运筹学与最优化方法建模
应用数学中的最优化理论和运筹学

应用数学中的最优化理论和运筹学随着计算机技术和数学理论的不断发展,最优化理论和运筹学在应用数学中起着日益重要的作用。
这两个领域不仅在生产、管理和决策等方面发挥着不可替代的作用,也在社会发展中起到了巨大的作用。
本文将探讨最优化理论和运筹学在应用数学中的应用和价值。
一、最优化理论在应用数学中的应用最优化理论指的是在特定条件下寻找最优解的一种数学方法。
它通过建立数学模型来描述具体问题,然后运用数学工具进行求解,得出最优解。
最优化理论广泛应用于经济学、物理学、工程学、金融学、环境科学和人工智能等领域。
1.经济学在经济学领域,最优化理论被广泛应用于计算机辅助决策和计算机辅助规划。
比如在生产计划中通过最优化方法计算出最少的成本和最大的利润,可以帮助经理人员做出更加精确的决策。
此外,最优化理论在资源分配、投资决策和货币政策方面也有着广泛的运用。
2.物理学在物理学领域,最优化理论通常被用于分析非线性问题和优化控制。
比如,在飞行器设计中,需要利用最优化理论来计算飞行速度和高度,以及航空公司的利润最大化。
此外,最优化理论还在能源领域、物理实验和机器人控制中有广泛的应用。
3.工程学在工程学领域,最优化理论被广泛应用于设计和优化流程。
比如在生产线上通过最优化方法分析时间和成本,可以帮助减少生产成本和提高生产效率。
此外,在建筑设计中也有着广泛的应用。
二、运筹学在应用数学中的应用运筹学是指应用数学、统计学和计算机来解决最大化或最小化问题的方法。
它主要研究决策过程和资源分配问题,通过建立数学模型来描述实际问题,然后运用数学工具进行求解,得出最优解。
运筹学在经济学、管理学、计算机科学、制造业和物流管理等领域中起着非常重要的作用。
1.经济学在经济学中,运筹学主要应用于小型企业和中型企业的管理问题。
比如在企业的生产和运输中通过运筹学的方法来优化生产成本和配送成本,可以帮助企业节约时间和成本,提高效率。
2.管理学在管理学领域,运筹学主要应用于制定决策模型来解决管理问题。
运筹学中的优化理论和决策分析

运筹学中的优化理论和决策分析运筹学是一种科学理论和方法论,主要研究如何制定最优决策,以实现效益最大化。
它主要通过数学模型和计算机仿真等手段,对复杂系统进行优化分析和决策支持,以达到最优化的结果。
优化理论作为运筹学的核心竞争力,是运用数学、工程等学科的方法来解决最优化问题的理论体系,旨在实现最佳决策的目的。
本文将围绕运筹学中的优化理论和决策分析展开讨论。
一、优化理论优化理论是指通过数学分析和计算机仿真等手段,对具有一定复杂性的系统进行分析,从而实现最优化的结果。
优化问题是指在一定的限制条件下,寻求某种指标或目标函数的最优值。
如何处理约束条件和目标函数之间的相互制约关系,是优化问题研究中的核心难题。
因此,优化理论主要通过建立数学模型和算法设计等手段,实现最优决策的目标。
1. 建立数学模型建立数学模型是优化理论的核心。
数学模型通常包括决策变量、目标函数、约束条件等要素。
决策变量是指决策者的选择变量,而目标函数则是指要优化的指标或目标。
约束条件则是指决策制定过程中需要考虑的各类限制因素。
通过将系统建模,可以得到系统的优化方案,并为制定最优决策提供途径。
2. 算法设计算法设计是实现最优化的核心。
常见的算法包括线性规划、非线性规划、动态规划、整数规划等。
不同种类的算法在面对不同的优化问题时,具有各自的优缺点。
因此,在实际应用中,需要根据优化问题特征选择相应的算法进行求解。
3. 求解方法求解方法是指实现算法的具体操作过程,包括求解器、迭代算法、搜索算法等。
求解方法的选择与算法种类密切相关。
通过对数学模型建立算法,并运用求解方法进行求解,可以在有限的时间内得到最优化结果。
二、决策分析决策分析是指对决策问题进行全面、系统地分析,从而为制定最优决策提供支持。
决策分析主要涵盖了决策建模、风险分析、方案评估和数据挖掘四个方面。
