天津大学-研究生-最优化方法复习题.docx

合集下载

最优化方法复习题66882.docx

最优化方法复习题66882.docx

《最优化方法》复习题第一章概述(包括凸规划)一、判断与填空题ar§ max /W =玄生min【―/(兀)】・71xeR n xeR n2max |/(x): x e D o }= - min [f(x): x e D Q R H\ x3设f : D u RJ R・若T wR”,对于一切xeR n恒有/(Z)</(x),则称T为最优化问题m in fM的全局最优解.xxeD4设f •・D U RJ R.若Z eD ,存在F的某邻域Ng,使得对一切恒有/U*)</(兀),则称T为最优化问题min /(兀)的严格局部最xeD优解.X5给定一个最优化问题,那么它的最优值是一个定值.V6非空集合D匸/?"为凸集当且仅当D屮任意两点连线段上任一点属于D. V 7非空集合D o 7?"为凸集当J1仅当D中任意有限个点的凸组合仍属于D. V 8任意两个凸集的并集为凸集.x9 函数f : D匸R” T R为凸集£>上的凸函数当且仅当—/为D上的凹函数.V1()设f : D u R” T R为凸集D上的可微凸函数,Z G Z).则对V XG D,有/(x)-/(x*)<V/(x*/(x-x*). x11若c(兀)是凹函数,则D = {xeR n\ c(x) > 0}是凸集。

V12设{*}为由求解min的算法A产生的迭代序列,假设算法A为下降算法,XG D则对\^^{0,1,2,・・・},恒有____ /(x A.+1)< f(x k) ____________ :13算法迭代时的终止准则(写出三种): ____________________________ o 14凸规划的全体极小点组成的集合是凸集。

V15函数f : D u R“ T R在点('沿着迭代方向d* eR n \ {()}进行精确一维线搜索的步长匕.,则其搜索公式为_____________________________ .16函数f •. D匚R“ T R在点*•沿着迭代方向d k e/?z, \{0}进行梢确一•维线搜索的步长匕,则V/(x A+a k d k Yd k = ___________ 0 .17设d k eR n\{0}为点/ w D匸R“处关于区域D的一个下降方向,则对于Va >0, 3«G(0,a)使得x二、简述题1写出Wolfe-Powell非精确一维线性搜索的公式。

天津大学最优化历年试题(精品资料).doc

天津大学最优化历年试题(精品资料).doc

【最新整理,下载后即可编辑】2003—2008《工程与科学计算》历届试题类型 1. 直解法例 1. 用列主元素Gauss 消去解下列线性方程组(结果保留5位小数)⎪⎩⎪⎨⎧=++=++=++0000.11000.12100.13310.18338.00000.10000.10000.16867.09000.08100.07290.0321321321x x x x x x x x x例2. 设线性方程组b Ax =,其中 11231112341113451A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦求)(A Cond ∞,并分析线性方程组是否病态 ? 2.迭代法例1. 设线性方程组b Ax =为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----221221122321x x x ααα , 0≠α写出求解线性方程组的Jacobi 迭代格式,并确定当α取何值时Jacobi 迭代格式收敛.例2. 写出求解线性方程组b Ax =的Seidel 迭代格式,并判断所写格式的收敛性,其中b Ax =为⎪⎩⎪⎨⎧=++-=+=-522826233213231x x xx x x x3.插值例 1. 已知,12144,11121,10100===(1)试用二次插值多项式计算115的近似值(数据保留至小数点后第5位)(2)估计所得结果的截断误差(数据保留至小数点后第5位) 例 2. 由下列插值条件4. Runge —Kutta 格式例 写出标准Kutta Runge -方法解初值问题⎩⎨⎧==+-=1)0(,1)0(sin 2'2'''y y xy xy y 的计算格式5. 代数精度例 1. 数值求积公式形如)1()0()1()0()()(321010f A f A f A f A x S dx x xf '+'++=≈⎰试确定其中参数,,,,4321A A A A 使其代数精度尽量高, 并确定代数精度.例 2. 验证数值求积公式20120()(1(1)(1f x dx A f A f A f ≈+++⎰是Gauss 型求积公式.6.Romberg 方法例 对积分⎰+1021dx x ,用Romberg 方法计算积分的近似值,误差不超过510-并将结果填入下表(结果保留至小数点后第五位).7(1)设)(x ϕ为],[b a 上关于权函数)(x ρ的n 次正交多项式,以)(x ϕ的零点为节点建立Lagrange 插值基函数)}({x l i , 证明:⎰⎰==ba ba i i ni dx x l x dx x l x ,,2,1,)]()[()()(2 ρρ证明: 设n 次正交多项式()x ϕ的零点为12,,n x x x ,则以这n 个零点为节点建立的Lagrange 插值基函数{()},1,2,i l x i n =是n-1次多项式,[]2()i l x 是2n-2次多项式. 故当()f x 取()i l x 和[]2()i l x 时Gauss 型求积公式1()()()nb k k ak x f x dx A f x ρ=≈∑⎰等号成立, 即 1()()()nb i k i k iak x l x dx A l x A ρ===∑⎰221()()()nbi k i k ia k x l x dx A l x A ρ===∑⎰则有 ⎰⎰==b abai i ni dx x l x dx x l x ,,2,1,)]()[()()(2 ρρ(2)对线性方程组b Ax =,若A 是n 阶非奇异阵,0≠b ,*x 是b Ax =的精确解,x 是b Ax =的近似解。

