4.2 基于传递函数模型的广义预测控制算法

合集下载

广义预测控制理论及其应用研究

广义预测控制理论及其应用研究

浙江大学博士学位论文摘要fI亡当面鎏I控赳作为预测控制中最具代表性的算法之一,多年来一直是研究领域最为活跃的预测控剑簋法。

它融合了预测控制与自适应控制的优点,可直接处理输入、输出约束,并对过程的时滞及阶次估计不准有好的鲁棒性,能适用于开环不稳定和非最小相位系统。

目前,线性单变量系统的广义预测控制理论发展得较为成熟,但实际中往往是多变量、非线性系践两方面的研究,主要内容如下:1.从算法、理论和应用三个方面概述了预测控制的发展历史及现状,重点介绍了广义预测控制及其改进算法。

机制能有机地结合起来,对系统的阶次估计不准有好的鲁棒性。

|}—-,3.I由于很难用常规方法获得非线性系统的精确模型,而神经网络具有能逼近任~非线性系统的能力,因此用神经网络实现非线性预测控制是处理复杂非线性问题的一种通用思路J‘本文提出了先用递归神经网络将非线性过程全局反馈线性化,然后在此基础上设计约束广义预测控制器的方法,并在控制算法中考虑了线性化带来的模型误差。

f对连续搅拌槽反应器的仿真说明了该算法的有效性。

k一4.;对预测控制器进行鲁棒性分析和设计一直都是预测控制研究领域的难点。

竭‘文结合模型误差上界的频域辨识结果和小增益理论分析了存在建模误差时广义预测控制器的稳定性,根据对模型误差上界的估计给出基于图形的鲁棒广义预测控制器的参数整定方法,并将这一结果应用于PUMA500机器人的关节力控制系统的鲁棒参数设计。

浙江大学博士学位论文5.推导了有约束的多变量广义预测控制算法,并给出状态空间实现。

(对Shell分馏塔的仿真研究结果表明,算法能有效地处理过程时滞和非最小相位特性,有良好的解耦性能,在跟踪性、抗干扰性等方面的控制效果优于动态矩阵控制算法。

}一—76简要概述了国内外催化裂化装置先进控制的现状,并根据我国催化裂化工业的具体情况,提出一些具有实际意义的建议。

7阳汽油的干点和轻柴油的倾点是反映流化催化裂倔主分馏塔产品质量指标的重要参数,但由于种种困难很难获得。

预测控制之模型算法控制

预测控制之模型算法控制
• 1980年,C.R.Cutler等提出动态矩阵控制(DMC,Dynamic Matrix Control)
• 1982年,Meral等在MPHC基础上进一步提出模型算法控制 (MAC,Model Algorithm Control)
• 1987年,Clarke等提出广义预测控制(GPC,Generalized Predictive Control)
模型描述
• 对于一个线性定常系统,其所有动静态特性可以完全由其单位脉冲响应函数表达。若该系 统还是稳定的(此处指系统的极点具有负实部的情形,不包括临界稳定), 其单位脉冲响应函 数满足:
• 若对于离散时间控制系统,则相应的脉冲响应序列趋于零。根据控制原理,基于单位脉冲 响应函数的系统输出响应等于单位脉冲响应函数与系统输入的卷积,即有
• 内模控制是直接针对控制系统存在建模误差和外部干扰的情况下研究系 统的闭环稳定、提高相应性能指标的控制方法,可显著提高控制系统对 建模误差和外部干扰的鲁棒性。
• 传统控制系统
• 内模控制系统结构框图
非参数模型之单位脉冲响应函数
• 在MAC中对被控对象可采用单位脉冲响应函数(在离散情形也称为单位脉冲 响应序列)作为其数学模型描述。
模型算法控制(MAC)
• MAC系统(预测控制)的主要四个部分:内部模型、模型校正 与输出预测、参考轨迹\轨迹优化、控制优化目标\滚动优化
一、内模原理
• 所谓内模原理,是针对传统控制理论对被控对象模型及建模误差处理的 不足而提出的一种新的处理方法。
• 当建模所存在的误差控制在较小范围时,传统的控制系统设计方法具有 较好的克服建模误差和抗干扰的能力。建模误差超过一定程度时,所设 计的控制系统的反馈本身的抗干扰能力及系统的稳定性裕量则不能很好 地将系统稳定,并保持所期望的系统性能指标。

