4.2 基于传递函数模型的广义预测控制算法解析

合集下载

广义预测控制理论及其应用研究

广义预测控制理论及其应用研究

浙江大学博士学位论文摘要fI亡当面鎏I控赳作为预测控制中最具代表性的算法之一,多年来一直是研究领域最为活跃的预测控剑簋法。

它融合了预测控制与自适应控制的优点,可直接处理输入、输出约束,并对过程的时滞及阶次估计不准有好的鲁棒性,能适用于开环不稳定和非最小相位系统。

目前,线性单变量系统的广义预测控制理论发展得较为成熟,但实际中往往是多变量、非线性系践两方面的研究,主要内容如下:1.从算法、理论和应用三个方面概述了预测控制的发展历史及现状,重点介绍了广义预测控制及其改进算法。

机制能有机地结合起来,对系统的阶次估计不准有好的鲁棒性。

|}—-,3.I由于很难用常规方法获得非线性系统的精确模型,而神经网络具有能逼近任~非线性系统的能力,因此用神经网络实现非线性预测控制是处理复杂非线性问题的一种通用思路J‘本文提出了先用递归神经网络将非线性过程全局反馈线性化,然后在此基础上设计约束广义预测控制器的方法,并在控制算法中考虑了线性化带来的模型误差。

f对连续搅拌槽反应器的仿真说明了该算法的有效性。

k一4.;对预测控制器进行鲁棒性分析和设计一直都是预测控制研究领域的难点。

竭‘文结合模型误差上界的频域辨识结果和小增益理论分析了存在建模误差时广义预测控制器的稳定性,根据对模型误差上界的估计给出基于图形的鲁棒广义预测控制器的参数整定方法,并将这一结果应用于PUMA500机器人的关节力控制系统的鲁棒参数设计。

