高三物理选修3-5第十六章动量守恒定律第四节碰撞板块模型专题专项训练习试题集 无答案
高中物理第十六章动量守恒定律第4节碰撞课时分层训练(含解析)新人教版选修3-5

第4节碰撞「基础达标练」1.在光滑水平面上相向运动的A、B两小球发生正碰后一起沿A原来的速度方向运动,这说明原来()A.A球的质量一定大于B球的质量B.A球的速度一定大于B球的速度C.A球的动量一定大于B球的动量D.A球的动能一定大于B球的动能解析:选C 在碰撞过程中,A、B两小球组成的系统动量守恒.碰撞后两球一起沿A原来的速度方向运动,说明系统的总动量沿A原来的速度方向,由动量守恒定律可知,碰撞前A的动量一定大于B的动量.由p=mv知:由于不知道两球的速度关系,所以无法判断两球的质量关系,也不能判断动能关系,故A、B、D错误,C正确.2.如图所示,光滑水平地面上有两个大小相同、质量不等的小球A和B,A以3 m/s 的速率向右运动,B以1 m/s的速率向左运动,发生正碰后都以2 m/s的速率反弹,则A、B两球的质量之比为()A.3∶5 B.2∶3C.1∶2 D.1∶3解析:选A 两球碰撞过程中,动量守恒,以A的初速度方向为正,根据动量守恒定律得:m A v A-m B v B=m B v B′-m A v A′,代入数据解得:m A∶m B=3∶5,故A正确,B、C、D错误.3.(多选)质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示.则()A.甲、乙两物块在弹簧压缩过程中,两物块及弹簧组成的系统动量守恒B.当两物块相距最近时,甲物块的速率为零C.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s,也可能为0D.甲物块的速率可能达到5 m/s解析:选AC 甲、乙两物块在弹簧压缩过程中,甲、乙两物块及弹簧组成的系统所受的合外力为零,动量守恒,故A正确;当两物块相距最近时速度相同,取碰撞前乙的速度方向为正方向,设共同速率为v,根据动量守恒定律有:mv乙-mv甲=2mv,解得v=0。
5 m/s,故B错误;若物块甲的速率为1 m/s,方向与原来相同,则由mv乙-mv甲=-mv甲′+mv v乙′=2 m/s;若物块甲的速率为1 m/s,方向与原来相反,则由mv乙-mv甲=mv 乙′,解得mv乙′,解得v乙′=0,故C正确;若物块甲的速率达到5 m/s,方向与原来相同,甲′+则mv乙-mv甲=-mv甲′+mv乙′,解得v乙′=6 m/s,两个物块的速率都增大,动能都增大,违反了能量守恒定律;若物块甲的速率达到5 m/s,方向与原来相反,则mv乙-mv甲=mvmv乙′,解得v乙′=-4 m/s,碰撞后,乙的动能不变,甲的动能增加,系统总动能增甲′+加,违反了能量守恒定律,所以物块甲的速率不可能达到5 m/s,故D错误.4.如图所示,小球A和小球B质量相同,球B置于光滑水平面上,当球A从高为h处由静止摆下,到达最低点恰好与B相撞,并粘合在一起继续摆动,它们能上升的最大高度是()A.h B。
高三物理选修3-5第十六章动量守恒定律第四节碰撞弹性碰撞模型和应用专题专项训 集 无答案

高三物理选修3-5第十六章动量守恒定律第四节碰撞弹性碰撞模型及应用专题专项训练习题集【典题强化】1.光滑水平地面上有两个静止的小物块a和b,a的质量为m,b的质量M可以取不同的数据。
现使a以某一速度向b运动,此后a与b发生弹性碰撞()A.当M=m时,碰撞后b的速度最大B.当M=m时,碰撞后b的动能最大C.当M>m时,若M越小,碰撞后b的速度越小D.当M<m时,若M越小,碰撞后b的速度越大2.如图所示,质量为m2的小球B静止在光滑的水平面上,质量为m1的小球A以速度为v0靠近B,并与B发生弹性碰撞。
当m1和v0一定时,若m2越大。
则()A.碰撞过程中B受到的冲量越小B.碰撞过程中A受到的冲量越大C.碰撞后A的速度越小D.碰撞后A的速度越大3.如图所示,小球A的质量为m A=5kg,动量大小为p A=4kgm/s,小球A水平向右运动与静止的小球B 发生弹性碰撞,碰后A的动量大小为p A′=1kgm/s,方向水平向右,则()=3kgm/sA.碰后小球B的动量大小为pB.碰后小球B的动量大小为p B=5kgm/sC.小球B的质量为15kgD.小球B的质量为3kg4.在光滑水平面上有三个完全相同的小球排成一条直线,2、3小球静止,并靠在一起,1球以速度v0射向它们,如图所示。
设碰撞过程中不损耗机械能,则碰撞后三个小球的速度是()A.v1=v2=v3=v0/3 B.v1=0,v2=v3=v0/2C.v1=0,v2=v3=v0/3 D.v1=v2=0,v3=v05.如图所示,B、C、D、E、F,5个小球并排放置在光滑的水平面上,B、C、D、E,4个小球质量相等,而F球质量小于B球质量,A球的质量等于F球质量。
A球以速度v0向B球运动,所发生的碰撞均为弹性碰撞,则碰撞之后()A.5个小球静止,1个小球运动B.4个小球静止,2个小球运动C.3个小球静止,3个小球运动D.6个小球都运动6.如图所示,A、B两球放在光滑的水平面上,水平面的右侧与竖直平面内一光滑曲面相切,现给A一向右的速度,让A与B发生对心弹性碰撞,小球沿曲面上升到最高点后又能再沿曲面滑回到水平面。