预测控制算法

预测控制算法

预测控制算法
预测控制算法是一种基于模型的控制方法,它通过预测系统的未来行为来生成控制指令,从而实现对系统的精准控制。

预测控制算法主要分为模型预测控制和递归预测控制两类。

模型预测控制算法是一种基于数学模型的控制方法,它通过建立系统的数学模型来预测系统的未来行为。

在控制时,算法根据当前的系统状态和预测的未来状态来生成控制指令,从而实现对系统的控制。

这种算法通常需要对系统的动态特性有深入的理解,并且需要进行复杂的数学计算。

递归预测控制算法是一种基于数据的控制方法,它通过对系统历史数据的分析来预测系统的未来行为。

在控制时,算法根据当前的系统状态和预测的未来状态来生成控制指令,从而实现对系统的控制。

这种算法通常比较简单,但需要大量的历史数据来进行数据分析和预测。

预测控制算法在许多领域得到了广泛的应用,例如工业控制、机器人控制、交通控制等。

预测控制算法的优点是可以实现对系统的精准控制,并且可以适应系统的变化。

但是,预测控制算法也存在一些缺点,例如需要大量的计算资源和数据,以及对系统的动态特性有深入的理解。

因此,在应用预测控制算法时需要根据实际情况进行选择和优化。

- 1 -。

8讲 预测控制主要算法

8讲 预测控制主要算法

令此误差最小,即令 e(P)=0,得最优控制律:
u(k ) a P [ y s (k ) y (k ) ( g P i g i )u(k i )]
1 i 1 N
(2-12)
g i 为系统第 P 步的阶跃响应值。这就是单值预测控 其中 a P i 1
P
制算法,对 SISO 系统, a P 为标量;对 MIMO 系统,在输入输出 维数均为 m 时, a P 为 m×m 阵,这时计算可得到一定的简化。
1. 模型预测 DMC 中的预测模型是用被控对象的单位阶跃响应来描述的。 当在系统的输入端加上一控制增量后,在各采样时刻 t T 、 2T 、…、 NT 分别可在系统的输出端测得一系列采样值,它们可 用动态系数 a1、a2、…、aN 来表示,这种用动态系数和输入量来 描述各个采样时刻的系统输出和输入关系的过程特性,就是被控 对象的非参数数学模型。
(2-7)
3. 最优控制 通常采用下述二次型指标函数:
J k E T QE U (k )T RU(k )
J k 为得到最优解,令 U 0 ,得:
U (k ) (G1 QG1 R) 1 G1 Q[Ys (k 1) G2U (k 1) He(k )]
T T
(2-8)
U (k ) [u(k ) u(k M 1)
U (k 1) [u(k 1) u(k 1 N )]T
g1 g g1 2 G1 g g M M 1 g P g P 1

0 g2 g g 1 G2 3 P M 1 g P 1 g i i 1 PM
6. 闭环系统特性 对式(2-11)作 Z 变换:

预测控制

预测控制

1.1 引言预测控制是一种基于模型的先进控制技术,它不是某一种统一理论的产物,而是源于工业实践,最大限度地结合了工业实际地要求,并且在实际中取得了许多成功应用的一类新型的计算机控制算法。

由于它采用的是多步测试、滚动优化和反馈校正等控制策略,因而控制效果好,适用于控制不易建立精确数字模型且比较复杂的工业生产过程,所以它一出现就受到国内外工程界的重视,并已在石油、化工、电力、冶金、机械等工业部门的控制系统得到了成功的应用。

工业生产的过程是复杂的,我们建立起来的模型也是不完善的。

就是理论非常复杂的现代控制理论,其控制的效果也往往不尽人意,甚至在某些方面还不及传统的PID控制。

70年代,人们除了加强对生产过程的建模、系统辨识、自适应控制等方面的研究外,开始打破传统的控制思想的观念,试图面向工业开发出一种对各种模型要求低、在线计算方便、控制综合效果好的新型算法。

这样的背景下,预测控制的一种,也就是模型算法控制(MAC -Model Algorithmic Control)首先在法国的工业控制中得到应用。

同时,计算机技术的发展也为算法的实现提供了物质基础。

现在比较流行的算法包括有:模型算法控制(MAC)、动态矩阵控制(DMC )、广义预测控制(GPC)、广义预测极点(GPP)控制、内模控制(IMC)、推理控制(IC)等等。