浙江大学博士学位论文5.推导了有约束的多变量广义预测控制算法,并给出状态空间实现。

(对Shell分馏塔的仿真研究结果表明,算法能有效地处理过程时滞和非最小相位特性,有良好的解耦性能,在跟踪性、抗干扰性等方面的控制效果优于动态矩阵控制算法。

}一—76简要概述了国内外催化裂化装置先进控制的现状,并根据我国催化裂化工业的具体情况,提出一些具有实际意义的建议。

7阳汽油的干点和轻柴油的倾点是反映流化催化裂倔主分馏塔产品质量指标的重要参数,但由于种种困难很难获得。

预测控制算法

预测控制算法

预测控制算法
预测控制算法是一种基于模型的控制方法,它通过预测系统的未来行为来生成控制指令,从而实现对系统的精准控制。

预测控制算法主要分为模型预测控制和递归预测控制两类。

模型预测控制算法是一种基于数学模型的控制方法,它通过建立系统的数学模型来预测系统的未来行为。

在控制时,算法根据当前的系统状态和预测的未来状态来生成控制指令,从而实现对系统的控制。

这种算法通常需要对系统的动态特性有深入的理解,并且需要进行复杂的数学计算。

递归预测控制算法是一种基于数据的控制方法,它通过对系统历史数据的分析来预测系统的未来行为。

在控制时,算法根据当前的系统状态和预测的未来状态来生成控制指令,从而实现对系统的控制。

这种算法通常比较简单,但需要大量的历史数据来进行数据分析和预测。

预测控制算法在许多领域得到了广泛的应用,例如工业控制、机器人控制、交通控制等。

预测控制算法的优点是可以实现对系统的精准控制,并且可以适应系统的变化。

但是,预测控制算法也存在一些缺点,例如需要大量的计算资源和数据,以及对系统的动态特性有深入的理解。

因此,在应用预测控制算法时需要根据实际情况进行选择和优化。

- 1 -。

8讲 预测控制主要算法

8讲 预测控制主要算法

令此误差最小,即令 e(P)=0,得最优控制律:
u(k ) a P [ y s (k ) y (k ) ( g P i g i )u(k i )]
1 i 1 N
(2-12)
g i 为系统第 P 步的阶跃响应值。这就是单值预测控 其中 a P i 1
P
制算法,对 SISO 系统, a P 为标量;对 MIMO 系统,在输入输出 维数均为 m 时, a P 为 m×m 阵,这时计算可得到一定的简化。
1. 模型预测 DMC 中的预测模型是用被控对象的单位阶跃响应来描述的。 当在系统的输入端加上一控制增量后,在各采样时刻 t T 、 2T 、…、 NT 分别可在系统的输出端测得一系列采样值,它们可 用动态系数 a1、a2、…、aN 来表示,这种用动态系数和输入量来 描述各个采样时刻的系统输出和输入关系的过程特性,就是被控 对象的非参数数学模型。
(2-7)
3. 最优控制 通常采用下述二次型指标函数:
J k E T QE U (k )T RU(k )
J k 为得到最优解,令 U 0 ,得:
U (k ) (G1 QG1 R) 1 G1 Q[Ys (k 1) G2U (k 1) He(k )]
T T
(2-8)
U (k ) [u(k ) u(k M 1)
U (k 1) [u(k 1) u(k 1 N )]T
g1 g g1 2 G1 g g M M 1 g P g P 1

0 g2 g g 1 G2 3 P M 1 g P 1 g i i 1 PM
6. 闭环系统特性 对式(2-11)作 Z 变换:

频域系统辨识与模型预测控制算法研究

频域系统辨识与模型预测控制算法研究

频域系统辨识与模型预测控制算法研究频域系统辨识与模型预测控制(Frequency Domain System Identification and Model Predictive Control, FD-SI-MPC)是一种基于频域分析的系统辨识和控制方法。

其主要目的是通过建立系统的数学模型,来实现对系统的辨识和控制,以提高系统的稳定性和性能。

频域辨识算法是一种通过对系统的频率响应进行分析和建模来确定系统动态特性的方法。

利用频率域上的幅频特性和相频特性,可以得到系统的传递函数或状态空间模型,从而实现对系统的辨识。

常用的频域辨识方法包括频率响应函数法、脉冲响应法、频域广义倒数法等。

这些方法可根据系统模型的复杂程度和所需的精度来选择。

模型预测控制算法则是一种基于数学模型预测的控制方法。

通过对系统模型的预测,可以对未来的系统行为进行预测,并根据预测结果进行控制决策。

模型预测控制算法通常包括模型建立、预测、优化和控制等几个主要步骤。

其中,模型建立是基于频域系统辨识结果来构建系统的数学模型,预测是利用模型对未来系统的状态和输出进行预测,优化则是根据预测结果和控制目标来求解最优控制策略,控制是基于最优控制策略对系统进行实时调节。

频域系统辨识与模型预测控制算法在实际应用中具有广泛的适用性和优势。

首先,它能够对复杂非线性系统进行辨识和控制,适用于各种工程领域。

其次,通过频率域分析,可以对系统的振动、共振和相位特性进行准确描述,提高系统的稳定性和抗干扰能力。

此外,模型预测控制算法可以灵活地调整控制策略,适应系统动态特性的变化和控制目标的变化,具有较好的鲁棒性和适应性。

然而,频域系统辨识与模型预测控制算法也存在一些挑战和局限性。

首先,算法的设计和参数选择需要一定的专业知识和经验,对操作人员要求较高。

其次,频域辨识和模型预测算法在处理非线性、时变和多输入多输出系统时可能面临困难,需要进一步的研究和改进。

为了克服这些挑战,未来的研究方向可以包括以下几个方面:一是改进频域系统辨识算法,提高辨识结果的准确性和稳定性;二是研究高效的模型预测控制优化算法,提高控制效果和系统的性能;三是将频域辨识和模型预测控制算法结合起来,实现更加精确和鲁棒的系统辨识和控制。