《最优化方法》课程复习考试.doc

《最优化方法》课程复习考试.doc

《最优化方法》复习提要 第一章最优化问题与数学预备知识§1.1模型无约束最优化问题 min /(x ), x =(旺,兀2,…心)'w R"・A约束最优化问题疋简(兀)》0,心1,2,・・・,加也(兀)=0,丿=1,2,・・・,") min /(x );s.t. gQ )nO,i = l,2,…,加,hj (x ) = 0,j = \,2,・・・,l ・其中.f (X )称为目标函数,西,兀2,…,暫称为决策变量,S 称为可行域,gQ ) no (心1,2,…,加),勺(兀) = 0。

= 1,2,…丿)称为约束条件. §1. 2多元函数的梯度、Hesse 矩阵及Tayloi •公式定义设f:R“TR,J^R“・如果%维向量〃,VAre R n,有+ Ax) -f(x) = p T\x + 0(||Ax||)・则称/(x )在点元处町微,并称df (x ) = p T\x 为/(x )在点元处的微分.如果/(X )在点元处对丁」=(兀“2,・・・,£)丁的各分量的偏导数。

/(元)d x i都存在,则称/(兀)在点元处一阶可导,并称向量为/(兀)在点元处一阶导数或梯度.定理1设f :R n^R,xeR n・如果/(兀)在点元处可微,则/(兀)在点元处梯度V/(x)存在,并且有#(x) = W)7'Ar .定义 设f:R"TR,J^R“・d 是给定的n 维非零向量,e = 2・如杲 dmin /(兀);即 vS.t. X G S.V/(x)=(df(x)T。

/(可。

/(元)Um /a + 2e )-V (x )久TO2存在,则称此极限为/(x )在点元沿方向d 的方向导数,记作冬学.da定理2设f :R n^R,xeR n.如果/(兀)在点元处可微,则/(兀)在点元处沿任何非零方向d 的方向导数存在,且= VA 元)。

,其中丘=厶~・daa定义 设/(兀)是/?"上的连续函数,xeR n. d 是〃维非零向量.如果3^>0,使得V2w (O0),有/(x + 2J )< (>) /(x ).则称d 为f (兀)在点元处的下降(上 升)方向.定理3设f:R n^R.xeR n,且/(兀)在点元处可微,如果日非零向量de R n9 使得Vf (x )Td < (>) 0,则d 是/(兀)在点元处的下降(上升)方向.定义 设f:R”TR,HeR”・如果/(兀)在点元处对丁自变量x = (x p x 2,---,x /J )7'的 各分量的二阶偏导数£単匕丿・=1,2,…,)都存在,则称函数/(兀)在点元处二阶 U Xj 可导,并称矩阵为/(x )在点元处的二阶导数矩阵或Hesse 矩阵.定义 设h:R" 记/1(兀)=(肉(兀),爲(兀),・・・,饥(兀))7',如果勺• (x ) (i = 1,2,…,加)在点元处对于自变量x =(兀],吃,…£)丁的各分量的偏导数d 2x } 扌/(元) dx }dx 2 巧(元) d 2f(x) 3 x 2d• d 2x 2• d x^d x n L n• •■d 2f(x) ■97(^) • •d 2f(x)d x n d X] d x n d x 2d 2f(x)V 2/(x)丿号⑴(i = 1,2,…,加;J = 1,2,…加 dx f都存在,则称向量函数加对在点元处是一阶可导的,并且称矩阵为/?(%)在点x 处的一阶导数矩阵或Jacobi 矩阵,例2 设aw R",xw R",bw R ,求f (x ) = a Tx-{-h 在任意点兀处的梯度和Hesse 矩阵.解 设0 =(绚卫2,・・・,%)/,兀=(旺,兀2,・・・,£)‘,则/(兀)=工绞母+b ,k=\因。

