艺流程 长且比较复杂.第二,该类工艺把原来常规A2/O(见图5)工艺中同步进行的吸磷和硝化过程分离开来,而各 自所需的反应时间又无法减少,因而导致工艺总的停留时间变长.第三,该工艺的第二级容易发生碳源不足 的情况,致使脱氮效率大受影响.此外,由于吸磷和硝化都需要好氧条件,工艺所需的曝气量也可能有所增加. 第二类方法是在A2/O工艺好氧区的适当位置投放填料.由于硝化菌可栖息于填料表面不参与污泥回流,故 能解决脱氮除磷工艺的泥龄矛盾.这种作法的优点是既达到了分离不同泥龄微生物的目的,又维持了常规 A2/O工艺的简捷特点.但是该工艺也必须解决好以下几个问题:①投放填料后必须给悬浮性活性污泥以优先 的和充分的增殖机会,防止生物膜越来越多而MLSS越来越少的情况发生;②要保证足够的搅拌强度,防止因 填料截留作用致使污泥在填料表面间大量结团;③填料投放量必须适中,投放量太少难以发挥作用,太多则难免出现对污泥的截留.此外,填料的类型和布置方式都应作慎重考虑.

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 摘 要:阐述了生物除磷和反硝化脱氮的机理,针对常规生物脱氮除磷技术和工艺中存在的问题,研究开发出从不同类型污水中去除氮和磷的SBR 工艺、CAST 工艺、MSBR 工艺、O A /2 工艺和立体循环一体化氧化沟等。这些技术和工艺发挥了不同微生物菌群的优势,使其分别处于各自最佳状态,可提高处理效率、简化操作、降低处理费用。 关键词: 脱氮除磷;SBR 工艺;CAST 工艺;MSBR 工艺;O A /2;立体循环一体化氧化沟 1 引言 氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物 降解,大部分的可溶性含碳有机物被去除。同时产生N NH -3、N NO --3和-34PO 和- 24SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。 2 生物脱氮除磷机理 2.1 生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝 态氮,即,将3NH 转化为N NO --2和N NO --3。在缺氧条件下通过反硝化作用将硝氮转 化为氮气,即,将N NO -- 2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。 ○ 1硝化——短程硝化:O H HNO O NH 22235.1+→+

生物脱氮除磷大比较

生物脱氮除磷大比较 1.污水生物脱氮除磷的基本原理 在好氧条件下通过硝化反应先将氨氮氧化为硝酸盐,再通过缺氧条件下的反硝化反应将硝酸盐异化还原成气态氮从水中去除。由此而发展起来的生物脱氮工艺大多将缺氧区和好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立进行。 污水生物除磷是通过厌氧段和好氧段得交替操作,利用活性污泥的超量吸磷特性,使细胞含磷量相当高的细菌群体能够在处理系统的基质竞争中取得优势,剩余污泥的含磷量达到3%-7%,进入剩余污泥的总磷量增大,处理出水的磷浓度明显降低。 2.生物脱氮除磷工艺的比较 2.1 AAO工艺 传统的AAO工艺流程是:污水首先进入厌氧池,兼性厌氧菌将水中的易降解有机物转化成VFAS1回流污泥带入的聚磷菌将体内的聚磷菌分解,此为释磷,所释放的能量一部分可供好氧的聚磷菌在厌氧的环境下维持生存,另一部分共聚磷菌主动吸收VFAS,并在体内储存PHB。进入缺氧区,反消化细菌就利用混合液回流带入硝酸盐及进水中的有机物进行反消化脱氮,接着进入好氧区,聚磷菌除了吸收利用污水中残留的易降解BOD外,主要分解体内储存的PHB产生的能

量供自身生长繁殖。最后,混合液进入沉淀池进行泥水分离,上清液作为处理水释放,沉淀污泥的一部分回流厌氧池,另一部分作为剩余污泥排放。 N2 混合液回流 ↑↓ 进水→厌氧池→缺氧池→好氧(硝化)池→沉淀池→出水 ↑↓剩余污泥 AOO工艺流程图 该工艺简洁,污泥在厌氧、缺氧、好氧环境中交替运行,丝状菌不能大量繁殖,污泥沉降性能好。该处理系统出水中磷浓度科达到1 mg/L以下,氨氮也可达到8 mg/L以下。 该法需要注意的问题是,进入沉淀次得混合液通常要保持一定的溶解氧浓度,以防止沉淀池中反消化和污泥厌氧释磷,但这会导致回流污泥和回流混合液中存在一定的溶解氧回流污泥存在的硝酸盐对厌氧释磷过程也存在一定的影响,同时,系统所排放的剩余污泥中。仅有的一部分污泥是经历了完整的厌氧和好氧的过程,影响了污泥的充分吸磷。系统污泥泥龄因为兼顾硝化菌的生长而不可能太短,导致除磷效果难以进一步提高。 2.2改良Bardenpho工艺