4.2 基于传递函数模型的广义预测控制算法

4.2 基于传递函数模型的广义预测控制算法

fj1Afj f01 0
0T
(5)
Ej1Ej ej1,jq1Ej fj,0q1
2. 滚动优化
m in J ( t) E N 2y ( t j) w ( t j) 2 N U(j) u ( t j 1 ) 2
j N 1
j 1
其中 E 数学期望 w 输出的期望值 N1, N2 优化时域的始值和终值 NU 控制时域
记 A 1 a 1 q 1 a n 1 q ( n 1 ) 1 ( a 1 1 ) q 1 ( a n a n 1 ) q n a n q ( n 1 )
E j 1 E j E e j 1 ,j q j
可得
A E q j( q 1 F j 1 F j A e j 1 ,j) 0 Fj1
利用丢番图方程(3),可得 t + j 时刻的输出量
y ( t j ) E j B u ( t j 1 ) F j y ( t ) E j( t j )
1. 预测模型
y ( t j ) E j B u ( t j 1 ) F j y ( t ) E j( t j )
1. 预测模型
丢番图(Diophantine)方程
1E j(q 1)A qjF j(q 1)
(3)
式中 E j , F j 是由 A ( q 1 ) 和预测长度 j 唯一确定的多项式
Ej(q1)ej,0ej,1q1 ej,j1q(j1) Fj(q1)fj,0fj,1q1 ej,nqn
1. 预测模型
把模型参数与数据参数分别用向量形式描述
T a 1 a n b 0 b n b
(t) y (t 1 ) y (t n ) u (t 1 )
y(t) T(t) (t)
u (t n b 1 )T