随着现代计算机技术的不断发展,人们希望有一个方便使用的软件包来代替复杂的理论分析和数学运算,而Matlab、C、C++等语言很好的满足了我们的要求。

1.2 预测控制的存在问题及发展前景70年代以来,人们从工业过程的特点出发,寻找对模型精度要求不高,而同样能实现高质量控制性能的方法,以克服理论与应用之间的不协调。

预测控制就是在这种背景下发展起来的一种新型控制算法。

它最初由Richalet和Cutler等人提出了建立在脉冲响应基础上的模型预测启发控制(Model Predictive Heuristic Control,简称“MPHC”),或称模型算法控制(Model Algorithmic Control,简称“MAC”);Cutler等人提出了建立在阶跃响应基础上的动态矩阵控制(Dynamic Matrix Control,简称“DMC”),是以被控系统的输出时域响应(单位阶跃响应或单位冲激响应)为模型,控制律基于系统输出预测,控制系统性能有较强的鲁棒性,并且方法原理直观简单、易于计算机实现。

4.2 基于传递函数模型的广义预测控制算法

4.2 基于传递函数模型的广义预测控制算法

fj1Afj f01 0
0T
(5)
Ej1Ej ej1,jq1Ej fj,0q1
2. 滚动优化
m in J ( t) E N 2y ( t j) w ( t j) 2 N U(j) u ( t j 1 ) 2
j N 1
j 1
其中 E 数学期望 w 输出的期望值 N1, N2 优化时域的始值和终值 NU 控制时域
记 A 1 a 1 q 1 a n 1 q ( n 1 ) 1 ( a 1 1 ) q 1 ( a n a n 1 ) q n a n q ( n 1 )
E j 1 E j E e j 1 ,j q j
可得
A E q j( q 1 F j 1 F j A e j 1 ,j) 0 Fj1
利用丢番图方程(3),可得 t + j 时刻的输出量
y ( t j ) E j B u ( t j 1 ) F j y ( t ) E j( t j )
1. 预测模型
y ( t j ) E j B u ( t j 1 ) F j y ( t ) E j( t j )
1. 预测模型
丢番图(Diophantine)方程
1E j(q 1)A qjF j(q 1)
(3)
式中 E j , F j 是由 A ( q 1 ) 和预测长度 j 唯一确定的多项式
Ej(q1)ej,0ej,1q1 ej,j1q(j1) Fj(q1)fj,0fj,1q1 ej,nqn
1. 预测模型
把模型参数与数据参数分别用向量形式描述
T a 1 a n b 0 b n b
(t) y (t 1 ) y (t n ) u (t 1 )
y(t) T(t) (t)
u (t n b 1 )T

