高中数学拓展知识一戴德金分割

合集下载

《数学文化》之黄金分割

《数学文化》之黄金分割
黄金分割比例
在艺术中,黄金分割比例通常被表示为1:1.618(或约等于0.618:1),这一比 例被认为是最具美感的比例。
平衡与和谐
黄金分割原则在艺术中的应用旨在创造平衡、和谐和美感,通过将作品的不同 部分按照黄金分割比例进行布局,可以使作品更加吸引观众的目光。
黄金分割在建筑、绘画等领域的应用
建筑中的应用
自然界模拟
黄金分割也用于模拟自然界中的形态和结构,如植物分形、雪花等 自然物体的生成算法。
动画与游戏设计
在动画和游戏设计中,黄金分割可用于角色设计、场景布局以及游戏 界面的优化,提升用户体验。
黄金分割在优化问题中的应用
1 2 3
搜索算法
黄金分割搜索算法是一种用于求解单峰函数最优 解的方法,通过不断缩小搜索区间来逼近最优解。
03
黄金分割与自然界
自然界中的黄金分割现象
01
黄金分割比例
自然界中许多事物都呈现出黄金分割比例,即较长部分与较短部分之比
等于整体与较长部分之比,其比值约为1.618。
02
螺旋形态
许多自然物体的形态,如旋风、螺壳等,都呈现出与黄金分割相关的螺
旋形态。
03
植物的生长模式
植物的生长模式,如叶子的排列、枝条的分叉等,也常遵循黄金分割法
02
黄金分割与数学美
数学美的体现
01
02
03
简洁性
黄金分割作为一种数学概 念,其表达式简单明了, 体现了数学的简洁美。
对称性
黄金分割与对称性密切相 关,许多具有黄金分割特 征的图形都呈现出对称性, 展示了数学的对称美。
和谐性
黄金分割在自然界和艺术 作品中广泛存在,其比例 关系带给人一种和谐与平 衡的美感。

戴德金分割法

戴德金分割法

戴德金分割法
戴德金分割法(Debt Equity Ratio)是一种用来衡量企业资本结构的指标,它指的是企业债务与股东权益之间的比率。

戴德金分割法可以用以下公式表示:Debt Equity Ratio = Total Debt / Total Equity
其中,Total Debt代表企业的总债务,包括长期债务和短期债务;Total Equity代表企业的股东权益,包括股本、留存收益和其他所有者权益。