生物脱氮除磷工艺

生物脱氮除磷工艺

生物脱氮除磷工艺 第一节概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:①氨氮对鱼类有毒害作用;②NO3-和NO2-可被转化为亚硝胺——一种“三致”物质;③水中NO3-高,可导致婴儿患变性血色蛋白症——“Bluebaby”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N和P(尤其是P);解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N、P含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法

1、氨氮的吹脱法: - ++?+OH NH O H NH 4 2 3 2、折点加氯法去除氨氮: O H H Cl NH HOCl NH 2 2 4 ++→++ + + - +++→+H O H Cl N HOCl Cl NH 3322 2 2 每mgNH 4+ --N 被氧化为氮气,至少需要7.5mg 的氯。 3、选择性离子交换法去除氨氮: 采用斜发沸石作为除氨的离子交换体。 调节pH 值 沉淀池 吹脱塔 出水 排泥 进水 石灰或石灰乳 吹脱法脱氨处理流程 NaOC 废折点加活性炭 吸附塔出折点加氯法脱 再生再生液 脱氯 废 澄清或沸石离子 交换床 NH 3或 离子交换法脱 出

三、除磷的物化法(混凝沉淀法) 1、铝盐除磷 4 343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠 (NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 2 3 45 24 23))((345+→++-- + 向含磷的废水中投加石灰,由于形成OH -,污水的 pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程:

污水处理厂A-A-O生物脱氮除磷工艺简介

龙源期刊网 https://www.360docs.net/doc/2314244481.html, 污水处理厂A-A-O生物脱氮除磷工艺简介 作者:孟永进 来源:《硅谷》2009年第15期 中图分类号:X7文献标识码:A文章编号:1671-7597(2009)0810007-01 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产 生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷,其工艺流程如图1所示。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP 保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有

A2O生物脱氮除磷工艺原理

A2O生物脱氮除磷工艺原理 A2/O生物脱氮除磷工艺原理 在首段厌氧池进行磷的释放使污水中P的浓度升高,溶解性有机物被细胞吸收而使污水中BOD浓度下降,另外NH3-N因细胞合成而被去除一部分,使污水中 NH3-N浓度下降,但NO3--N浓度没有变化。 在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入的大量NO3--N和NO2--N还原为N2释放至空气,因此BOD5浓度继续下降, NO3--N浓度大幅度下降,但磷的变化很小。 在好氧池中,有机物被微生物生化降解,其浓度继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显著下降, NO3--N浓度显著增加,而磷随着聚磷菌的过量摄取也以较快的速率下降。 A2/O合建式工艺中,厌氧、缺氧、好氧三段合建,中间通过隔墙与孔洞相连。厌氧段和缺氧段采用多格串连为混合推流式,好氧段则不分隔为推流式。厌氧段、缺氧段,均采用水下搅拌器搅拌;好氧段采用鼓风曝气 A2/O工艺影响因素 1. 污水中可生物降解有机物的影响 2. 污泥龄ts的影响 3. DO的影响 4. NS的影响 5. TKN/MLSS负荷率的影响(凯氏氮,污泥负荷率的影响)

