高等数学线性代数概率统计20200922
《线性代数与概率统计》教学大纲

《线性代数与概率统计》教学大纲适用专业:各工程类专业和经济管理类专业总学时:36—60学时一、课程的性质、目的与任务“线性代数与概率统计”课程是高等学校工程专科各专业的一门必修的重要基础课。
本课程由线性代数、概率统计模块构成。
由于线性问题广泛存在于技术科学的各个领域,而非线性问题也常常可以转化为线性问题,所以本课程所介绍的线性代数方法广泛地应用于各个学科。
通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。
概率统计是研究随机现象客观规律的数学学科,它的应用非常广泛,并具有独特的思维和方法。
通过概率论的学习能使学生了解概率与数理统计的基本概念和基本理论,初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
通过本课程的学习,能够为学生学习后继课程及进一步提高打下必要的数学基础。
二、本课程与其他课程的关系本课程以《高等数学》必修模块所学的知识为基础,并为后继专业课程准备必要的基础知识。
如果学生接触过各自专业的专业(基础)课程,则为本课程提供了更广阔的舞台,使数学的应用更具针对性。
三、课程内容与学时分配第一部分线性代数(一)行列式1.知道n阶行列式的全面展开规则。
了解行列式的性质。
2.熟练掌握二、三阶行列式的计算,掌握四阶行列式的消元降阶算法。
3.知道行列式的代数余子式组合定理和克莱姆法则。
(二)矩阵1.理解矩阵的概念。
2.熟练掌握矩阵的转置、线性运算、乘法运算及其运算规则。
3.理解逆矩阵的概念及其存在的充分必要条件。
4.熟练掌握矩阵的初等变换规则,掌握用初等变换法求矩阵的逆。
5.知道矩阵分块的概念及分块矩阵的运算规则。
(三)线性方程组1.熟练掌握通过矩阵的初等行变换对线性方程组进行消元的方法。
2.了解矩阵秩的概念,掌握用初等变换法求矩阵的秩。
理解非齐次线性方程组有解的充分必要条件和齐次线性方程组有非零解的充分必要条件。
(整理)高等数学概率论线性代数

高等数学概率论线性代数回答者:357386379|四级| 2009-12-3 19:40数三考试科目是《高等数学》、《线性代数》、《概率论与数理统计》这三门,这个数三的大纲可以参考一下:第一章:函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系。
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、了解数列极限和函数极限(包括左极限与右极限)的概念。
6、了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7、理解无穷小的概念和基本性质。
掌握无穷小的比较方法。
了解无穷大量的概念及其与无穷小量的关系。
8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
第二章:一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(l'hospital)法则函数的极值函数单调性的判别函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
考研数学(高等数学-线性代数-概率论)公式