通过计算戴德金分割比率,可以评估企业的财务稳定性和偿债能力。

较高的戴德金分割比率可能表示企业债务负担较重,风险较高。

较低的比率可能表示企业相对较少依赖债务融资,财务稳定性较好。

需要注意的是,戴德金分割比率在不同行业和企业之间,可接受的比率范围可能有所不同。

一些行业可能需要更高的债务资本比,而其他行业则更加注重股东权益的比例。

此外,戴德金分割比率也可以在不同时间点进行比较,以分析企业的财务状况的变化趋势。

比率随着时间的推移发生显著变化可能会显示出企业的持续债务增长或权益融资活动。

综上所述,戴德金分割法是一种常用的财务指标,用于评估企业资本结构和偿债能力。

然而,它仅提供一个指标,不能独立判断企业财务状况的好坏,还需要结合其他财务指标和行业特点进行综合分析。

120504高二数学理黄金分割法课件

120504高二数学理黄金分割法课件

制作 12
2012年上学期
训练2. 比较第二、三次试验结果, 如果第二试点x2仍是好点, 则第四试
点x4的值如何计算 ?
1000 1236 1382 1618
x3 x2
x1
x4=1236+1618-1382=1472(g)
湖南长郡卫星远程学校
制作 12
2012年上学期
2. 黄金分割法(0.618法)找第n个试验 点x的方法:
小头
大头
x2 (x1) x1 (x2)
x1=小+0.618×(大-小)
或大-0.618×(大-小)
x2=小+大-x1.
湖南长郡卫星远程学校
制作 12
2012年上学期
思考3:用黄金分割法确定第一试 点x1后,x2的值相当于“加两头,减中 间”。类似地,在确定第n个试点xn时 ,如果存优范围内相应的好点是xm, 则xn等于什么?
湖南长郡卫星远程学校
制作 12
2012年上学期
3. 0.618法n次试验后的精度 为:
δn=0.618n-1
湖南长郡卫星远程学校
制作 12
2012年上学期
《考一本》P9-P10
湖南长郡卫星远程学校
制作 12
2012年上学期
x2=1000+2000-x1=1618(g).
湖南长郡卫星远程学校
制作 12
2012年上学期
另解:因为对称, 也可这样找第1.2个试点
1000 1382 1618 2000
x1
x2
x1=2000-0.618×(2000-1000)
=1382(g),
x2=1000+2000-x1=1618(g).
思考1: 用一张纸条表示1000~

人教版高中数学选修4-7《黄金分割法》

人教版高中数学选修4-7《黄金分割法》

许多植物萌生的叶片、枝头或花瓣,都是按“黄金比率”分布的。 我们从上往下看,不难发现这样一个有趣的现象: 它们把水平面的360°周角分为大约222.5°和137.5°(黄金角) 两者的比例大约是“黄金比率”0.618 也就是说—— 任意两相邻的叶片、枝头或花瓣都沿着这两个角度伸展, 这样一来,尽管它们不断轮生,却互不重叠,确保了光合作用。
试把相邻两项的前后比值计算一下,看看有什么发现?
3.黄金分割的奇妙之处
黄金分割具有严格的比例性、艺术性、和谐性,
蕴藏着丰富的美学价值,这一比值能够引起人们的美感,
被认为是建筑和艺术中最理想的比例。
如果在“黄金”矩形内靠着 三边做一个正方形,则剩下 的那部分又是一个“黄金” 矩形,可依次再做正方形。 把这些正方形的中心按顺序 连接,可以得到一条“黄金 螺线”。 在海洋鹦鹉螺、有甲壳的软 体动物、一些动物角质体上, 都先后发现了这种与众不同 的“黄金螺线”。
黄金分割法
很多国家的国旗含有五角星图案
1.黄金分割的起源
公元前6世纪的古希腊,毕达哥拉斯学派把五角星作为自身的徽章 他们在每个角的顶点按逆时针方向刻着字母υγτεια, 意思是“健康”,表达了对人与自然和谐的追求
五角星由正五边形的对角线连接而成, 所有线段之间的长度关系比例相同, 内含所有三角形是等腰三角形
小试验:
据说植物的叶脉和根茎长度也蕴含着黄金分割比, 很多设计图里面也会借用黄金比例, 请你找实物测量一下吧!

Hale Waihona Puke • 几何作图(1)设已知线段为AB, 过点B作BD⊥AB,且BD=AB/2 (2)连结AD (3)以D为圆心,DB为半径作弧, 交AD于E (4)以A为圆心,AE为半径作弧, 交AB于C,则点C即为黄金分割 点

高中数学一轮复习微专题第①季集合与简易逻辑:第4节 集合背景下的新定义问题

高中数学一轮复习微专题第①季集合与简易逻辑:第4节  集合背景下的新定义问题

第4节集合背景下的新定义问题【基础知识】以集合为背景的新定义问题,集合只是一种表述形式,实质上考查的是考生接受新信息、理解新情境、解决新问题的数学能力.解决此类问题,要从以下两点入手:(1)正确理解创新定义.分析新定义的表述意义,把新定义所表达的数学本质弄清楚,进而转化成熟知的数学情境,并能够应用到具体的解题之中,这是解决问题的基础.(2)合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,但关键之处还是合理利用集合的运算与性质.对于新定义问题,我们只要透过现象看本质,他们考查的还是基本知识,所以新定义不一定是难题,只要我们掌握好双基,以不变应万变就是制胜的法宝。

1、对新定义进行信息提取,明确新定义的名称和符号;2、细细品味新定义的概念、法则,对新定义所提取的信息进行加工,探求解决方法,有时可以寻找相近知识点,明确它们的共同点和不同点;3、对新定义中提取的知识点进行转换,有效的输出,其中对定义信息中的提取和化归转化是解题的关键,也是解题的难点。