硕士研究生最优化复习题

硕士研究生最优化复习题

硕士研究生最优化复习题硕士研究生最优化复习题1.线性规划问题CX z =min ,0,≥=X b AX 其可行域为R ,最优目标函数值为z ,若分别发生下列情形之一时,其新的可行域为R *,新的最优目标函数值为z *,试分别写出下列三个问题中R 与R *及z 与z *之间的关系:(1)增添一个新的约束条件。

(2)减少一个原有的约束条件。

(3)目标函数变为λCXz =min ,同时约束条件方程变为1,0,>≥=λλX b AX 。

2.线性规划问题CX z =min ,0,≥=X b AX ,设X (0)为问题的最优解,若目标函数中用C *代替C 后,问题的最优解变为X *,求证:(C *-C )(X *-X (0))≤03.若线性规划问题min z =CX ,AX =b, X ≥0具有最优解,试应用对偶理论证明下述线性规划问题min z =CX ,AX =d, X ≥0不可能具有无界解,d 可以是取任意值的向量。

4.试将图所示的求v 1到v 7点的最短路问题归结为求整数规划问题(建立整数规划模型),具体说明模型中变量、目标函数和约束条件的含义。

v 2 1 v 539 2 2v 1 5 v 4 4 v 7 8 38 4v 3 v 65.已知线性规划问题min Z=2x 1-x 2 +2x 3≥≤≤-+=++无约束 3 213 213 21x ,0x 0,x 6x x x - 4x x x -k 其最优解为x 1 = -5, x 2 =0, x 3 =-1(1)求k 的值。

(2)写出并求其对偶问题的最优解。

6.某公司要建立一线性规划模型,此模型受约束条件1或约束条件2约束。

如果满足约束条件1,必须同时满足另外p 1个约束条件中的k 1个(k 1 < p 1)约束;如果满足约束条件2,必须同时满足另外p 2个约束条件中的k 2个(k 2 < p 2)约束;要求建立整数规划的约束条件,满足上述要求。

最优化方法习题1

最优化方法习题1

《最优化方法》期末考试练习题声明:仅供复习时参考。

实际考试题型类似,题量小于本练习。

一. 选择题:略第一题主要考察基本概念、定理,算法的基本思想和matlab 命令。

二.简答题1. 写出线性规划问题;0, ,94 3 ,5 32 4 s.t. ,823 max 21321321321≥≥-+-≥+-+-x x x x x x x x x x x 的对偶规划。

2.如果求解某整数规划问题的松弛问题得到如下的最优单纯形表:求以1x ,2x 为源行生成的割平面方程。

3.在区间[0,3]上用黄金分割法求函数12)(3+-=t t t ϕ的极小点,只要求求出 初始的迭代点和保留区间及此时的近似最优解。

4. 用tx ex y 21-=拟合下列数据1.0,24.0,11,07.2,1=======-=y t y t y t y t写出非线性最小二乘问题三.计算题1.分别用最速下降方法和修正的牛顿法求解无约束问题 22214)(min x x x f +=。

取初始点()()Tx2,21=,.1.0=ε2.讨论约束极值问题⎪⎪⎩⎪⎪⎨⎧≥≥≤-≤++--+=0004..866)(min212121212221x x x x x x t s x x x x x f 的Kuhn-Tucker 点。