2022高中物理第十六章动量守恒定律4碰撞测评含解析新人教版选修3_5

碰撞课后篇巩固提升基础巩固1.质量为m的小球A以水平速率v与静止在光滑水平面上质量为3m的小球B正碰后,小球A 的速率为v2,则碰后B球的速度为(以A球原方向为正方向)()A.v6B.vC.-v3D.v2,若碰后A球运动方向不变,则mv=m v2+3mv B,所以v B=v6<v2,由于这时B球的速度小于A球的速度,B球又是在运动方向的前面,这是不可能的,若碰后A球被反弹回去,则有mv=m(-v2)+3mv B',所以v B'=v2,故选项D正确。
2.A、B两物体发生正碰,碰撞前后物体A、B都在同一直线上运动,其位移—时间图象如图所示。
由图可知,物体A、B的质量之比为()A.1∶1B.1∶2C.1∶3D.3∶1:碰前v A=4m/s,v B=0。
碰后v A'=v B'=1m/s,由动量守恒可知m A v A+0=m A v A'+m B v B',解得m B=3m A。
故选项C正确。
3.如图所示,光滑水平面上有大小相同的A 、B 两个小球在同一直线上运动。
两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为8 kg·m/s,运动过程中两球发生碰撞,碰撞后A 球的动量增量为-4 kg·m/s,则( )A.右方为A 球,碰撞后A 、B 两球的速度大小之比为2∶3B.右方为A 球,碰撞后A 、B 两球的速度大小之比为1∶6C.左方为A 球,碰撞后A 、B 两球的速度大小之比为2∶3D.左方为A 球,碰撞后A 、B 两球的速度大小之比为1∶6、B 两球发生碰撞,规定向右为正方向,由动量守恒定律可得Δp A =Δp B ,由于碰后A 球的动量增量为负值,所以右边不可能是A 球,如果是A 球则动量的增量应该是正值。
因此碰撞后A 球的动量为4kg·m/s,所以碰撞后B 球的动量是增加的,为12kg·m/s,由于m B =2m A ,所以碰后A 、B 两球速度大小之比为2∶3,C 正确;选C 。
高三物理选修3-5第十六章动量守恒定律第四节碰撞板块模型专题专项训练习题集 无答案

高三物理动量守恒定律第四节碰撞板块模型专题专项训练习题集【典题强化】1.如图所示,一大小可忽略不计、质量为m1的小物体放在质量为m2的长木板的左端,长木板放在光滑的水平面上。
现让m1获得向右的速度v0,若小物体最终没有从长木板上滑落,两者间的动摩擦因数为μ。
求:(1)长木板最终的速度(2)上述过程中长木板在水平面上滑行的距离(3)上述过程经历的时间多长(4)长木板的长度至少是多少2.如图所示,质量为M=8kg的木板,放在水平地面上,木板向右运动的速度v0=5m/s时,在木板前端轻放一个大小不计,质量为m=2kg的小物块。
木板与地面、物块与木板间的动摩擦因数均为μ=0.2,g=10m/s2,求:(1)物块及木板的加速度大小(2)经多长时间两者速度相等(3)要使物块不滑离木板,木板至少多长3.如图所示,长2m,质量为2kg的木板静止在光滑水平面上,一木块质量为1kg(可视为质点),与木板之间的动摩擦因数为0.2。
要使木块在木板上从左端滑向右端而不至滑落,试求:(1)木块初速度的最大值为多少(2)若原来木块静止木板向左运动,则木板运动的最大初速度4.如图所示,图(a)表示光滑平台上,物体A以初速度v0滑到上表面粗糙的水平小车上,车与水平面间的动摩擦因数不计,图(b)为物体A与小车B的v-t图像,由此可以求得的物理量是()A.小车上表面长度B.物体A与小车B的质量之比C.A与小车B上表面的动摩擦因数D.小车B获得的动能5.如图甲所示,质量为M的木板静止在光滑水平面上,一个质量为m的小滑块以初速度v0从木板的左端向右滑上木板。
滑块和木板速度随时间变化的图象如图乙所示,某同学根据图象作出如下一些判断,正确的是()A.滑块与木板间始终存在相对运动B.滑块始终未离开木板C.滑块的质量大于木板的质量D.在t1时刻滑块从木板上滑出6.如图所示,平板车的质量为M,物块的质量为m。
它们的速度分别为V1、V2且V2>V1,V1与V2都是相对于地面的速度。
高三物理选修3-5第十六章动量守恒定律第四节碰撞板块模型专题专项训练习题集无答案

高三物理动量守恒定律第四节碰撞板块模型专题专项训练习题集典题强化】1.如图所示,一大小可忽略不计、质量为m1的小物体放在质量为m2 的长木板的左端,长木板放在光滑的水平面上。
现让m1 获得向右的速度v0,若小物体最终没有从长木板上滑落,两者间的动摩擦因数为μ。
求:(1)长木板最终的速度(2)上述过程中长木板在水平面上滑行的距离(3)上述过程经历的时间多长(4)长木板的长度至少是多少2.如图所示,质量为M=8kg 的木板,放在水平地面上,木板向右运动的速度v0=5m/s 时,在木板前端轻放一个大小不计,质量为m=2kg 的小物块。