广义预测控制

广义预测控制

广义预测控制(G P C)GPC算法仿真被控对象模型动态矩阵控制算法的编程原理(1)设置GPC参数,例如采样周期,预测时域,控制时域,截断步长等。

(2)建立系统阶跃响应模型(3)设置初始时刻参数,例如系统的初始时刻值,柔化系数等。

(4)计算参考轨迹(5)计算控制作用增量(6)实施GPC控制(7)输出结果,绘制曲线GPC算法:1.初选控制参数:Q、R、P、M、 ysp 、?、?(z-1)2.采集输入、输出样本{?u(k),?y(k)}3.用RLS算法估计参数4.递推求解Diophantine方程,得到5.计算F(k)6.在线计算控制器参数d T7.得到控制增量?u(k)和控制输入u(k) =u(k-1) +?u(k)+1 ?k,进入下一周期预测计算和滚动优化GPC程序:%Clarke广义预测控制(C=1)(对象参数已知)%N1=d、N、Nu取不同的值clear all;close all;a=cell(1,2) ;b=cell(1,2) ;c=cell(1,1);d=cell(1,1);%对象参数syms k;k=length(k);if (0<=k<=150)a=[1 ]; b=[ ]; c=1; d=1;elseif (150<k<=300)a=[1 ]; b=[ ]; c=1; d=1;elseif (300<k<=450)a=[1 ]; b=[ ]; c=1; d=1;else (450<k<=600)a=[1 ]; b=[ ]; c=1; d=1;endna=length(a)-1;b=[zeros(1,d-1) b];nb =length(b)-1;%na、nb为多项式A、B阶次(因d!=1,对b添0)aa=conv(a,[1 -1]);naa=na+1;%aa的阶次N1=d;N=15;Nu=5;%最小输出长度、预测长度、控制长度gamma=1*eye(Nu);alpha=;%控制加权矩阵、输出柔化系数L=600;%控制步数uk=zeros(d+nb,1);%输入初值:uk(i)表示u(k-i)duk=zeros(d+nb,1);%控制增量初值yk=zeros(naa,1);%输出初值w=10*[ones(L/4,1);-ones(L/4,1);ones(L/4,1);-ones(L/4+d,1)]; %设定值xi=sqrt*randn(L,1);%白噪声序列%求解多步Diophantine方程并构建F1、F2、G[E,F,G]=multidiophantine(aa,b,c,N);G=G(N1: N, : );F1=zeros(N-N1+1,Nu); F2=zeros(N-N1+1,nb);for i=1:N-N1+1for j=1:min(i,Nu); F1(i,j)=F(i+N1-1,i+N1-1-j+1);endfor j=1:nb; F2(i,j)=F(i+N1-1,i+N1-1+j);endendfor k=1:Lif (1<=k<=150)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)elseif (150<k<=300)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)elseif (300<k<=450)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)else (450<k<=L)time(k)=k;a=[1 ]; b=[ ]; c=1; d=1;y(k)=-aa(2:naa+1)*yk+b*duk(1:nb+1)+xi(k);%采集输出数据Yk=[y(k);yk(1:na)];%构建向量Y(k)dUk=duk(1:nb);%构建向量△U(k-j)end%参考轨迹yr(k)=y(k);for i=1:Nyr(k+i)=alpha*yr(k+i-1)+(1-alpha)*w(k+d);endYr=[yr(k+N1:k+N)]';%构建向量Yk(k)%求控制量dU=inv(F1'*F1+gamma)*F1'*(Yr-F2*dUk-G*Yk); %ΔU du(k)=dU(1); u(k)=uk(1)+du(k);%更新数据for i=1+nb:-1:2uk(i)=uk(i-1);duk(i)=duk(i-1);enduk(1)=u(k);duk(1)=du(k);for i=naa:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endsubplot(2,1,1);plot(time,w(1:L),'m:',time,y);xlabel('k');ylabel('w(k)、y(k)');legend('w(k)','y(k)');subplot(2,1,2);plot(time,u);xlabel('k');ylabel('u(k)');function[E,F,G]=multidiophantine(a,b,c,N)%********************************************************** *%功能:多步Diophanine方程的求解%调用格式:[E,F,G]=sindiophantine(a,b,c,N)(注:d=1)%输入参数:多项式A,B,C系数向量及预测步数(共4个)%输出参数:Diophanine方程的解E,F,G(共3个)%********************************************************** ***na=length(a)-1;nb =length(b)-1;nc=length(c)-1;%A、B、C的阶次%E、F、G的初值E=zeros(N);E(1,1)=1;F(1,:)=conv(b,E(1,:));if na>=ncG(1,:)=[c(2:nc+1) zeros(1,na-nc)]-a(2:na+1);%令c(nc+2)=c(nc+3)=...=0elseG(1,:)=c(2:nc+1) -[a(2:na+1)-zeros(1,nc-na)];%令a(nc+2)=a(nc+3)=...=0end%求E、F、Gfor j=1:N-1for i=1:jE(j+1,i)=E(j,i);endE(j+1,j+1)=G(j,1);for i=2:naG(j+1,i-1)=G(j,i)-G(j,1)*a(i);endG(j+1,na)=-G(j,1)*a(na+1);F(j+1,: )=conv(b,E(j+1,:));end仿真结果N=15 Nu=5 alpha=N=10 Nu=5 alpha=N=15 Nu=3 alpha=N=15 Nu=3 alpha=结论可以得出,当保持其他参数不变而改变一或几个变量时会有不同的情形。

模型预测控制实例-概念解析以及定义

模型预测控制实例-概念解析以及定义

模型预测控制实例-概述说明以及解释1.引言1.1 概述概述:模型预测控制(MPC)是一种先进的控制方法,它利用系统动态模型进行预测,并根据预测结果来实现对系统的控制。