3.用外点法(外部惩罚函数法)求解2s.t.)3()1()(min 212221≤-+-+-=x x x x x f4.用内点法求解非线性规划03)( 03)( s.t. 296)(min 22112121≥-=≥-=++-=x x g x x g x x x x f5.用乘子法求解1s.t.6121)(min 212221=++=x x x x x f 6.用表格单纯形法求解线性规划⎪⎪⎩⎪⎪⎨⎧≥≥-≥-≤++++=0,,34623max 3213231321321x x x x x x x x x x x x x Z并根据最优单纯形表格写出该线性规划的最优基和最优基的逆。

研究生《最优化理论与方法》试题

研究生《最优化理论与方法》试题

理学院2010级研究生《最优化理论与方法》试题
1. (15分)设函数4:f R R →定义为
()
()()()()22441234231410510210f x x x x x x x x x =++-+-+- 证明:()*0
000T x =是f 的驻点(稳定点),并且*x 是f 在4R 上的严格全局
极小点。

2. (15分)叙述并证明满足wolfe 线搜索条件的下降算法的全局收敛性。

(提示:利用Zoutendijk 条件)
3. (20分)叙述修正的(Modified)Cholesky 分解算法。

用Cholesky 分解强迫
201
1211103231A -⎡⎤⎢⎥=+⎢
⎥⎢⎥⎣⎦正定,即令A A E =+正定,其中E 为修正矩阵。

4. (15分)设()f x =x b Ax x T T -,其中213,123A b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭
(1) 证明010d ⎛⎫= ⎪⎝⎭与112d -⎛⎫= ⎪⎝⎭
关于A 共轭 (2) ()00
0T x =,以0d 和1d 为搜索方向,用精确线搜索求f 的极小点 5. (15分)叙述并证明牛顿法及其二次收敛性
6. (20分)写出拟牛顿法的一般步骤,叙述几种常用的拟牛顿校正公式,包括(SR1,DFP ,BFGS ,Broyden 族,Huang 族)。

天津大学《最优化方法》复习题

天津大学《最优化方法》复习题

天津大学《最优化方法》复习题(含答案)第一章 概述(包括凸规划)一、 判断与填空题1)].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(m in :)(m ax n n R D x x f R D x x f ⊆∈-=⊆∈ ⨯3 设.:R R D f n →⊆ 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解、 ⨯4 设.:R R D f n →⊆ 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f Dx ∈的严格局部最优解、 ⨯5 给定一个最优化问题,那么它的最优值就是一个定值、 √6 非空集合n R D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D 、 √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D 、 √ 8 任意两个凸集的并集为凸集、 ⨯9 函数R R D f n →⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数、 √10 设R R D f n →⊆:为凸集D 上的可微凸函数,D x ∈*、 则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T ⨯11 若)(x c 就是凹函数,则}0)( {≥∈=x c R x D n 就是凸集。

√12 设{}k x 为由求解)(min x f Dx ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{}Λ,2,1,0∈∀k ,恒有 )()(1k k x f x f ≤+ 、13 算法迭代时的终止准则(写出三种):_____________________________________。

14 凸规划的全体极小点组成的集合就是凸集。

《最优化方法》复习题.docx

《最优化方法》复习题.docx

《最优化方法》复习题一、 简述题1、怎样判断一个函数是否为凸函数.(例如:判断函数f(x) =昇+ 2兀內+ 2近一 10州+ 5兀2是否为凸函数)2、 写出几种迭代的收敛条件.3、 熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法).见书本61页(利用单纯形表求解);69页例题(利用大M 法求解、二阶段法求解); 4、 简述牛顿法和拟牛顿法的优缺点.简述共辘梯度法的基木思想.写岀Goldstein> Wolfe 非精确一维线性搜索的公式。

