数与式专题一

合集下载

初中数学知识点总结(含题)

初中数学知识点总结(含题)

目:“先化简下式,再求值:a+21-2a+a 其中a=9时”,得出了不同的答案 ,小明的解答:原式= a+21-2a+a = a+(1-a)=1,小芳的解答:原式= a+(a -1)=2a -1=2×9-1=17 ⑴___________是错误的;⑵错误的解答错在未能正确运用二次根式的性质: ________4、计算:20012002(2-3)(2+3)5、我国1990年的人口出生数为23784659人。

保留三个有效数字的近似值是 人。

六、综合应用1、 已知△ABC 的三边长分别为a 、b 、c, 且a 、b 、c满足a 2-6a+9+4|5|0b c -+-=,试判断△ABC 的形状.2、数轴上的点并不都表示有理数,如图l -2-2中数轴上的点P 所表示的数是2 ”,这种说明问题的方式体现的数学思想方法叫做( ) A .代人法B .换无法C .数形结合D .分类讨论 3、(开放题)如图l -2-3所示的网格纸,每个小格均为正方形,且小正方形的边长为1,请在小网格纸上画出一个腰长为无理数的等腰三角形.4、如图1-2-4所示,在△ABC 中,∠B=90○,点P 从点B 开始沿BA 边向点A 以 1厘米/秒的宽度移动;同时,点Q 也从点B 开始沿 BC 边向点C 以 2厘米/秒的速度移动,问几秒后,△PBQ 的面积为36平方厘米?5、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为 A .20、29、30 B .18、30、26 C .18、20、26 D .18、30、28专题二 整式 一、考点扫描1、代数式的有关概念. (1)代数式是由运算符号把数或表示数的字母连结而成的式子.(2)求代数式的值的方法:①化简求值,②整体代人 2、整式的有关概念 (1)单项式:只含有数与字母的积的代数式叫做单项式. (2)多项式:几个单项式的和,叫做多项式 (3)多项式的降幂排列与升幂排列(4)同类项:所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷. 3、整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:(2)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。

(完整版)专题一-数与式-方程与不等式--自主练习题

(完整版)专题一-数与式-方程与不等式--自主练习题

专题一 数与式 方程与不等式自主练习题1.规定用符号[m ]表示一个实数m 的整数部分,例如:[]=0,[3.14]=3.按此规定 []的值为 . 2.设,,则=( )A .2 3B . 3C . 6D .33.若,则= .4.如果关于x 的一元二次方程22110kx k x -++=有两个不相等的实数根,那么k 的取值范围是( )A .k <B .k <且k ≠0C .﹣≤k <D .﹣≤k <且k ≠05.如图,将矩形沿图中虚线(其中x >y )剪成四块图形,用这四块图形恰能拼一个正方形.若y =2,则x 的值等于( )A .3B .25-1C .1+5D .1+2 6.若x 1,x 2是方程(x -a )(x -b )= 1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为( )A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 2 7.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEF H 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米.当正方形DEF H 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.8.如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽分别为2和1的长方形.如果现有甲类纸片1张,乙类纸片4张,那么应至少取丙类纸片 张,才能用它们拼成一个新的正方形.9.按如下程序进行运算:并规定,程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止。

则可输入的整数x 的个数是 .10.若多项式x 4+mx 3+nx -16含有因式(x -2)和(x -1),则mn 的值是( ) A .100 B .0 C .-100 D .5011.设201421,...,,a a a 是从1,0,1-这三个数中取值的一列数,若69...201421=+++a a a ,4001)1(...)1()1(220142221=++++++a a a ,则201421,...,,a a a 中为0的个数____________。

数与式 初三专题一

数与式   初三专题一

中考复习专题(一)数与式一、实数运算知识梳理(1)a a =2,a a =2)(,a a =33,a a =33)(b a b a ⋅=⋅,b a b a =,a a a =1,ba ba ba --=+1(2)⎩⎨⎧<-≥=0,0,a a a a a ,⎩⎨⎧<-≥-=-ba ab ba b a b a ,,(3))0(10≠=a a (4))0(1≠=-a a app(5)特殊角的三角函数值:30°:sin 30°= , cos 30°= ,tan 30°= ,45°:sin 45°= , cos 45°= ,tan 45°= , 60°:sin 60°= , cos 60°= ,tan 60°= ,(6)()⎩⎨⎧-=-为奇数,为偶数,n n n111(7)大数的科学记数法:例如:98000000000=9.81010⨯ 小数的科学记数法:例如:0.00000098=9.8710-⨯基础过关1.下列计算正确的是( )A .3-=3B .-2-2=0C .02=0D .25)(-= -102.计算0)21(-的结果为() A .0B .1C .2D .1-3.在2(3),(3),|3|,----- ) A.2(3)- B.-(-3) C.-|-3| D.4.2010年春节黄金周节前、节后,成都交通部门7天累计发送旅客约412.02万人次。