木板与地面、物块与木板间的动摩擦因数均为μ=0.2,g=10m/s2,求:(1)物块及木板的加速度大小(2)经多长时间两者速度相等(3)要使物块不滑离木板,木板至少多长3.如图所示,长2m ,质量为2kg 的木板静止在光滑水平面上,一木块质量为1kg(可视为质点),与木板之间的动摩擦因数为0.2。
要使木块在木板上从左端滑向右端而不至滑落,试求:1)木块初速度的最大值为多少2)若原来木块静止木板向左运动,则木板运动的最大初速度4.如图所示,图(a)表示光滑平台上,物体 A 以初速度v0 滑到上表面粗糙的水平小车上,车与水平面间的动摩擦因数不计,图(b)为物体 A 与小车 B 的v-t 图像,由此可以求得的物理量是()A.小车上表面长度B.物体 A 与小车 B 的质量之比C. A 与小车 B 上表面的动摩擦因数D.小车 B 获得的动能5.如图甲所示,质量为M 的木板静止在光滑水平面上,一个质量为m 的小滑块以初速度v0 从木板的左端向右滑上木板。
滑块和木板速度随时间变化的图象如图乙所示,某同学根据图象作出如下一些判断,正确的是()A.滑块与木板间始终存在相对运动B.滑块始终未离开木板C.滑块的质量大于木板的质量 D .在t1 时刻滑块从木板上滑出6.如图所示,平板车的质量为 M ,物块的质量为 m 。
人教版高中物理选修3-5 第十六章动量守恒定律第4节碰撞(含解析)

人教版高中物理选修3-5第十六章动量守恒定律1.4碰撞一、单选题(本大题共10小题,共40.0分)1.如图所示,质量相等的五个物块在光滑水平面上,间隔一定距离排成一条直线。
具有初动能E0的物块1向其它4个静止的物块运动,依次发生碰撞,每次碰撞后不再分开,最后5个物块粘成一个整体。
这个整体的动能等于()A. B. C. D.2.如图所示装置中,木块B与水平桌面间的接触面是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短。
则此系统从子弹开始射入木块到弹簧压缩至最短的整个过程中( )A. 子弹减小的动能等于弹簧增加的弹性势能B. 弹簧、木块和子弹组成的系统动量守恒机械能不守恒C. 在木块压缩弹簧过程,木块对弹簧的作用力大于弹簧对木块的作用力D. 在弹簧压缩到最短的时间,木块的速度为零,加速度不为零3.质量相等的A、B两球在光滑水平面上,沿同一直线,同一方向运动,A球的动量为p A=9kg•m/s,B球的动量为p B=3kg•m/s.当A球追上B球时发生碰撞,则碰撞后A、B两球的动量可能值是()A. ,B. ,C. ,D. ,4.如图所示,两个小球A、B在光滑水平地面上相向运动,它们的质量分别为m A=4kg,m B=2kg,速度分别是v A=3m/s(设为正方向),v B=-3m/s.则它们发生正碰后,速度的可能值分别为()A. ,B. ,C. ,D. ,5.质量相等的A、B两球在光滑水平面上,沿同一直线,同一方向运动,A球的动量P A=9kg•m/s,B球的动量P B=3kg•m/s。
当A追上B时发生碰撞,则碰后A、B两球的动量可能值是()A. ,B. ,C. ,D. ,6.光滑水平桌面上有P、Q两个物块,Q的质量是P的n倍.将一轻弹簧置于P、Q之间,用外力缓慢压P、Q.撤去外力后,P、Q开始运动,P和Q的动量大小的比值为()A. B. n C. D. 17.弹性碰撞是指()A. 正碰B. 对心碰撞C. 机械能守恒的碰撞D. 机械能不守恒的碰撞8.两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1kg,m B=2kg,v A=6m/s,v B=2m/s.当A追上B并发生碰撞后,两球A、B速度的可能值是()A. ,B. ,C. ,D. ,9.A、B两球沿一直线运动并发生正碰,如图为两球碰撞前后的位移图象,a、b分别为A、B两球碰前的位移图象,c为碰撞后两球共同运动的位移图象,若A球质量是m=2kg,则由图判断下列结论不正确的是()A. 碰撞前后A的动量变化为4B. 碰撞时A对B所施冲量为C. A、B碰撞前的总动量为3D. 碰撞中A、B两球组成的系统损失的动能为10 J10.两球在水平面上相向运动,发生正碰后都静止,则碰前两球的A. 质量一定相等B. 动能一定相等C. 动量大小一定相等D. 速度大小一定相等二、填空题(本大题共5小题,共20.0分)11.如图的甲所示,光滑水平面上有A、B两物块,已知A物块的质量=2kg,以一定的初速度向右运动,与静止的物块B发生碰撞并一起运动,碰撞前后的位移---时间图象如图的乙所示(规定向右为正方向),则碰撞后的速度为___________m/s,物体B的质量为__________ kg。
高三物理选修3-5第十六章动量守恒定律第四节碰撞弹性碰撞模型和应用专题专项训 集 无答案

高三物理选修3-5第十六章动量守恒定律第四节碰撞弹性碰撞模型及应用专题专项训练习题集【典题强化】1.光滑水平地面上有两个静止的小物块a和b,a的质量为m,b的质量M可以取不同的数据。
现使a以某一速度向b运动,此后a与b发生弹性碰撞()A.当M=m时,碰撞后b的速度最大B.当M=m时,碰撞后b的动能最大C.当M>m时,若M越小,碰撞后b的速度越小D.当M<m时,若M越小,碰撞后b的速度越大2.如图所示,质量为m2的小球B静止在光滑的水平面上,质量为m1的小球A以速度为v0靠近B,并与B发生弹性碰撞。