5、叙述常用优化算法的迭代公式.心=务+吕—%),化-知1仏二务+召一色)(3) Newton —维搜索法的迭代公式:x k+i = x k -G~'g k ・ (4) 推导最速下降法用于问题min/(x) = —++ c 的迭代公式:耳+1 二无一-VfgS k G k gx k(5) Newton 法的迭代公式:x k+] = x k -[V 2/(^)]_l V/*(x A )・ (6) 共轨方向法用于问题min/(x)=丄x rQx+b 1x + c 的迭代公式:2忑+1 =J二、计算题双折线法练习题 课本135页 例3.9.1FR 共辘梯度法例题:课本150页 例4.3.5(1) 0.618法的迭代公式:A- =ak +(1-厂)(勺一务),(2) Fibonacci 法的迭代公式: 伙= 1,2,…,一1)二次规划有效集:课本213页例6.3.2,所有留过的课后习题.三、练习题:1、 设A G R ,iXn是对称矩阵,bwR”,cwR,求/(%) =丄*心+戻兀+ c 在任意点x 处 的梯度和Hesse 矩阵.解 V/*(x) = Ar + /?, V 2/(x) = A ・2、 设0(/) = /(兀 + 力),其屮/:/?" T R 二阶可导,XG R\de R\te R ,试求0"(/)・解 0(/) = W(x + /d) 丁4,矿⑴=dF f(x~Hd)d .3、 证明:凸规划min f(x)的任意局部最优解必是全局最优解.xeS证明 用反证法.设住S 为凸规划问题min /(x)的局部最优解,即存在丘的某xeS个5邻域N s (x),使f(x)<f(x)yxeN 6(x)C\S ・若元不是全局最优解,则存在花S,使/(i) < /(x)・由于/(兀)为S 上的凸函数,因此VA G (0,1),有/(Ax + (1-2)x) < 2/(x) + (1-2)/(x) < f(x)・当2充分接近1时,可使2元+(1 — 2)农 皿(元)「IS,于是/(x)</(2x + (l-/i)x), 矛盾.从而元是全局最优解.min f(x) = 2x t -x 2 +x 3; s.t. 3兀]+ x 2 + x 3 < 60,x l - 2X 2 + 2X 3 <10,%! + x 2 - x 3 < 20, (1)用单纯形法求解该线性规划问题;(2)写出线性规划的对偶问题;解 (1)引进变量兀,兀5,兀6,将给定的线性规划问题化为标准形式:min /(%) = 2x t -x 2 +x 3; s.t. 3x ( + 兀 + 耳 + % = 60,%j - 2X 2 + 2X 3 + 冯=10,所给问题的最优解为x = (0,20,0)r ,最优值为/ = -20・4、已知线性规划:(2)所给问题的对偶问题为:max g(y) = -60^-10^ - 20%;皿_3”_旳_儿52,< _必+2旳_儿S_l,一开_2旳 + %<1,儿力*3»°・5、用0.618法求解min 0(f) = (f-3尸,要求缩短后的区间长度不超过0.2,初始区间取[0,10]・解第一次迭代:取y [0,10],£ = 0.2.确定最初试探点人,“分别为入=^+0.382(^-^,) = 3.82, M =坷+0.618(勺一马)=6・18 .求目标函数值:°(人)=(3.82— 3)2 =0.67, °(“)= (6.18 — 3)2 =10.11.比较目标函数值:0(人)< 0(")・比较 //| —6f| = 6.18 — 0 > 0.2 = E ・第二次迭代:a2 = a x = 0,Z?2= “| = 6.18,/ =人=3.82,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《最优化方法》复习题第一章概述(包括凸规划)一、判断与填空题1ar§ max /(x) = arg min【一/(兀)]・7xeR n xeR n2max |/(x): x G D o /?n }= - min {/(x): x e £> o /?n} x3设f . D j RJ R・若x* G/?\对于一切"R”恒有兀),贝称X为最优化问题min /W的全局最优解.xxeD4设f : D匸RJ R.若x* G D,存在F的某邻域N3 ,使得对一切xwNg恒有/(x*)< /(X),则称T为最优化问题min/E的严格局部最xeD优解.X5给定一个最优化问题,那么它的最优值是一个定值.V6非空集合D o /?"为凸集当且仅当D中任意两点连线段上任一点属于D. V7非空集合D c /?"为凸集当且仅当D中任意有限个点的凸组合仍属于D. V 8任意两个凸集的并集为凸集.x9 函数f : D匚R n T /?为凸集D上的凸函数当且仅当—/为D上的凹函数.V10设f : D u R” T R为凸集D上的可微凸函数,Z eD .则対Vx G D ,有/⑴-/(%*)< v/*U*)r (x - * )• x11若c(x)是凹函数,则D = {xeR n\ c(x) > 0}是凸集。

V12设{/}为由求解min/U)的算法A产生的迭代序列,假设算法A为下降算法,xeD 则对\/k e {0,1, 2, •••},恒有_______ (林) ________________________ .13算法迭代时的终止准则(写击三种): _______________________________________ 0 14凸规划的全体极小点组成的集合是凸集。