控制基本模型-概述说明以及解释

控制基本模型-概述说明以及解释

控制基本模型-概述说明以及解释1.引言1.1 概述概述在控制理论和应用中,控制基本模型是指用于描述和分析控制系统的数学模型。

控制基本模型是控制工程师和研究人员研究和设计控制系统时的基础,它提供了系统动力学行为的描述以及控制方法的分析和设计。

控制基本模型可以采用多种形式,包括传递函数模型、状态空间模型和输入-输出模型等。

这些模型通常基于系统动力学方程和输出-输入关系来建立。

通过对模型进行数学分析和仿真实验,我们可以深入了解和预测控制系统的行为,并针对不同的应用需求进行优化设计。

本文将重点介绍控制基本模型的定义和控制方法的介绍。

首先,我们将详细讨论基本模型的定义,包括传递函数模型、状态空间模型和输入-输出模型的基本原理和特点。

然后,我们将介绍一些常用的控制方法,如比例积分微分控制(PID控制),模糊控制和自适应控制等。

这些控制方法可以根据系统的需求和特点来选择和应用。

通过本文的学习,读者将能够理解和掌握控制基本模型的概念和基本原理,了解不同类型的控制方法的适用范围和特点。

同时,读者还将能够应用所学知识来设计和优化控制系统,提高系统的性能和稳定性。

总之,控制基本模型是控制系统设计和分析的基础,具有重要的理论和实际意义。

通过研究和应用控制基本模型,我们可以不断改进和优化控制系统,提高系统的性能和效果。

1.2文章结构1.2 文章结构本文的目的是探讨控制基本模型,并介绍相关的控制方法。

为了更好地组织本文的内容,文章结构如下所示:引言部分将在1.1概述中简要介绍控制基本模型的背景和意义,并在1.3目的中明确阐述本文的研究目标。

正文部分将分为两个小节进行讲解。

首先,在2.1基本模型定义中,我们将详细阐述控制基本模型的定义和内容,包括其在控制系统中的作用和应用领域。

其次,在2.2控制方法介绍中,我们将介绍几种常见的控制方法,包括PID控制器、模糊控制和神经网络控制等,以及它们在控制基本模型中的应用。

结论部分将在3.1总结中对本文进行总结,回顾并强调本文的重点内容和研究成果。

广义预测控制

广义预测控制

广义预测控制(G P C)GPC算法仿真被控对象模型动态矩阵控制算法的编程原理(1)设置GPC参数,例如采样周期,预测时域,控制时域,截断步长等。

(2)建立系统阶跃响应模型(3)设置初始时刻参数,例如系统的初始时刻值,柔化系数等。

(4)计算参考轨迹(5)计算控制作用增量(6)实施GPC控制(7)输出结果,绘制曲线GPC算法:1.初选控制参数:Q、R、P、M、 ysp 、?、?(z-1)2.采集输入、输出样本{?u(k),?y(k)}3.用RLS算法估计参数4.递推求解Diophantine方程,得到5.计算F(k)6.在线计算控制器参数d T7.得到控制增量?u(k)和控制输入u(k) =u(k-1) +?u(k)+1 ?k,进入下一周期预测计算和滚动优化GPC程序:%Clarke广义预测控制(C=1)(对象参数已知)%N1=d、N、Nu取不同的值clear all;close all;a=cell(1,2) ;b=cell(1,2) ;c=cell(1,1);d=cell(1,1);%对象参数syms k;k=length(k);if (0<=k<=150)a=[1 ]; b=[ ]; c=1; d=1;elseif (150<k<=300)a=[1 ]; b=[ ]; c=1; d=1;elseif (300<k<=450)a=[1 ]; b=[ ]; c=1; d=1;else (450<k<=600)a=[1 ]; b=[ ]; c=1; d=1;endna=length(a)-1;b=[zeros(1,d-1) b];nb =length(b)-1;%na、nb为多项式A、B阶次(因d!=1,对b添0)aa=conv(a,[1 -1]);naa=na+1;%aa的阶次N1=d;N=15;Nu=5;%最小输出长度、预测长度、控制长度gamma=1*eye(Nu);alpha=;%控制加权矩阵、输出柔化系数L=600;%控制步数uk=zeros(d+nb,1);%输入初值:uk(i)表示u(k-i)duk=zeros(d+nb,1);%控制增量初值yk=zeros(naa,1);%输出初值w=10*[ones(L/4,1);-ones(L/4,1);ones(L/4,1);-ones(L/4+d,1)]; %设定值xi=sqrt*randn(L,1);%白噪声序列%求解多步Diophantine方程并构建F1、F2、G[E,F,G]=multidiophantine(aa,b,c,N);G=G(N1: N, : );F1=zeros(N-N1+1,Nu); F2=zeros(N-N1+1,nb);for i=1:N-N1+1for j=1:min(i,Nu); F1(i,j)=F(i+N1-1,i+N1-1-j+1);endfor j=1:nb; F2(i,j)=F(i+N1-1,i+N1-1+j);endendfor k=1:Lif (1<=k<=150)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)elseif (150<k<=300)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)elseif (300<k<=450)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)else (450<k<=L)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)end%参考轨迹yr(k)=y(k);for i=1:Nyr(k+i)=alpha*yr(k+i-1)+(1-alpha)*w(k+d);endYr=[yr(k+N1:k+N)]';%构建向量Yk(k)%求控制量dU=inv(F1'*F1+gamma)*F1'*(Yr-F2*dUk-G*Yk); %ΔU du(k)=dU(1); u(k)=uk(1)+du(k);%更新数据for