目录一.高等数学公式1导数公式 12.基本积分表 13..三角函数的有理式积分 14.一些初等函数. 25.两个重要极限 26.三角函数公式: 27.高阶导数公式——莱布尼兹(Leibniz)公式: 38. 中值定理与导数应用: 39.曲率 3910.定积分的近似计算 411.定积分应用相关公式 412.空间解析几何和向量代数 413.多元函数微分法及应用514.微分法在几何上的应用: 615.方向导数与梯度 616.多元函数的极值及其求法 617.重积分及其应用 718.柱面坐标和球面坐标 719.曲线积分 720.曲面积分 821.高斯公式 922.斯托克斯公式——曲线积分与曲面积分的关系 923.常数项级数 924.级数审敛法 3225.绝对收敛与条件收敛 1026.幂级数 1027.函数展开成幂级数 1128.一些函数展开成幂级数 1130.三角级数 1231.傅立叶级数 1232微分方程的相关概念. 132二.概率公式整理1.随机事件及其概率 142.概率的定义及其计算 143.条件概率 154随机变量及其分布 155.离散型随机变量 156.连续性随机变量 167.多维性随机变量及其分布 178.连续型二维随机变量 179.二维随机变量的条件分布 1810.随机变量的数字特征 18三.线性代数部分1.基本运算 202.有关乘法的基本运算 213.可逆矩阵的性质 224.伴随矩阵的基本性质 235.伴随矩阵的其他性质 236.线性表示 247.线性相关 248.各性质的逆否形式 259.极大无关组 2610.矩阵的秩的简单性质 2611.矩阵在运算中秩的变化 2712.解的性质 2713.解的情况判断 2814.特征值特征向量 2915.特征值的性质 2916.特征值的应用 2917.正定二次型与正定矩阵性质与判别 3018.基本概念 3120.范德蒙行列式 3221.乘机矩阵的列向量与行向量 3322.初等矩阵及其在乘法中的作用 3423.乘法的分块法则 3424矩阵方程与可逆矩阵 3525可逆矩阵及其逆矩阵 3526.伴随矩阵 3527.线性表示 3528.线性相交性 3629..极大无关组和秩 3630.有相同线性关系的向量组 3631.矩阵的秩 3732.方程组的表达形式 3833.基础解系和通解 3834.通解 3835.特征向量与特征值 3936.特征向量与特征值计算 3937.n阶段矩阵的相似关系 3938.n阶段矩阵的对用化 3939判别法则 4040.二次型(实二次型) 4041.可逆线性变量替换 4142.实对称矩阵的合同 4143.二次型的标准化和规范化 4144.正二次型与正定矩阵 42附录一内积,正交矩阵,实对称矩阵的对角化1.向量的内积 452.正交矩阵 463.施密特正交化方法 474.实对称矩阵的对角化 47附录二向量空间1.n维向量空间及其子空间 492.基,维数,坐标 493.过渡矩阵,坐标变化公式 504.规范正交积..................................................................... .. (51)一.高等数学公式1.导数公式:2.基本积分表:3.三角函数的有理式积分:4.一些初等函数:5. 两个重要极限:6.三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α -sinα-cosαtgαctgα270°-α -cosα-sinαctgαtgα270°+α -cosαsinα-ctgα-tgα360°-α -sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:7.高阶导数公式——莱布尼兹(Leibniz)公式:8.中值定理与导数应用:9.曲率:10.定积分的近似计算:11.定积分应用相关公式:12.空间解析几何和向量代数:13.多元函数微分法及应用14.微分法在几何上的应用:15.方向导数与梯度:16.多元函数的极值及其求法:17.重积分及其应用:18.柱面坐标和球面坐标:19.曲线积分:20.:曲面积分:21.高斯公式:22.斯托克斯公式——曲线积分与曲面积分的关系:23.常数项级数:24.级数审敛法:25.绝对收敛与条件收敛:26.幂级数:27.函数展开成幂级数:28.一些函数展开成幂级数:29.欧拉公式:30.三角级数:31.傅立叶级数:周期为的周期函数的傅立叶级数:32.微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程二.概率公式整理1.随机事件及其概率吸收律:反演律:2.概率的定义及其计算若对任意两个事件A, B, 有加法公式:对任意两个事件A, B, 有3.条件概率乘法公式全概率公式Bayes公式4.随机变量及其分布分布函数计算5.离散型随机变量(1) 0 – 1 分布(2) 二项分布若P ( A ) = p*Possion定理有(3) Poisson 分布6.连续型随机变量(1) 均匀分布(2) 指数分布(3) 正态分布N ( , 2 )*N (0,1) —标准正态分布7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数边缘分布函数与边缘密度函数8.连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )(2)二维正态分布9.二维随机变量的条件分布10.随机变量的数字特征数学期望随机变量函数的数学期望X 的k阶原点矩X 的k阶绝对原点矩X 的k阶中心矩X 的方差X ,Y 的k + l阶混合原点矩X ,Y 的k + l阶混合中心矩X ,Y 的二阶混合原点矩X ,Y 的二阶混合中心矩X ,Y 的协方差X ,Y 的相关系数X 的方差D (X ) =E ((X - E(X))2)协方差相关系数三.线性代数部分梳理:条理化,给出一个系统的,有内在有机结构的理论体系。
(整理)高等数学概率论线性代数

高等数学概率论线性代数回答者:357386379|四级| 2009-12-3 19:40数三考试科目是《高等数学》、《线性代数》、《概率论与数理统计》这三门,这个数三的大纲可以参考一下:第一章:函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系。
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、了解数列极限和函数极限(包括左极限与右极限)的概念。
6、了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7、理解无穷小的概念和基本性质。
掌握无穷小的比较方法。
了解无穷大量的概念及其与无穷小量的关系。
8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
第二章:一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(l'hospital)法则函数的极值函数单调性的判别函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
线性代数与概率统计论文

数学在人类文明的发展中起着非常重要的作用,数学推动了重大科学技术的进步,在早期社会发展的历史上,限于技术条件,依据数学推理和推算所作的预见,往往要多年之后才能实现,数学为人类生产和生活带来的效益容易被忽视。
进入二十世纪,尤其式到了二十世纪中叶以后,科学技术发展到现在的程度,数学理论研究与实际应用之间的时间已大大缩短,特别是当前,随着电脑应用的普及,信息的数字化和信息通道的大规模联网,依据数学所作的创造设想已达到即时试、即时实施的地步,数学技术将是一种应用最广泛、最直接、最及时、最富创造力和重要的技术,故而当今和未来的发展将更倚重数学的发展。
数学对人的影响也式非常深刻的,“数学是锻炼思维的体操”,数学的重要性不仅仅是它蕴含在各个知识领域之中,而且更重要的是它能很好地锻炼人的思维,有效地提高能力,而能力(理解能力、分析能力、运算能力)则是关系到学习效率的更重要因素。
概率论与数理统计总结第一章&第二章概率论引论& 条件概率本章知识点:1.随机事件及其运算(随机试验,随机事件与样本空间,事件之间的关系及其运算)2.概率的定义、性质及其运算(频率,概率的统计定义,古典概率,概率的公理化定义,概率的性质)3.条件概率及三个重要公式(乘法公式,全概率公式,贝叶斯公式)4.事件的独立性及贝努里(Bernoulli)概型理解重点:1.理解随机事件的概念,了解样本空间的概念,掌握事件的关系与基本运算;2.理解事件频率的概念,了解随机现象的统计规律性,理解概率的公理化定义和概率的其它性质;3.理解古典概率的定义,掌握古典概率的计算,了解几何概率的定义及计算;4.掌握概率的基本性质和应用这些性质进行概率计算;5.理解条件概率的概念,熟练掌握条件概率的计算,熟练掌握乘法公式、全概率公式和贝叶斯公式以及应用这些公式进行概率计算;6.理解事件的独立性概念,掌握应用事件独立性进行概率计算,理解贝努利试验的概念,熟练掌握二项概率公式(贝努利概型)及其应用。
高等数学、线性代数、概率论与数理统计考研考试大纲