V15函数/ : P o R n T/?在点/沿着迭代方向d" \{()}进行精确一维线搜索的步长则其搜索公式为______________________________________________ .16函数f・.D匸R” T/?在点十•沿着迭代方向d* wR" \{0}进行精确一维线搜索的步长匕,则Vf(x k ^a k d k Yd k = _________ 0 _____________ .17设d k eR n\{0}为点x k eD^R n处关于区域D的一个下降方向,则对于Va >0, 3CTG(0,a)使得x' +ad k eD. x二、简述题1写出Wolfc-Powcll非粘确一维线性搜索的公式。

2怎样判断一个函数是否为凸函数.(例如:判断函数/(%) =时+ 2x1 x2 + 2分-10坷+ 5兀2是否为凸函数)三、证明题1证明一个优化问题是否为凸规划.(例如min/(x) = —x I Gx + c1x-\-h2判断M Ax = b(其中G是正定矩阵)是凸规划.x>02熟练掌握凸规划的性质及具证明.第二章线性规划考虑线性规划问题:(LP)min c l xs.t. Ax = b, x > 0,其中,ceR\ AwR": b G R m为给定的数据,>rankA = m, m<n.一、判断与选择题1 (LP)的基解个数是有限的.V2若(LP)有最优解,则它一定有基可行解为最优解.V3(LP)的解集是凸的.V4对于标准型的(LP),设{*'}由单纯形算法产生,则对Rw{0,l,2,・・・},有cW >c“. X5若/为(LP)的最优解,)「为(DP)的可行解,则c T x>b T y\ V6设是线性规划(LP)对应的基B = …几)的基可行解,与基变量州,…竝对应的规范式屮,若存在qvO,则线性规划(LP)没有最优解。

X7求解线性规划(LP)的初始基可行解的方法:_______________________ .8对于线性规划(LP),每次迭代都会使冃标函数值下降.X二、简述题1将以下线性规划问题化为标准型:max /(x)=兀]一2X2 + 3x3 s.t. X]+ 兀2 +兀3 - 6,%! + 2兀2 + 4兀3 ' 12,- x2 + x3 > 2,x2 > 0, x3 > 0.2写出以下线性规划的对偶线性规划: max /(x) = 3x)+ lx2 +x3 + 4x4s.t. 2x l + 4X2 + 3 兀3 + 兀4 = 6,一2x{ + 4兀2 + 3X3+X4 > 3,兀],£,兀3,X4 - 0・三、计算题熟练掌握利用单纯形表求解线性规划问题的方法(包括大M法及二阶段法). 见书本:例 2.5.1例261例 2.6.2(利用单纯形表求解);(利用大M法求解);(利用二阶段法求解).四、证明题熟练掌握对偶理论(弱对偶理论、强对偶理论以及互补松弛条件)及利用对偶理论证明相关结论。

-、判断与选择题1设G G R flXfl为正定矩阵,贝IJ关于G共轨的任意” + 1向量必线性相关.J 2在牛顿法屮,每次的迭代方向都是下降方向.X3经典Newton法在相继两次迭代中的迭代方向是正交的.X4PRP共轨梯度法与BFGS算法都属于Broyden族拟Newton算法.X5用DFP算法求解正定二次函数的无约束极小化问题,则算法中产生的迭代方向一定线性无关.V6 FR共辘梯度法、PRP共轨梯度法、DFP算法、及BFGS算法均具有二次收敛性.X7共轨梯度法、共轨方向法、DFP算法以及BFGS算法都具有二次终止性.V 8函数f : RJ R在*'处的最速下降方向为 ____________________________ .9求解min /W的经典Newton法在十处的迭代方向为p k = _________________ .xeR n10若/(兀)在T的邻域内具有一阶连续的偏导数且V/(/) = 0,则T为的局部极小点.x11若.门兀)在T的某邻域内具有二阶连续的偏导数且/为几对的严格局部极小点,则G* 正定.X12求解min/")的最速下降法在十处的迭代方向为p k = _________________ .xeR n13求解mi n /(x)的阻尼Newton法在*处的迭代方向为p k = _________________ .xeR n14用牛顿法求解min丄x T Gx + b r x (bwR“, GeR HXn)时,至多迭代一次xwR” 2可达其极小点.X15牛顿法具有二阶收敛性.V16二次函数的共轨方向法具有二次终止性.X17共饥梯度法的迭代方向为: ______________________ .二、证明题1设f : R" I R为一阶连续可微的凸函数,x* G R n且巧(疋)=0,则F为min /(兀)的全局极小点.xeR n2给定bwR”和正定矩阵Ge耐”.如果x* R n为求解in fM =丄的迭代点,d k e/?n\{o}为其迭代方向,且xeR n2ma k e[0, + oo)为由精确一维搜索所的步长,则a k=~Vf^)T f・3试证:Newton法求解止定二次函数时至多一次迭代可达其极小点.四、简述题1简述牛顿法或者阻尼牛顿法的优缺点.2简述共轨梯度法的基木思想.五、计算题1利用最优性条件求解无约束最优化问题. 例如:求解min f(x) = —xf + 丄卅-x{x2 -2x l2用FR共轨梯度法无约束最优化问题. 见书本:例3.4.1.3用PRP共饥梯度法无约束最优化问题.见书本:例3.4.1.3 ]例如:min f(x) = —x^ + —x;-x l x2一2兀]其中兀。