当m1和v0一定时,若m2越大。
则()A.碰撞过程中B受到的冲量越小B.碰撞过程中A受到的冲量越大C.碰撞后A的速度越小D.碰撞后A的速度越大3.如图所示,小球A的质量为m A=5kg,动量大小为p A=4kgm/s,小球A水平向右运动与静止的小球B 发生弹性碰撞,碰后A的动量大小为p A′=1kgm/s,方向水平向右,则()=3kgm/sA.碰后小球B的动量大小为pB.碰后小球B的动量大小为p B=5kgm/sC.小球B的质量为15kgD.小球B的质量为3kg4.在光滑水平面上有三个完全相同的小球排成一条直线,2、3小球静止,并靠在一起,1球以速度v0射向它们,如图所示。
设碰撞过程中不损耗机械能,则碰撞后三个小球的速度是()A.v1=v2=v3=v0/3 B.v1=0,v2=v3=v0/2C.v1=0,v2=v3=v0/3 D.v1=v2=0,v3=v05.如图所示,B、C、D、E、F,5个小球并排放置在光滑的水平面上,B、C、D、E,4个小球质量相等,而F球质量小于B球质量,A球的质量等于F球质量。
A球以速度v0向B球运动,所发生的碰撞均为弹性碰撞,则碰撞之后()A.5个小球静止,1个小球运动B.4个小球静止,2个小球运动C.3个小球静止,3个小球运动D.6个小球都运动6.如图所示,A、B两球放在光滑的水平面上,水平面的右侧与竖直平面内一光滑曲面相切,现给A一向右的速度,让A与B发生对心弹性碰撞,小球沿曲面上升到最高点后又能再沿曲面滑回到水平面。
人教版选修3-5课堂同步精选练习题:第十六章 第4节 碰撞(含解析)

人教版选修3-5课堂同步精选练习第十六章 第4节 碰撞(含解析)1、下列对于碰撞的理解正确的是( )A .碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生了显著变化的过程B .在碰撞现象中,一般内力都远大于外力,所以可以认为碰撞时系统的动能守恒C .如果碰撞过程中机械能守恒,这样的碰撞叫做非弹性碰撞D .微观粒子的相互作用由于不发生直接接触,所以不能称其为碰撞解析:碰撞是十分普遍的现象,它是相对运动的物体相遇时发生的一种现象,一般内力远大于外力.如果碰撞中机械能守恒,这样的碰撞是弹性碰撞.微观粒子的相互作用同样具有短时间内发生强大内力作用的特点,所以仍然是碰撞.【答案】A2.如图所示在足够长的光滑水平面上有一静止的质量为M 的斜面,斜面表面光滑、高度为h 、倾角为θ.一质量为m (m <M )的小物块以一定的初速度沿水平面向右运动,不计冲上斜面过程中的机械能损失.如果斜面固定,则小物块恰能冲到斜面的顶端.如果斜面不固定,则小物块冲上斜面后能达到的最大高度为( )A .h B.mh m +M C.mh M D.Mh m +M解析:斜面固定时,由动能定理得-mgh =0-12mv 20,所以v 0=2gh ;斜面不固定时,由水平方向动量守恒得mv 0=(M +m )v ,由机械能守恒得12mv 20=12(M +m )v 2+mgh ′,解得h ′=M M +mh ,故选D. 【答案】D3、在光滑的水平面上有三个完全相同的小球,它们在一条直线上,2、3小球静止,并靠在一起,1小球以速度v 0撞向它们,如图所示.设碰撞中不损失机械能,则碰后三个小球的速度的可能值是( )A .v 1=v 2=v 3=13v 0B .v 1=0,v 2=v 3=12v 0 C .v 1=0,v 2=v 3=12v 0 D .v 1=v 2=0,v 3=v 0 解析:两个质量相等的小球发生弹性正碰,碰撞过程中动量守恒、机械能守恒,碰撞后将交换速度,故D 项正确.【答案】D4、(多选)质量为m ,速度为v 的A 球跟质量为3m 的静止的B 球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此碰撞后B 球的速度可能值为( )A .0.6vB .0.4vC .0.2vD .0.3v解析:如果碰撞是弹性的,由动量守恒和能量守恒得mv =mv 1+3mv 2,12mv 2=12mv 21+123mv 22,v 2=0.5v ,此过程B 获得速度最大;如果碰撞是非弹性的,粘在一起时B 获得速度最小,由mv =4mv 3,v 3=0.25v ,则B 的速度可能值为v 3≤v B ≤v 2,即0.25v ≤v B ≤0.5v ,B 、D 正确.【答案】BD5、(多选)如图所示,用两根长度都等于L 的细绳,分别把质量相等、大小相同的a 、b 两球悬于同一高度,静止时两球恰好相接触.现把a 球拉到细绳处于水平位置,然后无初速释放,当a 球摆动到最低位置与b 球相碰后,b 球可能升高的高度为( )A .L B.4L 5 C.L 4 D.L 8解析:若a 、b 两球发生完全弹性碰撞,易知b 球上摆的高度可达L ;若a 、b 两球发生完全非弹性碰撞(即碰后两球速度相同),则根据mv =2mv ′和12·2mv ′2=2mgh ′,可知其上摆的高度为L 4.考虑到完全非弹性碰撞中动能的损失最多,故b 球上摆的高度应满足L 4≤h ≤L . 