6. R与RN的影响 A2/O工艺存在的问题 该工艺流程在脱氮除磷方面不能同时取得较好的效果。其原因是:回流污泥全部进入到厌氧段。好氧段为了硝化过程的完成,要求采用较大的污泥回流比,(一般R为60%,100%,最低也应,40%),NS较低硝化作用良好。但由于回流污泥将大量的硝酸盐和DO带回厌氧段,严重影响了聚磷菌体的释放,同时厌氧段存在大量硝酸盐时,污泥中的反硝化菌会以有机物为碳源进行反硝化,等脱N完全后才开始磷的厌氧释放,使得厌氧段进行磷的厌氧释放的有效容积大大减少,使出磷效果?如果好氧段硝化不好,则随回流污泥进入厌氧段的硝酸盐减少,改变了厌氧环境,使磷能充分厌氧释放,?ηP ?,但因硝化不完全,故脱氮效果不佳,使ηN? A2/O工艺改进措施 .1. 将回流污泥分两点加入,减少加入到厌氧段的回流污泥量,从而减少进入厌 氧段的硝酸盐和溶解氧。 2. 提升回流污泥的设备应用潜污泵代替螺旋泵,以减少回流污泥复氧,使厌氧段、缺氧段的DO最小。 3. 厌氧段和缺氧段水下搅拌器功率不能过大(一般为3W/m3)否则产生涡流,导致混合液DO?。 4. 原污水和回流污泥进入厌氧段,缺氧段应为淹没入流,减少复氧。 5. 低浓度的城市污水,应取消沉淀池,使原污水经沉砂后直接进入厌氧段,以便保持厌氧段中C/N比较高,有利于脱氮除磷。 6. 取消硝化池,直接经浓缩压滤后作为肥料使用,避免高磷污泥在消化池中将磷重新释放和滤出,使使ηP?。 A2/O工艺设计计算

生物脱氮除磷工艺

生物脱氮除磷工艺 The manuscript was revised on the evening of 2021

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3 和NO 2可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2、折点加氯法去除氨氮: O H H Cl NH HOCl NH 224++→+++ +-+++→+H O H Cl N HOCl Cl NH 332222 出水 折点加氯法脱氯工艺流

每mgNH 4+--N 被氧化为氮气,至少需要的氯。 3、选择性离子交换法去除氨氮: 采用斜发沸石作为除氨的离子交换体。 三、除磷的物化法(混凝沉淀法) 1、铝盐除磷 4343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH ,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程:

生物脱氮除磷技术的研究及应用

生物脱氮除磷技术的研究与应用 【摘要】 生物脱氮除磷技术是技术上可行、经济上合理的新的水处理技术,其在城市生活污水和工业废水处理中得到推广使用。重点介绍了生物脱氮除磷的基本理论及其影响因素,并对近年来我国生物脱氮除磷技术在城市生活污水处理、工业废水处理、中水回用方面的应用进展进行了综述。 关键词生活污水处理;生物脱氮除磷;机理 1.生物脱氮除磷技术的特点 生物脱氮除磷技术的工艺流程共有3种类型,即A;/O,AZ/O 与A/A/o 。由于其能 脱氮除磷,且技术经济合理,而得到国内外广泛地重视.近年来,随着排放标准的产格化, 工业废水的脱氮也成为排水工程界的热点,并迅速在焦化废水、石油化工废水、印染废水的 处理中得到应用。生物脱氮除磷技术具有如下主要特点: (l)污水、废水经A/O 或A/A/9工艺处理后,能达到同时去除C 有机,N,P 等污染 物,出水水质可达三级处理标准。 (2)产生的剩余污泥量较一般生物处理系统少,且污泥沉降性能好,易于脱水. (3)与一般二级处理加脱氮除磷系统相比,基建投资少、能耗低、用药少、占地面积 小。 (4)能提高难生物降解有机物的去除率,并能抑制丝状菌,利于运行和管理. (5)它们是在一般生物处理技术上发展起来的一种水处理新技术,其设计规模可大可 小,进水浓度可高可低,并能移植或推广到那些老的生物处理污水厂的改造和扩建上. 2. 生物脱氮除磷的基本原理 2.1 生物脱氮的基本原理 生物脱氮通过氨化、硝化、反硝化三个步骤完成。 2.1.1 氨化反应 有机氮化合物在氨化细菌的作用下分解,转化为氨态 氮,这一过程称为“氨化反应”。以氨基酸为例,其反应式 为: RCHNH2COOH+O2?? →?氨化菌 RCOOH+CO2+NH3 2.1.2 硝化反应 在硝化细菌的作用下,氨态氮进一步分解、氧化,就此 分两个阶段进行。首先,在亚硝化细菌的作用下,使氨(NH4+)转化为亚硝酸氮,亚硝酸氮在硝酸菌的作用下,进 一步转化为硝酸氮。硝化反应的总反应式为: NH+4+2O2NO-3+H2O+2H+ 2.1.3 反硝化反应 反硝化反应是指硝酸氮(NO-3—N)和亚硝酸氮 (N0-2—N)在反硝化菌的作用下,被还原为气态氮(N2)的