如果是新定义的运算、法则,直接按照运算法则计算即可;若是新定义的性质,一般就要判断性质的适用性,能否利用定义外延;也可用特殊值排除等方法。

【规律技巧】(1)准确转化:解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆.(2)方法选取:对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.(3)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质.按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解.【典例讲解】【例1】设集合M=x |3m≤x≤m+1n-≤x≤n3,且M,N都是集合{0|0≤x≤1}的子集,如果把b-a叫作集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是()1 3 A.23B.C.112D.512【点评】本题的难点是理解集合的“长度”,解题时紧扣新定义与基础知识之间的相互联系,把此类问题转化成熟悉的问题进行求解.【例2】在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1]②-3∈[3]③Z=[0]∪[1]∪[2]∪[3]∪[4]④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”,其中,正确结论的个数是()A.1B.2C.3D.4解析:选C①2011=2010+1=402×5+1∈[1],正确;由-3=-5+2∈[2]可知②不正确;根据题意信息可知③正确;若整数a,b属于同一类,不妨设a,b∈[k]={5n+k|n∈Z},则a=5n+k,b=5m+k,n,m为整数,a-b=5(n-m)+0∈[0]正确,故①③④正确.【针对训练】1、以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x) =x3,φ2(x)=sin x时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②若函数f(x)∈B,则f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)B;④若函数f(x)=aln(x+2)+(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有__________.(写出所有真命题的序号)2、设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题:①集合S={a+bi|a,b为整数,i为虚数单位}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足S⊆T⊆C的任意集合T也是封闭集.其中的真命题是______.(写出所有真命题的序号)答案①②3、所谓戴德金分割,是指将有理数集划分为两个非空的子集与,且满足,,中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中,不可能成立的是()A.没有最大元素,有一个最小元素B.没有最大元素,也没有最小元素C.有一个最大元素,有一个最小元素D.有一个最大元素,没有最小元素【答案】C4.【2015届广东省汕头市澄海凤翔中学高三上学期第三次段考理科数学试卷】设整数,集合.令集合.若和都在中,则下列选项正确的是()A.,B.,C.,D.,【答案】B【解析】试题分析:∵(x,y,z)∈S,(z,w,x)∈S,∴x<y<z①,y<z<x②,z<x<y③三个式子中恰有一个成立;z<w<x④,w<x<z⑤,x<z<w⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w<x<y<z,于是(y,z,w)∈S,(x,y,w)∈S;第二种:①⑥成立,此时x<y<z<w,于是(y,z,w)∈S,(x,y,w)∈S;;第三种:②④成立,此时y<z<w<x,于是(y,z,w)∈S,(x,y,w)∈S;第四种:③④成立,此时z<w<x<y,于是(y,z,w)∈S,(x,y,w)∈S;.综合上述四种情况,可得(y,z,w)∈S,(x,y,w)∈S,故选B.