【答案】ABC6、(多选)如图(a)所示,光滑平台上,物体A 以初速度v 0滑到上表面粗糙的水平小车上,车与水平面间的动摩擦因数不计;(b)图为物体A 与小车B 的v - t 图象,由此可知( )A .小车上表面长度B .物体A 与小车B 的质量之比C .物体A 与小车B 上表面的动摩擦因数D .小车B 获得的动能解析:由图象可知,物体A 与小车B 最终以共同速度v 1匀速运动,不能确定小车上表面的长度,故A 错误;由动量守恒定律得m A v 0=(m A +m B )v 1,解得m A m B =v 1v 0-v 1,可以确定物体A 与小车B 的质量之比,故B 正确;由图象可以知道,物体A 相对小车B 的位移Δx =12v 0t 1,根据能量守恒得μm A g Δx =12m A v 20-12(m A +m B )v 21,根据求得的物体A 与小车B 的质量关系,可以解出物体A 与小车B 上表面的动摩擦因数,故C 正确;由于小车B 的质量不可知,故不能确定小车B 获得的动能,故D 错误.故选B 、C.【答案】BC7、(多选)质量为m 的小球A 在光滑的水平面上以速度v 与静止在光滑水平面上的质量为2m 的小球B 发生正碰,碰撞后,A 球的动能变为原来的19,那么碰撞后B 球的速度大小可能是( ) A.13v B.23v C.49v D.89v 解析:设A 球碰后的速度为v A ,由题意有12mv 2A =19×12mv 2,则|v A |=13v ,碰后A 的速度有两种可能,因此由动量守恒定律有mv =m ×13v +2mv B 或mv =-m ×13v +2mv B ,解得v B =13v 或23v . 【答案】AB8、(多选)如图所示,光滑曲面下端与光滑水平面相切,一质量为m 的弹性小球P 沿曲面由静止开始下滑,与一质量为km (k 为大于0的正整数)且静止在水平地面上的弹性小球Q 发生弹性正碰.为使二者只能发生一次碰撞,下列关于k 的取值可能正确的是( )A .1B .2C . 3D .4解析:设碰前的速度为v 0,碰撞满足动量守恒定律和机械能守恒定律,则有mv 0=mv 1+kmv 2,12mv 20=12mv 21+12kmv 22,联立解得v 1=1-k 1+k v 0,v 2=21+k v 0,为使二者只能发生一次碰撞,所以必须满足|v 1|≤|v 2|,又k 为大于0的正整数,所以0<k ≤3,即k 的取值可能为1、2、3,选项A 、B 、C 正确,D 错误.【答案】ABC9、(多选)在光滑的水平面上,有A 、B 两球沿同一直线向右运动,如图所示.已知碰撞前两球的动量分别为p A =12 kg·m/s ,p B =13 kg·m/s.碰撞后它们的动量变化Δp A 、Δp B 有可能是( )A .Δp A =-3 kg·m/s ,ΔpB =3 kg·m/s B .Δp A =4 kg·m/s ,Δp B =-4 kg·m/sC .Δp A =-5 kg·m/s ,Δp B =5 kg·m/sD .Δp A =-24 kg·m/s ,Δp B =24 kg·m/s解析:四个选项均遵守动量守恒定律,即有Δp A +Δp B =0,由于本题是追赶碰撞,物理情景可行性必有v A >v B ,v B ′>v B ,所以有Δp B >0,因而Δp A <0,可将B 选项排除,再由碰后动能不增加得:12m A v 2A +12m B v 2B ≥12m A v ′2A +12m B v ′2B ①12m B v 2B <12m B v ′2B ② 联立①②解得12m A v ′2A <12m A v 2A 而D 选项中12m A v ′2A =12m A v 2A ③ 故排除D 选项,检验选项A 、C ,可知同时满足碰撞的三个原则,故本题的答案应为A 、C.【答案】AC能力达标10、A 、B 两物体在光滑水平面上相向运动,其中物体A 的质量为m A =4 kg ,两物体发生相互作用前后的运动情况如图所示.则:(1)由图可知,A 、B 两物体在________时刻发生碰撞,B 物体的质量为m B =________kg.(2)碰撞过程中,系统的机械能损失多少?【答案】(1)2 s 6 (2)30 J解析:(1)由图象知,在t =2 s 时刻A 、B 相撞,碰撞前后,A 、B 的速度:v A =Δx A t =-42 m/s =-2 m/s v B =Δx B t =62m/s =3 m/s v AB =Δx AB t =22 m/s =1 m/s 由动量守恒定律有:m A v A +m B v B =(m A +m B )v AB解得m B =6 kg.(2)碰撞过程损失的机械能:ΔE =12m A v 2A +12m B v 2B -12(m A +m B )v 2AB =30 J. 11、如图所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、B 静置于光滑水平轨道上,A 、B 的质量分别为1.5 kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,g 取10 m/s 2.