i=1+nb:-1:2uk(i)=uk(i-1);duk(i)=duk(i-1);enduk(1)=u(k);duk(1)=du(k);for i=naa:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endsubplot(2,1,1);plot(time,w(1:L),'m:',time,y);xlabel('k');ylabel('w(k)、y(k)');legend('w(k)','y(k)');subplot(2,1,2);plot(time,u);xlabel('k');ylabel('u(k)');function[E,F,G]=multidiophantine(a,b,c,N)%********************************************************** *%功能:多步Diophanine方程的求解%调用格式:[E,F,G]=sindiophantine(a,b,c,N)(注:d=1)%输入参数:多项式A,B,C系数向量及预测步数(共4个)%输出参数:Diophanine方程的解E,F,G(共3个)%********************************************************** ***na=length(a)-1;nb =length(b)-1;nc=length(c)-1;%A、B、C的阶次%E、F、G的初值E=zeros(N);E(1,1)=1;F(1,:)=conv(b,E(1,:));if na>=ncG(1,:)=[c(2:nc+1) zeros(1,na-nc)]-a(2:na+1);%令c(nc+2)=c(nc+3)=...=0elseG(1,:)=c(2:nc+1) -[a(2:na+1)-zeros(1,nc-na)];%令a(nc+2)=a(nc+3)=...=0end%求E、F、Gfor j=1:N-1for i=1:jE(j+1,i)=E(j,i);endE(j+1,j+1)=G(j,1);for i=2:naG(j+1,i-1)=G(j,i)-G(j,1)*a(i);endG(j+1,na)=-G(j,1)*a(na+1);F(j+1,: )=conv(b,E(j+1,:));end仿真结果N=15 Nu=5 alpha=N=10 Nu=5 alpha=N=15 Nu=3 alpha=N=15 Nu=3 alpha=结论可以得出,当保持其他参数不变而改变一或几个变量时会有不同的情形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f 0 1 0 0
1
T 1
E j 1 E j e j 1, j q E j f j ,0 q
(5)
2. 滚动优化
NU N2 2 2 min J (t ) E y (t j ) w(t j ) ( j ) u (t j 1) j 1 j N1
三要素:
预测模型、滚动优化、反馈校正
典型算法:
动态矩阵控制(DMC)、模型算法控制(MAC)、广义 预测控制(GPC)
基于传递函数模型的广义预测控制算法
1. 预测模型
C (q ) (t ) A(q ) y (t ) B(q )u (t 1)
1 1 1
(1)
式中
A(q 1 ) 1 a1q 1 an q n
(8)
3. 在线辨识与校正
GPC 只用一个模型,通过对其在线修正来给出较准确的预测
A(q 1 ) y(t ) B(q 1 )u (t 1) (t )
y (t ) A1 (q 1 )y (t ) B(q 1 )u (t 1) (t )
1 1 其中 A1 (q ) A(q ) 1
u(t j 1), u(t j 2), y(t ), y(t 1),
(t j ),, (t 1) 未知
根据已知输入输出信息,及未来的输入值,可以预测装置 未来的输出,未知可以省略,即GPC的预测模型
yt (t j | t ) E j Bu (t j 1) Fj y (t )
基于传递函数模型的广义预测控制算法
任伟 20121221406
王海 20121221409
前言
预测控制原理:
预测控制一般表现为采样控制算法,应包含预测的原理, 即利用内部模型的状态或输出预测,同时应用有限预测时域 的滚动计算思想和反馈及预测校正,最后采用对某个系统性 能指标的最优化计算以确定在一个控制时域内的最有控制序 列。
E0 可得 AE q j (q 1Fj 1 Fj Ae j 1, j ) 0 F j 1 q ( F j Ae j 1, j )
1. 预测模型 - 递推算法
由于 A 的首项系数为1 e j 1, j f j ,0
对象输出期望值可采用MAC中的参考轨迹形式
w(t ) y(t ) w(t j ) w(t j 1) (1 )c j 1, 2, , N
其中 0 1
2. 滚动优化- 预测输出
NU N2 2 2 min J (t ) E y (t j ) w(t j ) ( j ) u (t j 1) j 1 j N1 由预测模型可以写出未来预测的输出
采用渐消记忆的递推最小二乘法估计参数向量
ˆ T ˆ ˆ (t ) (t 1) K (t ) y (t ) (t ) (t 1) 1 T K (t ) P (t 1) (t ) (t ) P (t 1) (t ) 1 P (t ) 1 K (t ) T (t ) P (t 1)
(4)
1. 预测模型
记 G j E j B ,结合式(2)和(3)可得
Gj
B (1 q j F j ) A
1 因此,多项式 G j ( q ) 中前 j 项的系数正是装置阶跃响应前 j 项的采样值,记作 g1, , g j
G q ) G j j((q1 ) g j ,0 g j ,1q 1
T
E (q 1 ), F (q 1 )
3. 根据 B(q 1 ), E (q 1 ), F (q 1 ) ,计算 G(q 1 ) 的元素 g i ,并计算 f 4. 重新计算出 g ,并计算控制作用 u(t) ,将其作用于控制 对象
1. 预测模型 - 递推算法
E j1, j q 1 E j f j ,0 q 1
取 E1 1, F1 q(1 A)为
E j , F j 的初值,则 E , F 可按下式计算 j 1 j 1
f j 1 Af j