1. 决策建模决策建模是指对问题进行抽象、形式化的过程,将现实问题映射到数学模型中进行分析和求解。
运筹学中的优化算法与算法设计

运筹学中的优化算法与算法设计运筹学是一门研究如何有效地利用有限资源来实现最优决策的学科。
在运筹学中,优化算法是一种关键工具,它可以帮助我们找到最佳的解决方案。
本文将重点介绍运筹学中的优化算法与算法设计。
优化算法是一种数学方法,通过计算机模拟和运算,解决最优化问题。
最优化问题通常包括了一个待优化的目标函数和一组约束条件。
优化算法的目标就是找到目标函数的最小值或最大值,同时满足约束条件。
在运筹学中,优化算法的应用非常广泛,例如在生产调度、资源分配、路径规划等领域都有重要的作用。
优化算法主要分为数学规划和启发式算法两大类。
数学规划是一种基于数学模型的优化方法,其核心思想是将问题转化为数学形式,通过数学方法求解最优解。
常见的数学规划方法包括线性规划、整数规划、非线性规划等。
这些方法在理论上非常严谨,能够保证找到全局最优解,但在实际问题中往往由于问题的规模较大而难以求解。
相比之下,启发式算法是一种更加灵活和高效的优化方法,它通过模拟生物进化、物理过程或者人工智能等方法,尝试寻找最优解。
启发式算法通常不保证找到全局最优解,但在解决大规模问题时具有很好的效果。
常见的启发式算法包括遗传算法、模拟退火算法、蚁群算法、粒子群算法等。
算法设计是优化算法中至关重要的一环,良好的算法设计可以显著提高算法的效率和性能。
在算法设计中,需要考虑如何选择合适的搜索策略、参数设置、停止准则等关键因素。
合理设计算法的复杂度可以有效减少计算时间,提高算法的适用性和可靠性。
总的来说,优化算法在运筹学中扮演着重要角色,它们为我们解决实际问题提供了有力的工具和方法。
无论是数学规划还是启发式算法,都有着各自的优势和不足,我们需要根据具体问题的特点选择合适的算法来解决。
在未来,随着信息技术的不断发展和算法设计的进步,优化算法将在运筹学中发挥更加重要的作用。
运筹学分配问题建模

运筹学分配问题建模
运筹学分配问题是指在特定的条件下,如何合理地分配资源以达到最优化的解决方案的问题。
这类问题可以用数学模型来描述和解决。
在运筹学中,分配问题通常涉及到有限的资源和不同的需求或约束条件。
在建模时,可以使用线性规划、整数规划、动态规划或网络流等方法来求解。
以一个简单的分配问题为例,假设有三个项目(A、B、C)需要分配有限的资源(如人力、时间或资金)。
每个项目会产生不同的效益(如收益或效率),同时存在一些约束条件(如人力资源的限制或时间的限制)。
我们的目标是在满足约束条件下,最大化总体效益。
为了建模这个问题,我们可以定义以下变量和参数:
令x1、x2、x3分别表示项目A、B、C的分配比例;
令c1、c2、c3分别表示项目A、B、C的效益;
令r表示可用资源的数量;
令a1、a2、a3分别表示项目A、B、C所需资源的数量。
然后,我们可以建立以下数学模型:
目标函数:maximize Z = c1*x1 + c2*x2 + c3*x3
约束条件:a1*x1 + a2*x2 + a3*x3 <= r
x1 + x2 + x3 = 1
x1, x2, x3 >= 0
这个数学模型可以被解释为:我们要最大化总体效益(Z),
但同时要满足资源约束条件(第一个约束条件),并且项目的分配比例之和为1(第二个约束条件)。
当我们求解这个数学模型时,可以得到最优的分配比例,从而实现最大化总体效益。
这只是一个简单的示例,实际的运筹学分配问题可能更加复杂,可以根据具体情况进行进一步的建模和求解。
运筹学在项目管理中的决策与优化方法

运筹学在项目管理中的决策与优化方法项目管理是一项复杂而庞大的任务,涉及到资源调配、进度控制、任务分配等众多方面。
为了更好地完成项目,提高效率,运筹学为项目管理提供了一些决策与优化的方法。
本文将探讨运筹学在项目管理中的应用,并介绍一些常见的决策与优化方法。