求:(1)在A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小;(2)A 、B 滑上圆弧轨道的最大高度.【答案】(1)50 N (2)0.45 m解析:(1)设水平向右为正方向,当A 与墙壁碰撞时,根据动量定理有 F t =m A v ′1-m A (-v 1)解得F =50 N.(2)设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有m A v ′1=(m A +m B )vA 、B 在光滑圆弧轨道上滑动时机械能守恒,由机械能守恒定律得12(m A+m B )v 2=(m A +m B )gh 解得h =0.45 m.12、如图所示,质量为m 的炮弹运动到水平地面O 点正上方时速度沿水平方向,离地面的高度为h ,动能为E ,此时发生爆炸,分解为质量相等的两部分,两部分的动能之和为2E ,速度方向仍沿水平方向,爆炸时间极短,重力加速度为g ,不计空气阻力和火药的质量,求炮弹的两部分落地点之间的距离.【答案】4Eh mg解析:爆炸之前E =12mv 20爆炸过程动量守恒,有mv 0=12mv 1+12mv 2 12(m 2)v 21+12(m 2)v 22=2E 联立解得v 1=0,v 2=2v 0即爆炸后一部分做自由落体运动,另一部分做平抛运动,有h =12gt 2 x =2v 0t解得炮弹的两部分落地点之间的距离为x =4Eh mg. 13、如图所示,ABD 为竖直平面内的轨道,其中AB 段水平粗糙,BD 段为半径R =0.08 m 的半圆光滑轨道,两段轨道相切于B 点.小球甲以v 0=5 m/s 的速度从C 点出发,沿水平轨道向右运动,与静止在B 点的小球乙发生弹性正碰,碰后小球乙恰好能到达圆轨道最高点D .已知小球甲与AB 段间的动摩擦因数μ=0.4,CB 的距离s =2 m ,g 取10 m/s 2,甲、乙两球可视为质点.求:(1)碰撞前瞬间,小球甲的速度大小v 甲;(2)小球甲和小球乙的质量之比.【答案】(1)3 m/s (2)12解析:(1)对甲在CB 段,由动能定理得μm 甲gs =12m 甲v 20-12m 甲v 2甲 解得v 甲=3 m/s. (2)碰后,乙恰好能到达圆轨道最高点D ,由牛顿第二定律得m 乙g =m 乙v 2D R从B 点到D 点,由机械能守恒定律得12m 乙v 2D +2m 乙gR =12m 乙v 2B 解得v B =5gR =2 m/s在B 位置,甲、乙碰撞过程中甲、乙组成的系统动量守恒,以水平向右为正方向,由动量守恒定律得 m 甲v 甲=m 甲v ′甲+m 乙v B由机械能守恒定律得12m 甲v 2甲=12m 甲v ′2甲+12m 乙v 2B所以m 甲m 乙=12. 14、如图所示,滑块A 、C 质量均为m ,滑块B 质量为32m .开始时A 、B 分别以v 1、v 2的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C 无初速度地放在A 上,并与A 粘合不再分开,此时A 与B 相距较近,B 与挡板相距足够远.若B 与挡板碰撞将以原速率反弹,A 与B 碰撞后将粘合在一起.为使B 能与挡板碰撞两次,v 1、v 2应满足什么关系?【答案】1.5v 2<v 1≤2v 2或12v 1≤v 2<23v 1 解析:设向右为正方向,A 与C 粘合在一起的共同速度为v ′,由动量守恒定律得mv 1=2mv ′①为保证B 碰挡板前A 未能追上B ,应满足v ′≤v 2②设A 、B 碰后的共同速度为v ″,由动量守恒定律得2mv ′-32mv 2=72mv ″③ 为使B 能与挡板再次相碰应满足v ″>0④联立①②③④式解得1.5v 2<v 1≤2v 2或12v 1≤v 2<23v 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理选修3-5第十六章动量守恒定律第四节碰撞板块模型专题专项训练习题集【典题强化】1.如图所示,一大小可忽略不计、质量为m1的小物体放在质量为m2的长木板的左端,长木板放在光滑的水平面上。
现让m1获得向右的速度v0,若小物体最终没有从长木板上滑落,两者间的动摩擦因数为μ。
求:(1)长木板最终的速度(2)上述过程中长木板在水平面上滑行的距离(3)上述过程经历的时间多长(4)长木板的长度至少是多少2.如图所示,质量为M=8kg的木板,放在水平地面上,木板向右运动的速度v0=5m/s时,在木板前端轻放一个大小不计,质量为m=2kg的小物块。
木板与地面、物块与木板间的动摩擦因数均为μ=0.2,g=10m/s2,求:(1)物块及木板的加速度大小(2)经多长时间两者速度相等(3)要使物块不滑离木板,木板至少多长3.如图所示,长2m,质量为2kg的木板静止在光滑水平面上,一木块质量为1kg(可视为质点),与木板之间的动摩擦因数为0.2。