考点:考查了新定义的集合问题.5.【2015届四川省成都外国语学校高三10月月考理科数学试卷】用C(A)表示非空集合A 中的元素个数,定义A*B=.若A={1,2},B=,且A*B=1,设实数的所有可能取值集合是S,则C(S)= ()A.4B.3C.2D.1【答案】B【解析】试题分析:因为,所以或.由得:.当时,,满足题设.对,当时,,此时符合题意.当时,或,此时必有,不符合题意.所以.选B.考点:1、新定义;2、一元二次方程.6.【2014届江苏省淮安市淮海中学高三Ⅲ级部决战四统测三数学试卷】已知等比数列的首项为,公比为,其前项和记为,又设,的所有非空子集中的最小元素的和为,则的最小正整数为.【答案】457.【2014-2015学年四川省成都石室中学高二上学期10月月考理科数学卷】已知函数,集合,集合.(1)求集合对应区域的面积;(2)若点,求的取值范围.【答案】(1);(2)【练习巩固】1、定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0B.2C.3D.6解析:根据题中定义的集合运算知A*B={0,2,4},故应选择D.2.设集合A={1,2,3},B={2,3,4,5},定义A⊙B={(x,y)|x∈A∩B,y∈A∪B},则A⊙B中元素的个数是()A.7B.10C.25D.52解析:A∩B={2,3},A∪B={1,2,3,4,5},由列举法可知A⊙B={(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)},共有10个元素,故选B.3.定集合A,若对于任意a,b∈A,有a+b∈A,且a-b∈A,则称集合A为闭集合,给出如下三个结论:①集合A={-4,-2,0,2,4}为闭集合;②集合A={n|n=3k,k∈Z}为闭集合;③若集合A1,A2为闭集合,则A1∪A2为闭集合.其中正确结论的序号是__________.4.对于复数a,b,c,d,若集合S={a,b,c,d}具有性质“对任意x,y∈S,必有xy ∈S”,则当时,b+c+d等于______5.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q ={x||x-2|<1},那么P-Q等于()A.{x|0<x<1}B.{x|0<x≤1}C.{x|1≤x<2}D.{x|0≤x<2}解析:由log2x<1,得0<x<2,所以P={x|0<x<2};由|x-2|<1,得1<x<3,所以Q={x|1<x<3}.由题意,得P-Q={x|0<x≤1}.答案:B6.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(1)T={f(x)|x∈S};(2)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是()A.A=N*,B=N B.A={x|-1≤x≤3},B={x|x=-8或0<x ≤10}C.A={x|0<x<1},B=R D.A=Z,B=Q7.定义A-B={x|x∈A且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M=________.解析:关键是理解A-B运算的法则,N-M={x|x∈N,且x∉M}={6}.答案:{6}8.如图所示的韦恩图中,A,B是非空集合,定义A*B表示阴影部分集合,若x,y∈R,A ={x|y=2x-x2},B={y|y=3x,x>0},则A*B=________.解析:∵A={x|y=2x-x2}=[0,2],B={y|y=3x,x>0}=(1,+∞),∴A∪B=[0,+∞),A∩B=(1,2],∴A*B=[0,1]∪(2,+∞).答案:[0,1]∪(2,+∞)9.对于集合A={a1,a2,…,a n}(n∈N*,n≥3),定义集合S={x|x=a i+a j,1≤i<j≤n},记集合S中的元素个数为S(A).若a1,a2,…,a n是公差大于零的等差数列,则S(A)=________.10.设P,Q是两个数集,P中含有0,2两个元素,Q中含有1,2两个元素,定义集合P+Q 中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是________.解析:由于a∈P,a=0或2,b∈Q,b=1或2,因此a+b的值为1,2,3,4,共4个.答案:4。