生物脱氮除磷

简述生物脱氮除磷新工艺 【摘要】随着社会经济化的快速发展,环境污染和水体富营养化问题的尖锐化迫使越来越多的国家和地区制定严格的氮磷排放标准,这也使污水脱氮除磷技术一度成为污水处理领域的热点和难点。因此,研究和开发高效、经济的生物脱氮除磷工艺成为当前城市污水处理技术研究的热点,本文主要探讨有关于生物脱氮除磷新工艺的一些问题。 【关键字】污染富营养化标准脱氮除磷 1.概述 1.1 传统生物脱氮除磷工艺 应用最广泛的生物脱氮、除磷工艺有A/O、A2/O、Bardenpho、UCT、氧化沟工艺和VIP工艺等。近年来用SBR及其各种改进型的工艺,如CASS、MSBR等工艺也得到了很大的发展,下面是几种常用的传统生物脱氮除磷工艺。 1.1.1 A2/O除磷脱氮工艺 其工艺特点如下:厌氧、缺氧、好氧在不同环境条件和不同种类微生物菌群的有机结合,能同时去除有机物与除磷脱氮。A2/O是一种典型的生物脱氮除磷工艺,得到了广泛的应用。污水首先进入厌氧区与回流污泥混合,在兼性厌氧发酵菌的作用下将部分易生物降解的大分子有机物质转化为VFA;聚磷菌释磷并吸收VFA以PHB的形式贮存于胞内。在缺氧区,反硝化菌利用进水中的有机物质和回流中的硝酸盐进行反硝化,同时去碳、脱氮。在好氧区,有机物浓度相当低,有利于自养硝化菌的繁殖,同时聚磷菌超量吸磷,从而通过高磷污泥的排放达到除磷的目的。 1.1.2 MSBR工艺 MSBR法是一种改良型序批式活性污泥法 其实质是A2/O系统后接SBR工艺,是二级厌氧、缺氧和好氧过程。它是改良型序批式反应器,是根据SBR技术特点,结合传统活性污泥技术,发展出来的更为理想的废水处理工艺。MSBR不需要设置初沉、二沉池,仍能连续进水、出水,并且水位恒定。采用单池多格形式,大大节省了连接管道,泵及阀门。而且,由于不再间断排水,使池容及设备利用率达到最大。MSBR工艺广泛应用于市政污水及各类工业废水的处理。 正是由于MSBR工艺结合了传统A/A/O和SBR的优点,在污染物去除,尤其是氮和磷的同时去除上有较大的优势,出水水质优且稳定,同时具有流程简洁、控制灵活、单元操作简单而且占地省、投资和运行费用较低等特点。随着我国水环境治理的不断深入,中小型污水处理厂将会越来越多。MSBR基于其自身的众多优点,它必将在其中占有一席之地。 1.1.3 UCT工艺

生物脱氮除磷工艺的比较

1.AN/O工艺和AP/O工艺的异同点。(2013) 工艺相同点不同点 AN/O又称前置缺氧-好氧生物脱氮工艺均以污水中有机物为碳源, 能同时去除污水中有机物; 缺氧池和厌氧池中的DO都 会消耗COD的量,减少反硝 化(聚磷菌释磷)需要的碳 源; 1.由缺氧区和好氧区组成; 2..曝气池混合液种含有大 量硝酸盐,通过内循环回流 到缺氧池中进行反硝化脱 氮,而AP/O中无内循环; 3.硝化系统时代周期长,因 此硝化菌污泥泥龄较长; 4.反硝化产生的碱度补充 硝化反应的需要 AP/O工艺 1.由厌氧区和好氧区组成; 2.SRT较短; 3.AP/O工艺中产生的污 泥富含大量的磷; 2.除磷系统的效率影响因素。 ①PH 7-8之间; ②好氧区中溶解氧2mg/L以上; ③进水中易降解COD浓度,当BOD 5 /P大于10,出水P浓度可降至1mg/L左右; ④低污泥负荷和高SRT对除磷过程不利。当SRT较长时,聚磷菌处于较长的内源呼吸期,会消耗细胞内较多的贮存物质,影响厌氧区对VAF的吸收和PHB的转化,使整个系统的除磷效率降低。 3.A2/O过程中P去除效果变差的原因。(2012) ①进入沉淀池的混合液通常需要保持一定的溶解氧浓度,以防止沉淀池中反硝化和污泥厌氧释磷,但这同时导致回流污泥和回流混合液中存在一定的溶解氧,影响厌氧释磷过程; ②回流污泥中存在的硝酸盐进行反硝化作用,消耗系统中的易降解COD造成碳源不足的问题; ③系统所排放的污泥中仅有一部分是经历了完整的厌氧和好氧过程,影响了污泥的充分吸磷; ④系统污泥泥龄因为兼顾硝化菌的生长而不可能太短,导致除磷效果难以进一步提高。