要使木块在木板上从左端滑向右端而不至滑落,试求:(1)木块初速度的最大值为多少(2)若原来木块静止木板向左运动,则木板运动的最大初速度4.如图所示,图(a)表示光滑平台上,物体A以初速度v0滑到上表面粗糙的水平小车上,车与水平面间的动摩擦因数不计,图(b)为物体A与小车B的v-t图像,由此可以求得的物理量是()A.小车上表面长度B.物体A与小车B的质量之比C.A与小车B上表面的动摩擦因数D.小车B获得的动能5.如图甲所示,质量为M的木板静止在光滑水平面上,一个质量为m的小滑块以初速度v0从木板的左端向右滑上木板。
滑块和木板速度随时间变化的图象如图乙所示,某同学根据图象作出如下一些判断,正确的是()A.滑块与木板间始终存在相对运动B.滑块始终未离开木板C.滑块的质量大于木板的质量D.在t1时刻滑块从木板上滑出6.如图所示,平板车的质量为M,物块的质量为m。
它们的速度分别为V1、V2且V2>V1,V1与V2都是相对于地面的速度。
物块与平板车间的动摩擦因数为μ,平板车与地面之间无摩擦,物块刚好没有从平板车上滑落,从开始到物块与平板车共同运动的过程中。
求:(1)长木板的长度至少是多少(2)上述过程经历的时间多长(3)上述过程中长木板在水平面上滑行的距离7.如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ。
现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向(2)平板车的长度至少是多少(3)从地面上看,小木块向左运动最大位移(4)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小(5)上述过程所经历的时间8.如图所示,在光滑水平面上,有一质量为M=3kg的薄板和质量m=1kg的物块,都以v=4m/s的初速度朝相反的方向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.4 m/s时,物块的运动情况是()A.做加速运动B.做减速运动C.做匀速运动D.以上运动都有可能9.如图所示,一质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m<M。
现以地面为参照系,给A和B以大小相等、方向相反的初速度,使A开始向左运动、B 开始向右运动,但最后A刚好没有滑离木板。
以地面为参照系。
(1)若已知A和B的初速度大小为v0,求它们最后的速度的大小和方向(2)若初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离10.如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙。
重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ。
使木板与重物以共同的速度v0向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短。
求木板从第一次与墙碰撞到再次碰撞所经历的时间。
设木板足够长,重物始终在木板上。
重力加速度为g。
【巩固提高】1.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块,木箱和小木块都具有一定的质量,现使木箱获得一个向右的初速度v0。
则( )A .小木块和木箱最终都将静止B .小木块最终将相对木箱静止,二者一起向右运动C .小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D .如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ。
初始时小物块停在箱子正中间,如图所示。
现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止。
设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A .12mv 2B .v 2 C .12NμmgL D .NμmgL3.如图所示,设车厢长度为L ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以速度v0从车厢的左壁处向右运动,与车厢壁来回碰撞后,最后相对静止于车厢的正中央。
物体与车厢碰撞不损失能量,已知物体与车厢地板的摩擦因数为μ。
求物体与车厢碰撞的次数4.如图所示,长木板A 右边固定一个挡板,包括挡板在内的总质量为1.5m ,静止在光滑的水平面上,小木块B 质量为m ,从A 的左端开始以初速度v 0在A 上滑动,滑到右端与挡板发生碰撞,已知碰撞过程时间极短,碰后木块B 恰好滑到A 的左端停止,B 在A 板上单程滑行长度为l 。
试求:B 与A 间的动摩擦因数5.质量为M 的平板车P 高h ,质量为m 的小物块Q 的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上。
一不可伸长的轻质细绳长为R ,一端悬于Q 正上方高为R 处,另一端系一质量也为m 的小球(大小不计)。
今将小球拉至悬线与竖直位置成600角,由静止释放,小球到达最低点时与Q 的碰撞时间极短,且无能量损失。