数“412.02万”用科学计数法可记为( )A .4412.0210⨯B .64.120210⨯C .24.120210⨯D .44.120210⨯ 5.在函数中,自变量x 的取值范围是 .6.2010200932+的个位数字是 .7.若x,y 为实数,且|2|0x +=,则2010()x y +的值为。

例题解析例1:8的立方根为( )A.2B.±2C.4D.±4变式练习:1.如图,数轴上点P 所表示的实数可能是()AB. 2.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论正确的是( )A .0a b +>B .0a b ->C .0ab >;D .||||0a b ->.例2:一生物老师在显微镜下发现,某种植物的细胞直径约为0.000000195米,将该数据用科学计数法表示为_______________米。

专题一:数与式课件

专题一:数与式课件

总复习1—数与式(一)知识点1.数的分类0⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎪⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数负整数有理数实数正分数分数负分数无理数——无线不循环小数0⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩正数有理数正数分数无理数实数整数有理数负数分数无理数 2.有关概念:实数、有理数、无理数、数轴、相反数、绝对值、倒数、自然数、平方根、算术平方根、立方根、二次根式、最简二次根式、同类二次根式、分母有理化(1)实数:有理数和无理数统称为实数 (2)有理数:整数和分数统称为有理数(3)无理数:无限不循环的小数叫无理数。

如:1.413……,,带且开方开不尽的数。

(4)数轴:规定原点、正方向、单位长度的直线。

(5)相反数:只有符号不同的两个数(6)绝对值:在数轴上表示数a 的点到原点的距离叫做数a 的绝对值。

绝对值意义:一个正数的绝对值等于它本身; 一个负数的绝对值等于它的相反数;零的绝对值等于零。

即=(7)倒数:如果两个数的积等于1,那么这两个数互为倒数(0没有倒数) (8)自然数:非负整数,如:0、1、2、3、4、…… (9)平方根、算术平方根:如果,那么x 叫做a 的平方根。

其中叫非负数a 的算术平方根平方根意义:一个正数有两个平方根,它们互为相反数;负数没有平方根;零的平方根是零。

(10)非负数a 的正的平方根叫做a 的是算术平方根(11)立方根:如果= a,那么x叫做a的立方根x =(12)二次根式:式子(a0)叫做二次根式(13)最简二次根式:满足下列两个条件的二次根式叫做最简二次根式:①被开放数中不能含有开得尽方的因数或因式②被开方数中不含有分母(14)同类二次根式:几个二次根式化成最简二次根式后如果被开方数相同,那么这几个二次根式叫做同类二次根式(15)分母有理化:利用= a(a)和平方差公式将分母中的化去的过程叫分母有理化。

3.有理数加减乘除运算(1)有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加。

专题一数与式1

专题一数与式1
这时,从左边第一个不为零的数字开始, 到精确到的数位为止,所有的数字叫做这个 近似数的有效数字。
1.2008年5月27日,北京2008年奥运会火炬 接力传递活动在南京境内举行,火炬传递 路线全程为12900m,将12900用科学记数法 表示应为( B )
A.0.129×104 B.1.29×104 C.12.9×103 D.129×102
专题一 数与式(一)
四川省成都列五中学 李降云
一、实数的有关概念及 实数的分类
二、实数的运算
知识结构
实数的有关概念
实数的有关概念及分类

实数的分类

实数的运算法则
实数的运算
实数的运算律
实数的运算顺序
一、实数的有关概念及分类
1 .实数的分类
(1)按定义分
整数
有理数
实 数
分数
正整数 零 负整数
自然数(也 叫非负整数)
72
无理数的个数有( B )个 A. 3个 B. 4个 C. 5个 D. 6个
常见错误:把 9, 22 当成无理数;
7
把 2 当成有理数。
2
2 .数轴:规定了原点,正方向,单位长度 的直线叫数轴。
3 .相反数:实数 a 的相反数是 a,0的
相反数是0。
(1)a,b互为相反数
a+b=0。
(2)在数轴上表示相反数的两点关于原 点对称。
值相加; 绝对值不相等的异号两数相加,取绝对值
较大的加数的符号,并用较大的绝对值减去 较小的绝对值;互为相反数的两数相加得0;
一个数同0相加,仍得这个数。
(2)实数的减法法则: 减去一个数,等于加上它的相反数。
(3)实数的乘法法则:两数相乘, 同号得正,异号得负,并把绝对值相乘。 任何数同0相乘,都得0。