ˆ y GU f (6)

2. 滚动优化 - 最优控制量
U (G G I ) G (W f )
T 1 T
(7)
其中W w(t 1) w(t N ) T
即时控制量为
u (t ) u (t 1) g T (W f )
T T 1 T 其中 g 为矩阵(G G I ) G 的第一行
f j 1 f j 1,0 f j f j ,0 f j 1, n
T T
其中
f j ,n
1 a1 a a 1 2 A an 1 an an
1
0 0 1 0
ˆ y (t 1| t ) G1u (t ) F1 y (t ) g1,0 u (t ) f1 (t ) ˆ y (t 2 | t ) G2 u (t 1) F2 y (t ) g 2,0 u (t 1) g 2,1u (t ) f 2 (t ) ˆ y (t N | t ) GN u (t N 1) FN y (t ) g N ,0 u (t N 1) g N , N NU u (t NU 1) g N , N 1u (t ) f N (t ) g N , N NU u (t NU 1) g N , N 1u (t ) f N (t )
则有 g j ,i gi 1 (i j )
1. 预测模型
yt (t j | t ) E j Bu (t j 1) Fj y (t )
求解一组丢番图方程(3)
计算量很大 必须知道 E j , Fj ,为此克拉克提出了一种E j , Fj 递推算法求解
1. 预测模型 -递推算法

ˆ ˆ y y (t 1| t ) f f1 f2
T
ˆ y (t N | t )
T T
U u (t ) u (t NU 1) g j ,i g i 1 (i j )是阶跃响应系数
g1 g 2 G gN g1 g N NU 1 N NU 0
(9)
其中
-遗忘因子,一般取0.95 1
K (t ) -权因子
P(t ) -正定的协方差阵,初始取 2 I, 为一足够大正数 ˆ 初始 (0) 0
GPC在线控制总结
1. 根据最新的输入输出数据,用递推最小二乘法估计模型 参数,得到 A(q 1 ) 和 B(q 1 )
2. 根据得到的 A(q 1 ),按递推公式(5)计算
1 E j (q 1 ) A q j Fj (q 1 )
(3)
1 式中 E j , Fj 是由 A(q ) 和预测长度 j 唯一确定的多项式
E j (q 1 ) e j ,0 e j ,1q 1 e j , j 1q ( j 1) Fj (q 1 ) f j ,0 f j ,1q 1 e j ,n q n
其中
E 数学期望 w 输出的期望值 N1 , N 2 优化时域的始值和终值 NU 控制时域
( j ) 控制加权系数,一般取常数
2. 滚动优化 - 输出期望值
NU N2 2 2 min J (t ) E y (t j ) w(t j ) ( j ) u (t j 1) j 1 j N1
1 E j A q j Fj 1 E j 1 A q ( j 1) Fj 1
两式相减可得 A( E j 1 E j ) q j ( Fj 1 Fj ) 0
记 A 1 a1q 1 an 1q ( n1) 1 (a1 1)q 1 (an an 1 )q n an q ( n1) E j 1 E j E e j 1, j q j
把模型参数与数据参数分别用向量形式描述
a1 an b0 bn
b
T
(t ) y (t 1) y(t n) u (t 1) u (t nb 1)
T
y(t ) T (t ) (t )
3. 在线辨识与校正
f j 1,i f j ,i 1 ai 1e j 1, j f j ,i 1 ai 1 f j ,0 i 0,, n 1 f j 1,n an 1e j 1, j an1 f j ,0
F j系数的递推关系可用向量形式表示 f j 1 Af j
1. 预测模型
E j q j 可得: 对公式(1),即CARIMA模型,两端乘以
C (q 1 ) (t ) A(q ) y (t ) B(q )u (t 1)
1 1
E j Ay (t j ) E j Bu (t j 1) E j (t j )
1. 预测模型
1 为了突出方法原理,假设 C (q ) 1 。输入 u 对输出 y 之 间可用 z 传递函数给为:
z 1 B( z 1 ) 1 G( z ) A( z 1 )
(2)
利用模型 (2) 导出 j 步之后输出 y ( t+j ) 的预测值。
1. 预测模型
丢番图(Diophantine)方程
1 E j (q 1 ) A q j Fj (q 1 )
利用丢番图方程(3),可得 t + j 时刻的输出量
相关文档
最新文档