已知Q 离开平板车时速度大小是平板车速度的两倍,Q 与P 之间的动摩擦因数为μ,M :m =4:1,重力加速度为g 。
求:(1)小球到达最低点与Q 碰撞之前瞬间的速度是多大?(2)小物块Q 离开平板车时平板车的速度为多大?(3)平板车P 的长度为多少?6.如图所示,固定在地面上的光滑圆弧面与车C的上表面平滑相接,在圆弧面上有一个滑块A,其质量为m A=2kg,在距车的水平面高h=1.25m处由静止下滑,车C的质量为m C=6kg,在车C的左端有一个质量m B=2kg的滑块B,滑块A与B均可看做质点,滑块A与B碰撞后黏合在一起共同运动,最终没有从车C上滑出,已知滑块A、B与车C的动摩擦因数均为μ=0.5,车C与水平地面的摩擦忽略不计。
取g=10m/s2。
求:(1)滑块A滑到圆弧面末端时的速度大小(2)滑块A与B碰撞后瞬间的共同速度的大小(3)车C的最短长度7.如图所示,A为有光滑曲面的固定轨道,轨道底端的切线方向是水平的,质量M1=0.5kg,M2=0.4kg的小车B、C紧靠着静止于轨道右侧的光滑水平面上,其上表面与轨道底端在同一水平面上。
一质量为m=0.1kg 的物体,以6m/s的初速度从轨道顶端滑下,冲上小车B后,最终与C车相对静止以1.8m/s的速度前进,若轨道顶端与底端高度差h=3.2m,取g=10m/s2,物块与车板面间动摩擦因数μ=0.2。
求:(1)最后M1的速度v1(2)物体冲上小车后,到与C车相对静止经历的时间t(3)系统在整个过程中克服摩擦力所做的功8.质量为M=2kg的小平板车静止在光滑水平面上,车的一端静止着质量为m A=2kg的物体A(可视为质点),如图所示。
一颗质量为m B=20g的子弹以600m/s的水平速度射穿物体A后,速度变为100m/s,最后物体A仍静止在车上,若物体A与小车间的动摩擦因数μ=0.5,g取10m/s2。
求:(1)平板车最后的速度是多大(2)平板车的长度至少是多少9.如图所示,质量为1.9kg的长木板A放在光滑的水平面上,在长木板最右端放一个质量为1kg小物块B,物块与木板间的动摩擦因数μ=0.2。
在t=0时刻A、B均静止不动,现有质量为100g的子弹,以初速度v0=120m/s射入长木板并留在其中(此过程可视为瞬间完成)。
物块始终在木板上,取重力加速度的大小g=10m/s2。
求:(1)木板开始滑动的初速度(2)木板最终的速度(3)物块在长木板上滑行的距离10.如图所示,在光滑水平面上有两个木块A、B,木块B左端放置小物块C并保持静止,已知m A=m B=0.2kg,m C=0.1kg,现木块A以初速度v=2m/s沿水平方向向右滑动,木块A与B相碰后具有共同速度(但不粘连),设木块A足够长,C与A、B间的摩擦因数μ=0.2。
求:(1)木块A与B相碰后瞬间A木块及小物块C的速度大小(2)小物块C的最终速度(3)小物块C在木块A上滑行的时间和距离【能力拓展】1.如图所示,在一光滑的水平面上有两块相同的木板B 和C ,重物A (视为质点)位于B 的右端,A 、B 、C 的质量相等,现A 和B 以同一速度滑向静止的C ,B 与C 发生正碰,碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 间有摩擦力,已知A 滑到C 的右端而未掉下。
求:从B 、C 发生正碰到A 刚移到C 右端期间,C 所走过的距离是C 板长度的多少倍?2.两块厚度相同的木块A 和B ,紧靠着放在光滑的水平面上,其质量分别为m A =2.0kg ,m B =0.90kg ,它们的下底面光滑,上表面粗糙,其动摩擦因数μ=0.2,另有一质量m C =0.10kg 的滑块C(可视为质点),以v C =10m/s 的速度恰好水平地滑A 的上表面,如图所示,由于摩擦,滑块最后停在木块B 上,B 和C 的共同速度为0.50m/s 。
求:(1)滑块C 在木块A 和B 上滑行的时间 (2)木块A 的长度 (3)滑块C 在木块B 上滑行的距离(4)B 和C 达到共同速度是木块A 和木块B 的间距3.如图所示,水平地面上固定一个半径为R=0.8m 的四分之一光滑圆轨道,圆轨道末端水平并与一个足够长的匀质木板的左端等高接触但不连接。
木板的质量为M=2kg ,其左端有一个处于静止状态的小物块a ,质量为m a =1kg 。
现将一质量为m b =3kg 的小物块b 由圆轨道最高点无初速度释放,并与物块a 在圆轨道最低点发生碰撞,碰撞时间极短且碰撞过程中无机械能损失(物块a 、b 可视为质点,重力加速度g 取10m/s 2)。
(1)求碰后瞬间两物块的速度大小(2)若两个小物块a 、b 与木板间的动摩擦因数均为μ1=0.3,木板与地面间的动摩擦因数为μ2=0.1,求最终两个小物块a 、b 间的距离(3)若两个小物块a 、b 与木板间的动摩擦因数均为μ1=0.3,木板与地面间的摩擦不计,求最终两个小物块a 、b 间的距离4.质量为M=4.0kg 的平板小车静止在光滑的水平面上,如图所示,当t=0时,两个质量分别为m A =2kg 、m B =1kg 的小物体A 、B 都以大小为v 0=7m/s .方向相反的水平速度,同时从小车板面上的左右两端相向滑动。