专题1 数与式的运算

专题1 数与式的运算

专题01数与式的运算本专题在初中、高中扮演的角色初中阶段“从分数到分式”,通过观察、分析、类比,找出分式的本质特征,及它们与分数的相同点和不同点,进而归纳得出分式的概念及运算性质,我们已经运用的这些思想方法是高中继续学习的法宝.二次根式是在学习了平方根、立方根等内容的基础上进行的,是对“实数”、“整式”等内容的延伸和补充,对数与式的认识更加完善.二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是高中学习解三角形、一元二次方程、数列和二次函数的基础.二次根式是初中阶段学习数与式的最后一章,是式的变形的终结章.当两个二次根式的被开方数互为相反数时,可用“夹逼”的方法推出,两个被开方数同时为零.本专题内容蕴涵了许多重要的数学思想方法,如类比的思想(指数幂运算律的推广)、逼近的思想(有理数指数幂逼近无理数指数幂),掌握运算性质,能够区别n的异同. 通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质,掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.高中必备知识点1:绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即:,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.典型考题【典型例题】阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为21x x -表示在数轴上数1x 与数2x 对应的点之间的距离; 例1解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2±=x .例2解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +2|=3的解为 ;(2)解不等式:|x -2|<6;(3)解不等式:|x -3|+|x +4|≥9;(4)解方程: |x -2|+|x +2|+|x -5|=15.(1)1x =或x =-5;(2)-4<x <8;(3)x ≥4或x ≤-5;(4)103x =-或203x = . (1)由已知可得x+2=3或x+2=-3解得1x =或x =-5.(2)在数轴上找出|x -2|=6的解.∵在数轴上到2对应的点的距离等于6的点对应的数为-4或8, ∴方程|x -2|=6的解为x =-4或x =8,∴不等式|x -2|<6的解集为-4<x <8.(3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于15的点对应的x 的值. ∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5,∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5.(4)在数轴上找出|x-2|+|x+2|+|x-5|=15的解.由绝对值的几何意义知,该方程就是求在数轴上到2和-2和5对应的点的距离之和等于9的点对应的x的值.∵在数轴上-2和5对应的点的距离为7,∴满足方程的x对应的点在-2的左边或5的右边.若x对应的点在5的右边,可得203x=;若x对应的点在-2的左边,可得103x=-,∴方程|x-2|+|x+2|+|x-5|=15的解是103x=-或203x=.【变式训练】实数在数轴上所对应的点的位置如图所示:化简.a-2b解:由数轴知:a<0,b>0,|a|>|b|,所以b-a>0,a-b<0原式=|a|-(b-a)-(b-a)=-a-b+a-b+a=a-2b【能力提升】已知方程组的解的值的符号相同.(1)求的取值范围;(2)化简:.(1) −1<a<3;(2).(1)①+②得:5x=15−5a,即x=3−a,代入①得:y=2+2a,根据题意得:xy=(3−a)(2+2a)>0,解得−1<a<3;(2)∵−1<a<3,∴当−1<a<3时,高中必备知识点2:乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()a b a b ab +-=-; (2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b aab b a b +-+=+; (2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式33223()33a b a a b ab b +=+++; (5)两数差立方公式33223()33a b a a b ab b -=-+-.典型考题【典型例题】 (1)计算:203212016(2)(2)2-⎛⎫-++-÷- ⎪⎝⎭(2)化简:2(2)(2)(2)a b a b a b +--- (1)3(2)4ab-8b 2解:(1)原式=4+1+(-8)÷4 =5-2=3(2)原式=a 2-4b 2-(a 2-4ab+4b 2)=a 2-4b 2-a 2+4ab-4b 2=4ab-8b 2【变式训练】计算:(1)0221( 3.14)(4)()3π--+--(2)2(3)(2)(2)x x x --+-(1)8 (2)-6x+13(1)原式=1+16-9=8;(2)原式=x 2-6x+9-(x 2-4)=x 2-6x+9-x 2+4=-6x+13.【能力提升】已知10x =a ,5x =b ,求:(1)50x 的值;(2)2x 的值;(3)20x 的值.(结果用含a 、b 的代数式表示) (1)ab;(2)a b ;(3)2a b. 解:(1)50x =10x ×5x =ab ; (2)2x =xx x 1010a 55b ⎛⎫== ⎪⎝⎭; (3)20x =x x 2x x 1010a 101055b ⎛⎫⨯=⨯= ⎪⎝⎭.高中必备知识点3:二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b 212x ++,22x y ++1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩典型考题【典型例题】计算下面各题.(1)2163)1526(-⨯-;(2(1) 56-;(2)(1)×3﹣6=﹣=﹣(2)x 4﹣4x=2x 4x2x .【变式训练】时,想起分配律,于是她按分配律完成了下列计算:==她的解法正确吗?若不正确,请给出正确的解答过程.