生物脱氮除磷

一、生物脱氮除磷的原理,主要工艺及其影响因素? 1. 氨化与硝化 1 生物脱氮机理 1.1 传统生物脱氮机理 传统生物脱氮理论认为生物脱氮主要包括硝化过程和反硝化过程2 个生化过程, 并由有机氮氨化、硝化、反硝化及微生物的同化作用来完成。氨化作用是将有机氮在生物处理稳定化过程中氧化为氨氮。污水中的有机氮主要以蛋白质和氨基酸的形式存在。蛋白质可以作为微生物的基质, 它在蛋白质水解酶的催化作用下水解为氨基酸, 氨基酸在脱氨基酶作用下产生脱氨基作用使有机氮转化为氨氮。硝化作用是由2组自养型好氧微生物通过2个过程来完成。第一步是亚硝酸菌(包括亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属) 将氨氮氧化成亚硝酸盐氮, 第二步是硝酸菌(包括硝酸杆菌属、螺菌属和球菌属) 将亚硝酸盐转化为硝酸盐。这2组菌统称为硝化菌。反硝化作用由异养兼性微生物完成。在有分子氧存在时, 反硝化菌氧化分解有机物, 利用分子氧作为最终电子受体; 无分子氧存在时以硝酸根、亚硝酸根为电子受体、O 2- 为受氢体生成H 2O 和OH - , 有机物作为碳源和电子供体提供能量并得到氧化稳定。反硝化过程中硝酸根和亚硝酸根的转化是通过反硝化菌的同化作用和异化作用共同完成, 同化作用是硝酸根和亚硝酸根被还原为NH 3用以新细胞的合成。异化作用是硝酸根、亚硝酸根被还原为N 2 或N 2O 、NO 等气态物, 主要为N 2 。 1.2 其它生物脱氮机理 ( 1) 短程硝化/反硝化 传统硝化工艺中将氨彻底氧化成硝酸盐(全程硝化), 其主要目的是根除氮素的耗氧能力并避免亚硝酸盐对生物的毒害作用。对于生物脱氮来说, 硝化过程中从NO -2 转化为NO - 3 与反硝化过程中NO -3转化为NO - 2这2 个过程是一段多走的路程, 完全可以省去。从微生物水平上来说, 氨氮被氧化成硝酸氮是由2类独立的细菌催化完成, 对于反硝化菌无论是硝酸氮还是亚硝酸氮均可以作为最终受氢体。试验证明, 整个生物脱氮过程也可以经NH+4 - NO-2 - N2 这样的途径完成, 这个途径就叫做短程硝化/反硝化。这降低了硝化所需的充氧能耗, 减少了外加碳源, 省去了中和硝化产酸带来的药剂消耗。 ( 2) 厌氧氨氧化(ANAMMOX) 1977年, 奥地利化学家B roda 预言自然界存在以硝酸盐或亚硝酸盐为氧化剂的氨氧化反应, 并认为它们是隐藏于自然界的自养型细菌 。直到20世纪80年代末, 荷兰Delft 工业大学Mu lder 等在研究三级生物处理系统中才发现了这种隐藏于自然界的自养型细菌, 并于1990年由该校K luyver 生物技术实验室开发了 ANAMMOX 。其原理即在厌氧条件下, 厌氧氨氧化菌以亚硝酸盐作为电子受体将氨氮转化为氮气, 或者是以氨氮为电子供体将亚硝酸盐还原成氮气。该工艺中亚硝酸盐是一个关键的电子受体。与硝化作用相比, 它以亚硝酸盐取代氧, 改变了

相关文档
最新文档