一、项目排程优化项目排程是项目管理中的关键环节,合理的排程可以有效地提高项目完成的效率。
运筹学为项目排程提供了多种优化方法,如关键路径法、资源限制条件优化等。
关键路径法是一种基于网络图的项目排程方法,它能够找出项目中最长的关键路径,即完成整个项目所需的最短时间。
通过确定关键路径,项目经理可以合理地安排任务顺序,确保项目按时完成。
资源限制条件优化是一种考虑资源稀缺性的排程方法。
在项目中,资源往往是有限的,为了充分利用资源,项目经理需要找到最优的资源分配方案。
运筹学提供了一些资源平衡算法,通过建立数学模型,可以帮助项目经理在资源有限的情况下,最大化利用资源,优化项目排程。
二、风险管理决策项目管理中存在各种各样的风险,如技术风险、资源风险、市场风险等。
为了降低风险,项目经理需要进行科学的决策。
运筹学为风险管理提供了一些方法,如风险评估、风险优化等。
风险评估是一种系统的方法,用于识别、评估和处理项目中的风险。
通过建立风险评估模型,项目经理可以对不同风险进行量化评估,确定风险的概率和影响程度,从而制定相应的应对措施。
风险优化是在风险评估的基础上,通过运筹学的优化方法,进行风险的优化分配。
项目经理可以根据项目的需求和资源情况,制定最优的风险优化方案,提高项目的成功率。
三、成本控制与优化成本控制是项目管理中的重要一环。
为了控制项目成本,项目经理需要合理地分配资源和开销,并通过优化方法寻找最佳方案。
运筹学提供了一些成本优化的方法,如线性规划、整数规划等。
线性规划是一种寻找线性约束下最优解的数学方法,可以用于解决资源分配、成本优化等问题。
整数规划则是在线性规划的基础上,加入整数约束条件,可以更好地应用于项目管理中的资源整数分配问题。
运筹学与最优化方法 第3版 第1章 运筹学思想与运筹学建模

1.5基本概念和符号
2.多元函数及其导数
(1) n元函数:f (x): Rn R
线性函数:f (x) = cTx + b = ci xi + b 二次函数:f (x) = (1/2) xTQx + cTx + b
= (1/2) aij xi xj + ci xi + b 向量值线性函数:F(x) = Ax + d Rm
其中, A为 mn矩阵,d为m维向量
F(x)=( f1(x), f2(x), … , fm(x) )T 记 aiT为A的第i行向量,f(x) = aiTx
1.5基本概念和符号
(2) 梯度(一阶偏导数向量): f (x)=( f / x1 , f / x2 , … , f / xn )TRn 线性函数:f (x) = cTx + b , f (x) = c
x , y 的距离: ‖x-y ‖= [(x - y)T(x - y)](1/2)
x 的长度: ‖x‖= [ xTx ](1/2)
三角不等式: ‖x + y ‖≤‖x‖+‖y‖
x
x+y
y
点列的收敛:设点列{x(k)} Rn , x Rn
点列{x(k)}收敛到 x ,记
lim
k
x(k)
=
x
lim‖x(k)
1.5基本概念和符号
规定:x , y Rn,x ≤ y xi ≤ yi ,i ; 类似地规定 x ≥ y,x = y,x < y , x > y 。
一个有用的定理
设 xRn,R,L为Rn 的线性子空间。 若 xTy ≤ , yRn 且 y ≥ 0, 则
x ≤ 0, ≥ 0 若 xTy ≤ , y L Rn , 则
运筹学中的优化算法与算法设计

运筹学中的优化算法与算法设计运筹学是一门研究如何寻找最优解的学科,广泛应用于工程、经济、管理等领域。
在运筹学中,优化算法是重要的工具之一,用于解决各种复杂的最优化问题。
本文将介绍一些常见的优化算法以及它们的算法设计原理。
一、贪婪算法贪婪算法是一种简单而直观的优化算法。
它每一步都选择局部最优的解,然后将问题缩小,直至得到全局最优解。
贪婪算法的优点是实现简单、计算效率高,但它不能保证一定能得到全局最优解。