不正确,见解析解:不正确,正确解答过程为:【能力提升】先化简,再求值:(2a b a b -+-b a b -)÷a 2b a b-+,其中,.2a a b -. 解:(2a b a b -+-b a b -)÷a 2b a b-+ =()()()()()2a b a b b a b a b a b a b a 2b ---++⋅+--=2222a 3ab b ab b 1a b a 2b-+--⋅-- =()2a a 2b 1a ba 2b -⋅-- =2a a b -, 当+3,-3时,原式22=33.高中必备知识点4:分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式A B具有下列性质: A A M B B M⨯=⨯; A A M B B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式 像a b c d+,2m n p m n p+++这样,分子或分母中又含有分式的分式叫做繁分式.典型考题【典型例题】先化简,再求值22122()121x x x x x x x x +++-÷--+,其中x 满足x 2+x ﹣1=0.21x x -,1. 解:原式=()()()221-211121x x xx x x x x ---=-+210x x +﹣=,21x x ∴=﹣,∴原式=1.【变式训练】化简:22442x xy y x y -+-÷(4x 2-y 2)y x +2122442x xy y x y -+-÷(4x 2-y 2)=2(2)12(2)(2)x y x y x y x y -⨯-+-=y x +21.【能力提升】已知:112a b -=,则ab b a bab a 7222+---的值等于多少?43-.解:∵112a b -=,∴a-b=-2ab ,则2ab 2ab44ab 7ab 3--=--+专题验收测试题1.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在()A .线段AB 上 B .线段BC 上 C .线段CD 上D .线段DE 上B∵实数m+1,23<<∴﹣2<m<﹣1,∴在数轴上,表示m的点应落在线段BC上.故选:B.2.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66 B(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.3.已知1-1xx=,则221xx+等于()A.3 B.2 C.1 D.0 A∵1-1 xx=,∴21-1x x ⎛⎫= ⎪⎝⎭, 即221-2+1x x ⎛⎫= ⎪⎝⎭, ∴221-=3x x.故选A . 4.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:① a 是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a 是18的算术平方根.其中,所有正确说法的序号是 A .①④ B .②③C .①②④D .①③④C根据勾股定理,边长为3的正方形的对角线长为a = 根据实数与数轴上的一点一一对应的关系,a 可以用数轴上的一个点来表示,故说法②正确.∵216<a 18<25=,∴4<a =,故说法③错误.∵2a 18=,∴根据算术平方根的定义,a 是18的算术平方根,故说法④正确. 综上所述,正确说法的序号是①②④.故选C .5.定义一种关于整数n 的“F ”运算:一、当n 为奇数时,结果为3n +5;二、当n 为偶数时,结果为2k n(其中k 是使2k n为奇数的正整数),并且运算重复进行.例如:取n =58,第一次经F 运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74……,若n =449,求第2020次运算结果是( ) A .1 B .2C .7D .8A设449经过n 次运算结果为n a ,则11352a =,2169a =,3512a =,41a =,58a =,61a =,⋯,21n a ∴=,218(2n a n +=且n 为整数).∵2020为偶数,20201a ∴=.故选:A6.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .431760C∵第一幅图中“•”有1133a =⨯=个;第二幅图中“•”有2248a =⨯=个; 第三幅图中“•”有33515a =⨯=个;∴第n 幅图中“•”有()2na n n =+(n 为正整数)个∴111122n a n n ⎛⎫=- ⎪+⎝⎭∴当19n =时123191111a a a a ++++ (1111)3815399=++++11111324351921=++++⨯⨯⨯⨯ 1111111111112322423521921⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111111112324351921⎛⎫=⨯-+-+-++- ⎪⎝⎭11111222021⎛⎫=⨯+-- ⎪⎝⎭589840=.故选:C 7.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为()A .0B .1C .2D .与m 有关A根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A .8.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019Mx x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是()A .M N <B .MN >C .MN D .M N ≥B根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=,∴()()12201823201920192019()Mx x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•;∴20192019()MN pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴MN >;故选:B.9.