=(0,0)r,e = 0.01考虑约束最优化问题:(NLP)min /(x)s.t. c t(x) = 0, i e E ={1, 2, •••, /},c. (%) > 0, z G/ = {/ +1, / + 2, • • •, m},其中,几q(心1,2,…,/n):R" T R一、判断与选择题1外罚函数法、内罚函数法、及乘子法均属于SUMT. X2使用外罚函数法和内罚函数法求解(NLP)时,得到的近似最优解往往不是(NLP)的可行解.X3在求解(NLP)的外罚函数法中,所解无约束问题的目标函数为•4在(NLP)中/=0,则在求解该问题的内罚函数法中,常使用的罚函数为•5在(NLP) +/ = 0,则在求解该问题的乘子法屮,乘子的迭代公式为(血 + ])( = __________________ ,对沁{1, •••,〃}•6在(NLP)中m = I,则在求解该问题的乘了法中,增广的Lagrange函数为: _________________________________7对于(NLP)的KT条件为:______________二、计算题1利用最优性条件(KT条件)求解约束最优化问题.2用外罚函数法求解约束最优化问题.见书本:例4.2.1;例4.2.2.3用内罚函数法求解约束最优化问题.见书本:例4.2.3.4用乘子法求解约束最优化问题.见书本:例4.2.7;例 4.2.8.三、简述题1简述SUMT外点法的优缺点.2简述SUMT内点法的优缺点.四、证明题利用最优性条件证明相关问题.例如:0设为正定矩阵,A为列满秩矩阵•试求规划(P) min /(x) = —X T Q X +c1 x + as.t. A7 x = b的最优解,并证明解是唯一的.一、判断与选择题1求解多目标最优化问题的评价函数法包括.2通过使用评价函数,多忖标最优化问题能够转化为单忖标最优化问题.V3设F : D u RJ R'",则F在D上的一般多目标最优化问题的数学形式为_________________________________ •4对于规划V-m i n F(x) = (/,(%),...,/w(x))r,设T wD,若不存在兀XE D Q R11使得F(x) < F(x*)MF(x) H F(x*),则T为该最优化问题的有效解.V 5一般多冃标最优化问题的绝对最优解必是有效解.V6对-T规划V-minF(x)=(/心),…,九⑴V,设叱为相应于xwDuR"f-t (21, 2,…皿)的权系数,则求解以上问题的线性加权和法屮所求解优化的目标函数为__________________________________ .7利用求解v - min F(Q =(/;⑴,…,九⑴卩的线性加权和法所得到的xeD^R0解,或者为原问题的有效解,或者为原问题的弱有效解.V二、简述题1简单证明题☆ 绝对最优解、有效解、及弱有效解Z间的关系.•第5.2节中几个主要结论的证明.2简单叙述题★简述求解一般多日标规划的评价函数法的基木思想.•简述求解一般多冃标规划的线性加权和法的基本思想.★简述求解一般多目标规划的理想点法的基本思想.• 简述在求解一般多目标规划的评价函数法屮,确定权系数方法的基本思想.。

相关文档
最新文档