MPC在控制系统领域内具有广泛的应用,其能够应用于多种复杂的工业控制问题,并取得了显著的成果。

本文将对MPC的基本原理、工业应用以及其优势和局限性进行深入探讨,旨在为读者提供全面的理解和认识MPC的重要性。

概述部分的内容1.2 文章结构文章结构部分的内容可以按照如下方式编写:文章结构部分应该简要介绍整篇文章的结构和各个部分的内容安排,包括引言、正文和结论部分。

同时,可以说明每一部分内容的重要性,并为读者展示整篇文章的逻辑和连贯性。

此外,也可以简要说明每一部分内容的主题和目的,以便读者在阅读全文时能够有所预期。

在文章结构部分,可以提及每个部分的主要内容和目标,以及整篇文章的导向和主题。

这部分内容应该尽量简洁明了,避免过多的细节,但要呈现出整篇文章的框架和逻辑安排。

1.3 目的本文的主要目的是通过对模型预测控制的介绍和分析,让读者对这一控制方法有更深入的理解。

我们将对模型预测控制的原理、应用和优势进行详细阐述,帮助读者了解模型预测控制在工业生产中的重要性和实际应用情况。

同时,我们也将探讨模型预测控制的局限性和可能的改进方向,以期为相关领域的研究和应用提供一定的启发和参考。

通过本文的阅读,读者可以对模型预测控制有更全面的认识,并对其在工程实践中的应用具有更深刻的认识和理解。

2.正文2.1 模型预测控制简介模型预测控制(Model Predictive Control, MPC)是一种应用于动态系统的先进控制策略。

它通过建立系统的数学模型,预测未来一段时间内的系统行为,并根据这些预测结果来实施控制动作,以实现对系统的最优控制。

MPC将系统的动态模型与性能指标相结合,能够在有限的控制时域内计算出最优的控制策略,因此被广泛应用于工业控制领域。

MPC的核心思想是通过对系统的动态模型进行预测,计算未来一段时间内系统状态的变化情况,然后根据这些预测结果来制定出最优的控制策略。

广义预测控制

广义预测控制

广义预测控制(GPC)是一种鲁棒性强、能够有效地克服系统滞后、可应用于开环不稳定非最小相位系统的先进控制算法,但由于它需要Diophantine方程计算、矩阵求逆和最小二乘的递推求解,因此计算量很大,本文针对此缺陷提出四种不基于对象模型且实时性高的广义预测控制快速算法,为广义预测控制应用于实时性要求高的快速系统奠定了理论基础,具体研究工作如下。

(1)对参数未知单输入单输出线性系统提出一种参数自适应直接广义预测控制(DGPC)方法,该方法直接辨识广义预测控制器参数,即基于广义误差估计值对控制器参数和广义误差估计值中的未知向量进行自适应调整。

然后利用中值定理将参数未知单输入单输出非线性系统线性化变为时变线性系统,在自适应辨识中对时变参数采用三次样条函数进行逼近,以此将单输入单输出线性系统直接广义预测控制方法推广到单输入单输出非线性系统。

最后,将此方法推广到多输入多输出线性系统和非线性系统。

(2)对参数未知单输入单输出线性系统提出一种径向基函数(RBF)网络的直接广义预测控制方法,该方法利用RBF网络来逼近控制增量表达式,直接设计出广义预测控制器,并基于广义误差估计值对控制器参数即网络权值和广义误差估计值中的未知向量进行自适应调整。

然后将单输入单输出线性系统RBF网络广义预测控制方法推广到单输入单输出非线性系统。

最后,将此方法推广到多输入多输出线性系统和非线性系统。

(3)对参数未知单输入单输出线性系统提出一种模糊自适应的直接广义预测控制方法,该方法利用模糊逻辑来逼近控制增量表达式,直接设计出广义预测控制器,并基于广义误差估计值对控制器参数权值和广义误差估计值中的未知向量进行自适应调整。