下列运算正确的是( )A .1a b a b b a -=--B .m n m na b a b --=- C .11b b a a a+-=D .2221a b a b a b a b+-=--- D根据分式的减法法则,可知:a b a b b a ---=a b a b a b +--=a ba b +-,故A 不正确;由异分母的分式相加减,可知m n a b -==bm an bm anab ab ab --,故B 不正确;由同分母分式的加减,可知11b b a a a+-=-,故C 不正确; 由分式的加减法法则,先因式分解通分,即可知2221a b a b a b a b+-=---,故D 正确.故选:D. 10.已知a ,b 为实数且满足1a ≠-,1b ≠-,设11=+++a b M a b ,1111=+++N a b .①若1ab =时,M N ;②若1ab >时,M N >;③若1ab <时,M N <;④若0a b +=,则0M N ≤.则上述四个结论正确的有( ) A .1 B .2C .3D .4D对于①,可知(1)(1)2(1)(1)(1)(1)a b b a a b ab M a b a b +++++==++++,2(1)(1)a b N a b ++=++,若1ab =时,M N ,正确;对于②,也可分析得到;对于③④同样如此.11.若11122299919991a +=+,22233399919991b +=+,则a 与b 的大小关系为( ) A .a b > B .a b =C .a b <D .无法确定A∵11122299919991a +=+,22233399919991b +=+, ∴1112222223339991999199919991a b ++-=-++ =()()()()()211133322222222299919991999199919991++-+++=()()111333222222333999999999999199291++-⨯+=()()()1112222222223339999999999991999211⨯+-++⨯>()()111222222222333999999999999199291+⨯-⨯+>0,∴a b >.故选A .12.已知实数x ,y ,z 满足1x y ++1y z ++1z x +=76,且z x y x y y z z x+++++=11,则x +y +z 的值为( )A .12B .14C .727D .9A11z x y x y y z z x ++=+++, 11114z x y x y y z z x∴+++++=+++, 即14x y z x y z x y zx y y z z x ++++++++=+++,11114x y y z z x x y z∴++=+++++, 而11176x y y z z x ++=+++, 1476x y z ∴=++,12x y z ∴++=.故选:A .13.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B .C .2D .±2A∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴a+b=a-b=∴a ba b +-= A.14有意义,那么直角坐标系中点A(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限A根据二次根式的概念,可知a≥0,ab>0,解得a>0,b>0,因此可知A(a,b)在第一象限.故选A15.已知a的最小值为()A.0 B.3 C.D.9B根据题意,由,可知当(a﹣3)2=0,即a=3时,代数的值最小,为故选B.16.已知m、n m,n)为()A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是Cm、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C.17.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187…….则3+32+33+34+…+32019的末位数字是____.9.∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187……,∴尾数四个一循环,∴每四个的尾数和是0.∵2019÷4=504…3,∴3+32+33+34+…+32019的末位数字是9.故答案为:9.C,最小正方形的周长是18.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是12C,则12C C =_____.432如图,设,AB x BC y ==,最大正方形标记为0号,被分割成的11个正方形标记为1-11号,其中最小正方形标记为11号,各个正方形的边长求解过程如下: 0号:1号+2号得x y +5号:1号-2号得y x -3号:2号-5号得()2x y x x y --=-4号:0号-2号-3号得(2)22x y x x y y x +---=- 7号:3号-4号得2(22)43x y y x x y ---=- 6号:4号-7号得22(43)56y x x y y x ---=- 10号:0号-1号得x9号:0号-4号-6号-10号得(22)(56)86x y y x y x x x y +-----=- 8号:10号-9号得(86)67x x y y x --=- 11号:6号-7号得56(43)810y x x y y x ---=- 或9号-6号得86(56)1411x y y x x y ---=- 因此x 和y 满足等式:8101411y x x y -=- 整理得:1924x y =所以最大正方形(0号)的周长1434()6C x y y =+=最小正方形(11号)的周长214(1411)3C x y y =-=则12432C C =.19.对于整数a ,b ,c ,d ,定义a d b c =ac ﹣bd ,已知1<1d 4b<3,则b+d 的值为_______.±3根据题意,得1<4–bd <3,化简,得1<bd <3, a ,b ,c ,d 均为整数,∴db =2, ∴当d =1时b =2或当d =–1时b =–2, ∴b +d =3或b +d =–3.20. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.±3把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②,①×2-②得:5m =15, 解得:m =3,把m =3代入①得:n =2,则m +3n =3+6=9,9的平方根是±3, 故答案为:±3 21.