二、动态规划算法动态规划算法通过将原问题分解为一系列子问题来求解最优解。
它通常采用自底向上的方式,先求解子问题,再通过递推求解原问题。
动态规划算法的特点是具有无后效性和最优子结构性质。
它可以用于解决一些具有重叠子问题的优化问题,例如背包问题和旅行商问题。
三、回溯算法回溯算法是一种穷举搜索算法,通过递归的方式遍历所有可能的解空间。
它的基本思想是逐步构建解,如果当前构建的解不满足条件,则回退到上一步,继续搜索其他解。
回溯算法通常适用于解空间较小且复杂度较高的问题,例如八皇后问题和组合优化问题。
四、遗传算法遗传算法是一种借鉴生物进化过程中的遗传和适应度思想的优化算法。
它通过模拟自然选择、交叉和变异等过程,生成新的解,并通过适应度函数评估解的质量。
遗传算法具有全局搜索能力和并行搜索能力,适用于解决复杂的多参数优化问题。
五、模拟退火算法模拟退火算法是一种模拟金属退火过程的优化算法。
它通过接受劣解的概率来避免陷入局部最优解,从而有一定概率跳出局部最优解寻找全局最优解。
模拟退火算法的核心是温度控制策略,逐渐降低温度以减小接受劣解的概率。
它适用于求解连续变量的全局优化问题。
六、禁忌搜索算法禁忌搜索算法是一种基于局部搜索的优化算法。
它通过维护一个禁忌表来避免回到之前搜索过的解,以克服局部最优解的限制。
禁忌搜索算法引入了记忆机制,能够在搜索过程中有一定的随机性,避免陷入局部最优解。
它适用于求解离散变量的组合优化问题。
综上所述,运筹学中的优化算法涵盖了贪婪算法、动态规划算法、回溯算法、遗传算法、模拟退火算法和禁忌搜索算法等多种方法。
运筹学-最优化准备知识

其中xi,yi(i=1,2,…,m)及jj(x)(j=0,1,…,n)为已知.
4
最优化问题
最优化问题的一般形式为:
P:
(1.1)(目标函数) (1.2)(等式约束) (1.3)(不等式约束)
其中x是n维向量. 在实际应用中,可以将求最大值的目标函数取 相反数后统一成公式中求最小值的形式. 我们总是讨论
22
凸函数的几何性质
对一元函数f (x),在几何上a f (x1)+(1-a)f (x2) (0≤a≤1)表示连接(x1,f(x1)),(x2,f (x2))的线段, f(ax1+(1-a)x2)表示在点ax1+(1-a)x2处的函 数值,所以一元凸函数表示连接函数图形 上任意两点的线段总是位于曲线弧的上方.
21
凸函数的例
例. 设f (x)=(x–1)2,试证明f(x)在(–∞,+∞)上是 严格凸函数. 证明:设x,y∈ R,且x≠y, a ∈ (0,1)都有 f (ax+(1-a)y)-(a f (x) +(1-a)f (y)) =(ax+(1-a)y-1)2-a (x-1)2-(1-a) (y-1)2 = –a (1-a)(x-y)2<0 因此f(x)在(–∞,+∞)上是严格凸函数. 例. 线性函数f (x)=cTx=c1x1+c2x2+· · · +cnxn 既是Rn上凸函数也是Rn上凹函数.
(ii) 若在D内G(x)正定,则f(x)在D内是严格凸函数.
32
凸规划
定义1.1.11 设D Rn为凸集,则f(x) 为D上的凸函数, 则称规划问题 min f(x) s.t. x ∈ D 为凸规划问题.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m
• 其中决策变量为 (x) 的参数 a0 , a1 , ⋯ an 其中决策变量为f
SST
• 例6. 指派问题(0-1规划) 指派问题( 规划)
有 m 项任务 B1 , B 2 , ⋯, Bm 可派 m 个人A1 , A 2 ,⋯ , A m 完成,每人承担其中一项,第 i 人完成第 j 项任务 所需时间为 cij , 如何指派完成任务总时间最少? 1 , 指派 A i 完成 B j 建模: 设 xij = 0 , 否则 模型: min s. t.