考研数学一大纲考试科目高等数学、线性代数、概率论与数理统计考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构高等教学56%线性代数22%概率论与数理统计 22%4、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分考试内容之高等数学函数、极限、连续考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。
线性代数概率统计课程教学大纲

线性代数、概率统计课程教学大纲课程代码:12211课程名称:线性代数、概率统计英文名称:Engineer Mathematic C(Linear Algebra 、Probability and Statistic)课程总学时:48 (其中理论课48 学时,实验0 学时)学分: 3课程类别:必修课程性质:公共基础课先修课程:高等数学面向专业:网络、软件、建工系各专业开课单位:计算机工程系、建筑工程系一、课程的性质、地位和任务工程数学C课程包括线性代数部分和概率统计部分,是建筑工程系各专业和计算机工程系部分专业的一门重要的公共基础课程。
通过本课程教学,使学生掌握线性代数的基本理论和方法,掌握线性代数在解决问题中的基本方法和应用技巧;掌握概率论与数理统计的基本概念和基本理论,初步学会处理随机现象的基本思想和方法;培养和提高学生的抽象思维能力和严格的逻辑推理能力,培养学生正确运用数学知识来解决实际问题的能力,并为进一步学习后续课程及相关课程打好基础。
二、课程的教学目标(一)理论、知识方面1.理解n行列式的定义,熟练掌握用行列式性质与行列式按行(列)展开定理,计算二、三、四阶行列式以及简单的n 阶行列式的方法,了解Cramer法则。
2.熟练掌握矩阵的加法、数乘、乘法和转置等运算及其性质,了解初等阵、分块矩阵及其运算,熟练掌握矩阵的初等变换,矩阵可逆的条件及逆矩阵的求法,矩阵的秩及其求法。
3.熟练掌握n维向量的加法、数乘运算及其性质。
理解n维向量组的线性相关性,熟练掌握其判别法则,n维向量组的最大线性无关组,n维向量组的秩及其求法。
4.掌握齐次线性方程组有非零解的充分必要条件与线性方程组有解的充分必要条件,线性方程组的解的结构,熟练掌握用初等行变换求齐次线性方程组的基础解系与通解,非齐次线性方程组的通解。
5.理解随机事件的概念,概率的公理化定义,条件概率的概念,事件的独立性概念。
熟练掌握事件之间的关系与运算,概率的基本性质及概率加法定理,概率的乘法定理。
线性代数与概率统计

765 4 987 6
下面给出一个注 意观察的例子, 看看有无规律。
例:请每位同学在0到9这十个基本数字中任选一 个,先用你选的这个数加上1,再乘以3,再乘以
线 3,然后将所得的结果进行“横加”(如:25“横 性 加”即为2+5=7),再将横加后所得的结果乘以
70,再加上36。大家得出的结果是多少?
记为 [aij ]mn。其表示形式(通式)为:
数
a11 a12 a1n
a21
a22
a2n
am1
am2
amn
一、矩阵的定义
a11 a12 a1n
a21
a22
a2n
线
am1
am2
amn
性
其中,横向排列的 ai1, ai2,···,ain 是的 [aij ]mn 第i
行;纵向排列的 a1 j ,a2 j ,···,amj 是 [aij ]mn 的第j
贝尔,一个叫伽罗瓦。
性
阿贝尔的一生是不幸的。他在当时所写的数学论文都
没有得到老一辈数学家们的重视。如:他曾五次将一篇
代 “五次方程不能由公式给出其解”的论文寄给在格廷根的
高斯,但都没有得到回音。由于他的不断出外求学,致使
数 经济状况十分糟糕,最后只得回到自己的故乡—挪威。没
过多久,他就在忧郁中结束了自己年仅27岁的短暂生命。
通过勘察测算,获得一组有关建设费用的预算数据:
线
性
代
我们也可以用矩阵的形式给出有关建设费用的预算数据:
0 2 3.5 3
数
2
0
1
2
3.5 1 0 1.5
3
2 1.5
0
例2 (田忌赛马问题,即对策论或竞赛论问题)