若m 满足关系式35223x y m x y m +--+-199199x y x y =---+m =________.201由题意可得,199-x-y ≥0,x-199+y ≥0, ∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520230x y x y m x y m +=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m , 将y=4-m 代入③,解得x=2m-6,将x=2m-6,y=4-m 代入①得,2m-6+4-m=199,解得m=201. 故答案为:201.22.若214x x x++=,则2211x x ++= ________________.8∵214x x x ++=可化为13x x +=,2211x x ++化为211x x ⎛⎫+- ⎪⎝⎭∴原式=211x x ⎛⎫+- ⎪⎝⎭=32-1=823.已知22143134m n m n =--+,则11m n+的值等于______. 1322143134m n m n =--+221(2)(6)04m n -++=,则20m -=,60n +=, 所以2m =,6n =-, 所以11111263m n +=-=. 故答案是:13. 24.已知函数1x f xx,那么1f _____.2+因为函数1x f xx,所以当1x =时, 211()2221f x .25.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =..原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 26.观察下列等式:1)131====-====回答下列问题:(1(2;(3+….(1(2;(3)1 (12575752227575 527755=(222121212121n n n n n 2222212121n n n n 22212121n n n n 22221n n2121n n(3)由(22121121n n n n3153757573 =153757573 31537573717573175 531270=(1)求实数,a b 的值;(2的整数部分为x ,小数部分为y①求2x y +的值;②已知10kx m =+,其中k 是一个整数,且01m <<,求k m -的值.(1)7a =;21b =;(2)①4(10=,2490a -=且70a +≠,∴30a b -=,2490a -=且70a +≠, 即7,21a b ;(2)∵162125,∴45<<,即的整数部分为4,小数部分为4,①244)4x y +=+=;②∵12<<,∴8109<<,又∵104kx m k m =+=+,k 是一个整数,且01m <<,∴2,10242k m ==-⨯=∴2(2k m -=--=28.已知下面一列等式: 111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立;(3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. (1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. (1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…,知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x =+. 29.对有理数a 、b 、c ,在乘法运算中,满足:①交换律:ab ba =;②对加法的分配律:()ca b ca cb +=+.现对a b ⊕这种运算作如下定义,规定:a b a b a b ⊕=⋅++.(1)这种运算是否满足交换律?(2)举例说明:这种运算是否满足对加法的分配律?(1)运算满足交换律;(2)加法的分配律不满足.(1)∵a b a b a b ⊕=⨯++,b a b a b a ⊕=⨯++,∴a b b a ⊕=⊕,∴该运算满足交换律;(2)根据规定,()()()a b c a b c a b c +⊕=+⨯+++a c b c a b c =⨯+⨯+++,∵a c a c a c ⊕=⨯++,b c b c b c ⊕=⨯++, ∴a c b c a c a c b c b c⊕+⊕=⨯+++⨯++2a c b c a b c =⨯+⨯+++, ∵2a c b c a b c a c b c a b c ⨯+⨯+++≠⨯+⨯+++,∴()a b c a c b c +⊕≠⊕+⊕,∴对加法的分配律不满足.30.李狗蛋同学在学习整式乘法公式这一节时,发现运用乘法公式在进行一些计算时特别简便,这激发了李狗蛋同学的学习兴趣,他想再探究一些有关整式乘法的公式,便主动查找资料进行学习,以下是他找来的资料题,请你一同跟李狗蛋同学探究一下:(1)探究:()()a b a b -+=____;()()22a b a ab b -++=___;()()3223a b a a b ab b -+++=_____;(2)猜想:()()1221...n n n n a b a a b ab b -----++++=______(n 为正整数,且2n ≥); (3)利用上述猜想的结论计算:98732222...2221-+-+-+-的值.(1)22a b -,33a b -,44a b -;(2)n n a b -;(3)341 (1)()()22a b a b a b -+=-,()()22322223a b a ab b a a b ab a b ab b -++=++---33=-a b ,()()32234322332234a b a a b ab b a a b a b ab a b a b ab b -+++=+++----44a b =-,故答案为:22a b -,33a b -,44a b -;(2)根据(1)的结果可知:()()1221...n n n n a b a a b ab b -----++++=n n a b -, 故答案为:nn a b -; (3)原式987236278922(1)2(1)...2(1)2(1)2(1)(1)=+⨯-+⨯-++⨯-+⨯-+⨯-+- 98723627891[2(1)][22(1)2(1)...2(1)2(1)2(1)(1)]3=⨯--⨯+⨯-+⨯-++⨯-+⨯-+⨯-+-10101[2(1)]3=⨯-- 10213-= 102413-= 341=.。