f (x) = 3x +5 (150− x)2 + 202
f ′(x) = 3− 5(150 − x) (150 − x) + 20
2 2
• 令 f ′(x) = 0 ,即 • 由(2) )
3 (150 − x) + 20 = 5(150 − x)
2 2
(2) )
9((150 − x)2 + 400) = 25(150 − x)2
• 例4. 生产计划问题 某工厂有 m 种资源 B1 , B2 , ⋯ Bm , 某一时段的数量 b 分别为: 分别为:1 , b2 , ⋯ bm , 可用来生产 n 种产品 A1 , A 2 , ⋯ A n , 每生产一单位 A j 消耗 Bi 为 aij , 利润为 c j 。如何安排 生产可获最大利润? 生产可获最大利润? • 设:计划生产 x j 单位 A j , 建立线性规划模型 • LP(Linear Programming) LP( Programming) • Max c1x1+ c2x2+ ⋯⋯ + cnxn s. t. a11 x1+ a12x2+ ⋯⋯ + a1nxn≤b1 am1 x1+ am2x2+ ⋯⋯ + amnxn ≤bm x1, x2, ⋯ , xn ≥ 0
• 模型(4)可写成 与(1)类似的形式 模型( ) )
min f ( x) s.t. g ( x) ≥ 0 h( x ) = 0
• 不考虑不等式约束时,模型(4)可用 不考虑不等式约束时,模型( )可用Lagrange乘子法求解 乘子法求解
SST
• 令 L(x, λ) = L(r, h, λ) = 2πrh + 2πr2 − λ(πr2h −V) • 求解方程组 ∂L = 2πh + 4πr − 2πλ = 0 rh ∂r ∂L = 2πr −πλ 2 = 0 r ∂h ∂L = −πr2h +V = 0 ∂λ
y B(150,20) (150,20)
●
o
●
x
●
150
●
x
A
SST
D
C
建模与求解 • 建立模型: 建立模型: • 设:坐标系 xoy,铁路线在 ox- 轴上,点A 位于坐标原点 o, 轴上, , , 位于( 位于( 点B位于(150,20),点C位于(150,0),站D选在 x 处, 位于 , ) 点 位于 , ) 站 选在 运费为 f (x)。 。 m f (x) in • 模型: 模型: (min--minimize) ) (1) ) x∈R 其中: 其中: • 求解:应用导数求极值 求解:
SST
⋯⋯
• 令 X = [x1, x2, ···, xn ]T ; c = [c1, c2, ···, cn ]T ; b = [b1, b2, ···, bn ]T ; A = [ aij ]mxn T • LP: LP: Max c x
s. t. Ax ≤ b x≥0
• 问题扩展 a. 若 c1, c2, ···, cn 不是固定的,c 是随机变量, 不是固定的, 是随机变量, 平均值 c = [ c1 , c 2 , ⋯ , c n ]T ,协方差矩阵 V 。 希望利润期望值最大且方差最小,建立多目标优化模型: 希望利润期望值最大且方差最小,建立多目标优化模型:
SST
• 移项后两边开方,解得: x =150±15 移项后两边开方,解得: • 由(2)知 x = 165 为增根( f ′(x) ≠ 0 ) ) 为增根(
(3) )
x = 135 为唯一驻点
• • • • 答案: 应设在距钢厂 答案:站 D 应设在距钢厂 A 135km处。 处 问题扩展:考虑筑路、建站、装卸等费用,如何建模? 问题扩展:考虑筑路、建站、装卸等费用,如何建模? 数学建模竞赛题: 数学建模竞赛题:道路改造项目中碎石运输的设计 相关网站: 相关网站: 中国电机工程学会杯” “中国电机工程学会杯”全国大学生电工数学建模竞赛 /
2 代入( ) • 由 r > 0,及(6)解得 λ = r ,代入(5) 及 )
(5) (6) (7)
2πh + 4πr − 4πh = 0 ⇒ h = 2r , r = 3
π
V
• 结论:高与直径相等时用料最省。 结论:高与直径相等时用料最省。 • 问题扩展:侧面与底面厚度不同或造价不同,该如何设计? 问题扩展:侧面与底面厚度不同或造价不同,该如何设计? • 作 业 题:建立易拉罐的优化设计模型。 建立易拉罐的优化设计模型。
m 2πrh + 2πr2 in s.t. πr2h =V or πr2h −V = 0 r, h ≥ 0 • s.t. --- subject to (满足于 约束条件 满足于): 满足于 • 令 x =[r, h]; f (x) = 2πrh + 2πr2
(4) )
g(x) = x ; h(x) = πr2h −V
a2 a3 x + a 4 x 2