然后将单输入单输出线性系统模糊自适应广义预测控制方法推广到单输入单输出非线性系统。

最后,将此方法推广到多输入多输出线性系统和非线性系统。

(4)提出一种基于灰色模型的多变量广义预测控制算法,该算法所需估计的参数少,而且多步情况下无需求解Diophantine方程,从而使计算量明显减少,极大的提高了实时性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对象输出期望值可采用MAC中的参考轨迹形式
w(t ) y(t ) w(t j ) w(t j 1) (1 )c
其中 0 1
j 1, 2, , N
2. 滚动优化- 预测输出
N NU 2 2 2 min J (t ) E y (t j ) w(t j ) ( j ) u (t j 1) j 1 j N1 由预测模型可以写出未来预测的输出
Fj 系数的递推关系可用向量形式表示 f j 1 Af j
其中
f j 1 f j 1,0 fj f j ,0 f j 1,n
T T
f j ,n
1 a1 a a 1 2 A an 1 an an
(9)
其中
-遗忘因子,一般取0.95 1
K (t ) -权因子
P(t ) -正定的协方差阵,初始取 2 I, 为一足够大正数 ˆ(0) 0 初始
GPC在线控制总结
1. 根据最新的输入输出数据,用递推最小二乘法估计模型 参数,得到 A(q1 )和 B(q1 )
2. 根据得到的 A(q1 ),按递推公式(5)计算

ˆ GU f (6) y
2. 滚动优化 - 最优控制量
U (G G I ) G (W f )
T 1 T
(7)
其中W w(t 1) w(t N ) T
即时控制量为
u(t ) u(t 1) g T (W f )
T T 1 T 其中 g 为矩阵(G G I ) G 的第一行
ˆ (t 1| t ) G1u (t ) F1 y (t ) g1,0 u (t ) f1 (t ) y ˆ (t 2 | t ) G2 u (t 1) F2 y (t ) g 2,0 u (t 1) g 2,1u (t ) f 2 (t ) y ˆ (t N | t ) GN u (t N 1) FN y (t ) y g N ,0 u (t N 1) g N , N NU u (t NU 1) g N , N 1u (t ) f N (t ) g N , N NU u (t NU 1) g N , N 1u (t ) f N (t )
基于传递函数模型的广义预测控制算法
任伟 20121221406
王海 20121221409
前言
预测控制原理:
预测控制一般表现为采样控制算法,应包含预测的原理, 即利用内部模型的状态或输出预测,同时应用有限预测时域 的滚动计算思想和反馈及预测校正,最后采用对某个系统性 能指标的最优化计算以确定在一个控制时域内的最有控制序 列。
f j 1 Af j
f 0 1 0 0
1
T 1
E j 1 E j e j 1, j q E j f j ,0 q
(5)
2. 滚动优化
N NU 2 2 2 min J (t ) E y (t j ) w(t j ) ( j ) u (t j 1) j 1 j N1
1. 预测模型
为了突出方法原理,假设 C (q ) 1 。输入 u 对输出 y 之 间可用 z 传递函数给为:
1 1 z B ( z ) 1 G( z ) 1 A( z )
1
(2)
利用模型 (2) 导出 j 步之后输出 y ( t+j ) 的预测值。
1. 预测模型
丢番图(Diophantine)方程
其中
1 f1 (t ) G ( q ) g1,0 1 u (t ) F1 y (t ) 1 1 f 2 (t ) q G ( q ) q g 2,1 g 2,0 2 u (t ) F2 y (t )