中考数学专题复习数与式

中考数学专题复习数与式

中考数学专题复习专题一 数与式[基础训练]1.如果a 与2-的和为O ,那么a 是( )B.12 C.12- D.2- 2.234()m m g 等于( ) A.9mB .10mC .12mD .14m3. 若4x =,则5x -的值是( )A .1B .-1C .9D .-94、5-的相反数是 ,9的算术平方根是 ,-3倒数是 . 4.已知(a-b)2=4,ab=21,则(a+b)2= 5.在函数1-=x y 中,自变量x6.若分式12--x x 的值为零,则=x . 7.因式分解:=+-2232xy y x x 9.根据如图所示的程序计算,若输入x 的值为1则输出y 的值为 10.计算或化简:(1)03260tan 33⎪⎭⎫⎝⎛-+︒+11.已知12+=x ,求代数式xx x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+的值.(第9题图)[精选例题]例题1(1)1:2的倒数是( ) A21 B-21 C ±21D2 (2)写出一个比-1大的负有理数是________,写出一个比-1大的负无理数是_________. (3)若()的值为则n m n m 2,0)3(32+=++- A -4 B -1 C 0 D4 说明:本题考查对数与式基本概念的理解(1)倒数的概念(2)有理数与无理数的概念和大小比较(3)绝对值和完全平方的非负性 例题2(1)如图,在数轴上表示15的点可能是(A 点PB 点QC 点MD 点N (2)当x=_____时,分式33--x x 无意义.(3)已知aaa a -=-112,则a 的取值范围是( ) A a 0≤ B a<0 C 0<a ≤1 Da>0 说明:本题考查对数与式有关性质的掌握(1)实数的大小和数轴上的表示(2)分式在什么时候无意义和绝对值的意义 (3)平方根的意义和性质例题3(1)下列运算正确的是( )A 22a a a =⋅ B 2a a a =+ C 236a a a =÷ D ()623a a =(2)化简a+b+(a-b)的最后结果正确的是( ) A 2a+2b B 2b C 2a D0 (3)下列计算错误的是( )A -(-2)=2B 228=C 222532x x x =+ D ()532a a =(4)先化简41)231(2-+÷-+a a a , 然后请你给a 选取一个合适的值, 再求此时原式的值.说明:本题考查对数与式运算法则的掌握,第(4)题注意解题的规范。

专题1.数与式(解析版)

专题1.数与式(解析版)