n
0
·x x
◎
· ·
◎
·
◎
····
◎ ◎
(xi , yi )
··
◎ ◎
1
2
xi
◎
◎
··
◎ ◎
x
xm
f 3 ( x) = a0 + a1 sin (a2 x + a3 )
• 最优化模型: 最优化模型: (最小二乘) 最小二乘)
min ∑ ( f ( xi ) − yi ) 2
v - min [ - c T x, xT Vx ] s. t. Ax ≤ b x≥0
SST
• 问题扩展 b. 风险投资问题(参考 全国建模赛题) 风险投资问题(参考98全国建模赛题 全国建模赛题)
将前面的产品换成投资项目, 风险损失q 将前面的产品换成投资项目,考虑投资 Aj 风险损失 j 。 • 建立多目标优化模型: 建立多目标优化模型:
∑ ∑c x
i =1 j =1
m
m
ij ij
∑c x
j =1
m
ij ij
= 1 , i = 1 ,⋯ , m (每人完成一项任务) = 1 , j = 1 , ⋯ , m (每项任务一人完成)
SST
∑c x
i =1
m
ij ij
xij = 0 or 1
• 例7. 旅行商问题-TSP(组合优化) 旅行商问题-TSP(组合优化)
• 例2. 罐头盒问题
• 设计圆柱形罐头盒,使用料最省。 设计圆柱形罐头盒,使用料最省。 • 假设:1.不考虑折边及铁皮厚度; 假设: 不考虑折边及铁皮厚度; 不考虑折边及铁皮厚度 2.底半径 r,高 h; 底半径 , ; 3.容积为常数 。 容积为常数V 容积为常数
SST
r
h
• 建立最优化模型: 建立最优化模型:
SST
参考网站
• [1] 全国大学生数学建模竞赛网: 全国大学生数学建模竞赛网 • [2] 美国:数学及其应用联合会网站: 美国:数学及其应用联合会网站 /undergraduate/ • [3] 中国数学建模网站: 中国数学建模网站: / • [4] “中国电机工程学会杯”全国大学生电 中国电机工程学会杯” 中国电机工程学会杯 工数学建模竞赛网: 工数学建模竞赛网: /
SST
• 最优化方法
实际问题与建模
SST
1.经典极值问题 1.经典极值问题
• 例1.车站选址问题 车站选址问题 一直线铁路经过钢厂A, 一直线铁路经过钢厂 ,矿区 B 位于距铁路最 相距150km。计划在铁路上 近处 C 为20km,A C 相距 , 。 之间筑一条直线公路, 设一站 D,在A D之间筑一条直线公路,若矿石运 , 之间筑一条直线公路 费铁路为3元 费铁路为 元/km·t,公路为 元/km·t。 ,公路为5元 。 问题:D 站选在何处最好。 问题: 站选在何处最好。
计算时间 1s 24s 10min 4.3h 4.9d 136.5d 10.8a 325a • 可以看出 个城市时枚举法已很费时,27个以上可采用启发 可以看出27个城市时枚举法已很费时, 个以上可采用启发 个城市时枚举法已很费时 式算法(heuristic algrithm),参见: [5] 式算法 ,参见: (邢文训,谢金星. 现代优化计算方法 ) 邢文训,谢金星 现代优化计算方法. • 问题扩展 :多旅行商问题 • 98全国建模赛题 : B. 灾情巡视路线 全国建模赛题
SST
• 例5. 数据拟合问题
• 设某系统中变量 x, y 满足: 满足: y = f (x) • 已获得系统数据: 已获得系统数据: ( xi , yi ) , i = 1, 2 , ··· , m • 确定 f (x) 的参数,例如: 的参数,例如:
◎
y
f1 ( x) = a0 + a1 x + ⋯ + an x f 2 ( x) = a0 + a1 x e
最优化方法
建模·原理·算法
SST 哈尔滨工业大学
尚寿亭
• 教材与参考
• [1] 吴祈宗 运筹学与最优化方法 北京:机械工业出版社, 吴祈宗. 运筹学与最优化方法. 北京:机械工业出版社, 2003.8 • [2] 薛嘉庆 最优化原理与方法(修订版). 北京:冶金工业 薛嘉庆. 最优化原理与方法(修订版) 北京: 出版社, 出版社,1992.8 • [3] 解可新,韩立兴,林友联. 最优化方法 天津:天津大学 解可新,韩立兴,林友联 最优化方法. 天津: 出版社, 出版社,1997.1 • [4] 萧树铁,姜启源等 数学实验,北京:高等教育出版社, 萧树铁,姜启源等. 数学实验,北京:高等教育出版社, 1999.7 • [5] 邢文训,谢金星 现代优化计算方法 北京:清华大学出 邢文训,谢金星. 现代优化计算方法. 北京:清华大学出 版社, 版社,1999.8 • [6] 胡运权,运筹学基础及应用(第三版),哈尔滨工业大学 胡运权,运筹学基础及应用(第三版),哈尔滨工业大学 ),哈尔滨工业 • 出版社,1998 出版社,