1 ( N 1) f N (t ) q N 1 G ( q ) q g N , N 1 g N ,0 N u (t ) FN y (t )
0 E q j (q 1F F Ae 可得 AE j 1 j j 1, j ) 0 F q ( F Ae j 1 j j 1, j )
1. 预测模型 - 递推算法
的首项系数为1 由于 A
e j 1, j f j ,0 i 1e j 1, j f j ,i 1 a i 1 f j ,0 i 0, , n 1 f j 1,i f j ,i 1 a n 1e j 1, j a n 1 f j ,0 f j 1,n a
其中
E 数学期望 w 输出的期望值 N1 , N 2 优化时域的始值和终值 NU 控制时域
( j ) 控制加权系数,一般取常数
2. 滚动优化 - 输出期望值
N NU 2 2 2 min J (t ) E y (t j ) w(t j ) ( j ) u (t j 1) j 1 j N1
1
0推算法
E j系数的递推公式为:
E j 1 E j e j 1, j q1 E j f j ,0q1
)为 E j , Fj 的初值,则 取 E1 1, F1 q(1 A E j 1 , Fj可按下式计算 1
三要素:
预测模型、滚动优化、反馈校正
典型算法:
动态矩阵控制(DMC)、模型算法控制(MAC)、广义 预测控制(GPC)
基于传递函数模型的广义预测控制算法
1. 预测模型
C (q ) (t ) A(q ) y(t ) B(q )u (t 1)
1 1 1
(1)
式中
A(q 1 ) 1 a1q 1 an q n
1. 预测模型
yt (t j | t ) E j Bu(t j 1) Fj y(t )
求解一组丢番图方程(3)
计算量很大 必须知道 E j , Fj ,为此克拉克提出了一种E j , Fj 递推算法求解
1. 预测模型 -递推算法
1 E j A q j Fj 1 E j 1 A q ( j 1) Fj 1
(8)
3. 在线辨识与校正
GPC 只用一个模型,通过对其在线修正来给出较准确的预测
A(q1 ) y(t ) B(q1 )u(t 1) (t )
y(t ) A1 (q1 )y(t ) B(q1 )u(t 1) (t )
1 1 其中 A1 (q ) A(q ) 1
把模型参数与数据参数分别用向量形式描述
a1 an b0 bn
b
T
(t ) y (t 1) y (t n) u (t 1) u (t nb 1)
T
y(t ) T (t ) (t )
3. 在线辨识与校正
Gj
B(1 q j Fj ) A
1 因此,多项式 Gj (q ) 中前 j 项的系数正是装置阶跃响应前 j 项的采样值,记作 g1, , g j 1 Gj j(( q )) g j ,0 g j ,1q1 G q
则有 g j ,i gi 1 (i j )
(t j ),, (t 1) 未知
根据已知输入输出信息,及未来的输入值,可以预测装置 未来的输出,未知可以省略,即GPC的预测模型
yt (t j | t ) E j Bu(t j 1) Fj y(t )
(4)
1. 预测模型
记 Gj E j B ,结合式(2)和(3)可得
两式相减可得 A(E j 1 E j ) q j (Fj 1 Fj ) 0
1 a 1q 1 a n 1q ( n 1) 1 (a1 1)q 1 (an an 1 )q n an q ( n 1) 记 A e q j E j 1 E j E j 1, j
T
E (q 1 ), F (q 1 )
3. 根据 B(q1 ), E(q1 ), F (q1 ) ,计算 G(q 1 ) 的元素 gi ,并计算 f 4. 重新计算出 g ,并计算控制作用 u(t) ,将其作用于控制 对象
谢 谢!
1 E j (q ) A q Fj (q )
1
j
1
(3)
1 式中 E j , Fj 是由 A(q ) 和预测长度 j 唯一确定的多项式
E j (q 1 ) e j ,0 e j ,1q 1 e j , j 1q ( j 1) Fj (q 1 ) f j ,0 f j ,1q 1 e j ,n q n
利用丢番图方程(3),可得 t + j 时刻的输出量
y(t j) E j Bu(t j 1) Fj y(t ) E j (t j )
1. 预测模型
y(t j) E j Bu(t j 1) Fj y(t ) E j (t j )
u(t j 1), u(t j 2), y(t ), y(t 1),
B(q 1 ) b0 b1q 1 bnb q nb C (q 1 ) c0 c1q 1 cnc q nc
1 q 其中 是后移算子,表示后退采样周期的相应量;
1 q1 为差分算子
(t ) 是一个不相关的随机序列,表示一类随机噪声的影响
1. 预测模型
j E q 对公式(1),即CARIMA模型,两端乘以 j 可得:
C (q 1 ) (t ) A(q ) y(t ) B(q )u (t 1)
1 1
相关文档
最新文档