2019年中考数学典题精选系列专题01 数与式1.3月30日,我区航空经济产业功能区2019年一季度重大项目集中开工仪式在电子科大产业园四期项目用地举行.参加此次集中开工仪式项目共计71个,总投资超过249亿元,未来随着这一波又一波项目的建成投产,必将为双流航空经济插上腾飞之翼,助力双流打造中国航空经济之都.用科学记数法表示249亿元为()A.249×108元B.24.9×109元C.2.49×1010元D.0.249×1011元【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将249亿用科学记数法可表示为2.49×1010.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【答案】C.3.按如图所示的运算程序运算,能使输出的结果为7的一组x,y的值是()A.x=1,y=2 B.x=﹣2,y=1 C.x=2,y=1 D.x=﹣3,y=1【答案】C【解析】【分析】将各项中的x与y代入程序计算,即可得到结果.【详解】A、当x=1,y=2时,原式=2﹣2=0,不符合题意;B、当x=﹣2,y=1时,原式=8+1=9,不符合题意;C、当x=2,y=1时,原式=8﹣1=7,符合题意;D、当x=﹣3,y=1时,原式=18+1=19,不符合题意,故选:C.【点睛】本题考查代数式求值,熟练掌握运算法则是解题关键.4.下列整数中,比小的数是()A.B.C.D.【答案】D【解析】【分析】可根据有理数大小比较的方法:正数>0>负数,两个负数比较大小,绝对值越大的反而越小.通过比较直接得出.【详解】∵-3>-π,0>-π,1>-π,-4<-π故选D.【点睛】本题考查有理数比大小,深刻理解有理数中正数>0>负数,两个负数比较大小,绝对值越大的反而越小.5.已知23ab=,则代数式a ba+的值为()A.52B.53C.23D.32【答案】B【解析】由23ab=得到:a=23b,则代入可得2533b ba bb b++==.故选:B.6.下列运算正确的是()A .B .C .D .【答案】D【解析】【分析】根据合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算求出每个式子的值,再根据结果判断即可.【详解】A 、与不是同类项,故本选项错误;B 、,故本选项错误;C 、,故本选项正确;D 、,故本选项正确.故选D.【点睛】本题考查了合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算等知识点,主要考查学生的计算能力和辨析能力,题目比较好,但是一道比较容易出错的题目.7.一列数a1,a2,a3,…,其中a1=,a n =(n为不小于2的整数),则a100=()A .B.2 C.﹣1 D.﹣2【答案】A【解析】根据表达式求出前几个数后发现:每三个数为一个循环组.用100除以3,根据商和余数的情况确定a100的值即可.解:根据题意得,a 2==2,a 3==﹣1,a 4==,a 5==2,…,依此类推,每三个数为一个循环组依次循环, ∵100÷3=33…1,∴a 100是第34个循环组的第一个数,与a 1相同, 即a 100=.故选A .8.已知a ﹣b=3,则代数式a 2﹣b 2﹣6b 的值为( ) A .3 B .6 C .9 D .12 【答案】C .【解析】由a ﹣b=3,得到a=b+3,则原式=(b+3)2﹣b 2﹣6b=b 2+6b+9﹣b 2﹣6b=9.故选C .学科*网 9.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于-1,若我们规定一个“新数”,使其满足(即方程有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,从而对任意正整数n ,我们可得到同理可得那么, 23420162017••••••i i i i i i ++++++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数与式专题一
题量:共 24 题 满分: 120 分 学校:________姓名:________班级:________考号:________
注意事项: 1. 答题前填写好自己的姓名、班级、考号等信息 2. 请在答题卡上各题的答题区域作答,试卷上作答无效
评卷人 得分 一、单项选择题(共 10 题,共 30 分)
A. B. C. D.
8.
先化简,后求值.若
,求(

.
A.
B.
C.
D.
9. 计算 A. B. C. D.
的结果是( )
10. 若 A. B. C. D.
,则 ( ) 或
或 或 或
评卷人 得分
二、填空题(共 7 题,共 28 分)
1. 计算:
.
2. 化简:
______.
3. 计算
4. 若
的小数部分是 ,
1. 下列运算正确的是( ) A. B. C. D.
2. 若 A. B. C. D.
,则 的值等于( )
3. 计算 A. B. C. D.
的结果是( )
4. 下列运算正确的是( ) A. B. C. D.
5. 计算 A. B. C. D.
的结果为( )
6. 如图,在矩形
中, 为 中点,以 为边作正方形
,边 交 于点 ,
在边 上取点 使
,作
交 于点 ,交 于点 ,欧几里得在《几何
原本》中利用该图解释了
,现以点 为圆心, 为半径作圆弧交线段
Байду номын сангаас
于点 ,连结 ,记
的面积为 ,图中阴影部分的面积为 .若点 , , 在同
一直线上,则 的值为( )
A. B. C. D. 7. 如图, 、 两个数在数轴上的位置如图所示,则下列各式正确的是 ( )
置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的
总和为:
,因此,
.
(2). 【解决问题】 根据以上发现,计算:
的结果为

4. 计算:

5. 若实数
满足条件
(若结果为分数,写成a/b形式)
6. 化简:
,求 的值.
7. 化简: (1).
(2).
在图所示三角形数阵中,第 行圆圈中的数为 ,即 ,第 行两个圆圈中数的和为 ,
即 ,…;第 行 个圆圈中数的和为
,即 ,这样,该三角形数阵中共有
个圆圈,所有圆圈中数的和为

(1). 【规律探究】
将三角形数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一
位置圆圈中的数(如第 行的第一个圆圈中的数分别为 , , ),发现每个位
5. 计算:
6. 化简
的结果是
7. 已知实数 , , , 满足

的小数部分是 ,则

.(如果答案为分数 ,则填 )


,则
评卷人 得分
三、解答题(共 7 题,共 62 分)
1. 因式分解: .
2. 试判断当 为正整数时,代数式
的值是质数还是合数?
3. 【阅读理解】
我们知道,
,那么
结果等于多少呢?
相关文档
最新文档