戴德金分割

戴德金分割

戴德金分割简介戴德金由无理数引发的数学危机一直延续到19世纪。

直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。

定义戴德金的方法也称为戴德金分割,是将一切有理数的集合划分为两个非空不相交的子集A和B,使得A中的每一个元素小于B中的每一个元素,这时戴德金把这个划分定义为有理数的一个分割(有些分割是有理数产生的,在这样的分割中,要么有最大元素,要么有最小元素.但有些分割却不是)案例例如,若是由满足的一切正有理数组成,是由一切其余的有理数组成,则既不存在的最大元素,也不存在的最小元素,因为不存在有理数使得.戴德金说;每当我们考虑一个不是由有理数产生的分割时,就得到一个新数即无理数,我们认为这个数是由分割完全确定的.因此,戴德金就把一切实数组成的集合定义为有理数集的一切分割,而一个实数就是一个分割.在这一定义中,由一个给定的有理数产生的两个实质上等价的分割(视是的最大元素还是的最小元素而定)被看成是同一的.函数解析在解析函数中,对实数定义大意是,先从自然数出发定义正有理数,然后通过无穷多个有理数的集合来定义实数;戴德金把这种划分定义为有理数的一个分割,记为(A,B)。

因为不存在有理数X使得X 的平方等于2,戴德金说,考虑一个不是由有理数产生的分割(A,B)时,就得到一个新数,即无理数a,这个数是由分割(A,B)完全确定的。

因此,戴德金就把一切实数组成的集合R定义为有理数集的一切分割,而一个实数a就是一个分割(A,B)。

在这一定义中,由一个给定的有理数r产生的两个实质上等价的分割被看成是同一的。

假设给定某种方法把所有的有理数分为两个集合,A和B,A中的每一个元素都小于B中的每一个元素,任何一种分类方法称为有理数的一个分割。

对于任一分割, 必有3种可能, 其中有且只有1种成立:A有一个最大元素a,B没有最小元素。

人教版高中选修4-72.黄金分割法——0.618法课程设计

人教版高中选修4-72.黄金分割法——0.618法课程设计

人教版高中选修4-72.黄金分割法——0.618法课程设计一、课程目标通过本课程的学习,学生应该能够:1.了解黄金分割法的概念及其应用;2.掌握黄金分割法的计算方法;3.熟悉黄金分割法在各个领域中的应用,并能够分析其优缺点;4.能够运用黄金分割法进行创作和设计,并得出更优美的结果。

二、教学内容本课程主要涉及以下内容:1.黄金分割法的概念和应用背景;2.黄金分割法的计算方法和实例讲解;3.黄金分割法在美学、建筑、艺术、设计等领域的应用实践;4.黄金分割法的优缺点分析及其与其他比例关系的比较。

三、教学重点与难点3.1 教学重点1.黄金分割法的计算和应用;2.黄金分割法在各个领域中的应用实践。

3.2 教学难点1.黄金分割法的概念理解和计算方法;2.黄金分割法与其他比例关系的比较。

四、教学方法本课程采用“讲授+练习”的教学方法。

具体而言,包括以下教学环节:1.讲述黄金分割法的概念和计算方法;2.给出实例讲解,引导学生进行独立计算;3.分析黄金分割法在不同领域中的应用,并让学生进行模拟设计实践;4.对黄金分割法与其他比例关系进行比较,让学生自主思考、讨论。

五、教学评估本课程的教学评估形式主要采用作业和小测验的方式。

具体而言,分为以下两个环节:1.作业:设计题,学生可以根据所学的黄金分割法知识进行实践创作或进行计算实例;2.小测验:测试学生对于黄金分割法的掌握情况,包括选择题和计算题等。

六、课程安排本课程建议分为三次课程,详细安排如下:课程内容学时安排黄金分割法的概念和计算方法1学时黄金分割法在不同领域的应用实践 1.5学时黄金分割法与其他比例关系的比较0.5学时七、参考文献1.许闯,罗颖等. 现代美术概论. 北京:中国青年出版社,2020.2.汤本庆夫. 黄金比例设计. 北京化学工业出版社,2010.3.耿建平. 建筑美学学习与实践. 北京:中国建筑工业出版社,2015.。

高中数学 1.3 黄金分割法 0.618法课件 新人教A版选修4

高中数学 1.3 黄金分割法 0.618法课件 新人教A版选修4

【自主解答】 在因素范围[1 000,2 000]内,用 0.618 法
课 前
安排试验,第一个试点 x1,
当 堂
自 主
满足 x1=1 000+0.618(2 000-1 000)=1 618.
双 基



第二个试点 x2 满足,

x2=1 000+2 000-1 618=1 382.
试验结果,如果 x1 的效果比 x2 好,消去 x2=1 382 以下
新课标 ·数学 选修4-7
三 黄金分割法——0.618 法
课 前
1.黄金分割常数
当 堂




导 学
2.黄金分割法——0.618 法
达 标
课 堂
1.了解 0.618 法进行试验设计的原理.

互 动
课标解读 2.掌握用 0.618 法解决不限定次数的优选问题,从
时 作



而找到试验区间中的最佳点.
菜单
菜单
新课标 ·数学 选修4-7




导 学
2.黄金分割法——0.618 法
(1)定义:利用 黄金分割常数ω
叫做黄金分割法,又叫做 0.618法
当 堂 双 基 达 标
确定试点的方法
;它是最常用
课 堂

单因素单峰目标函数
的优选法之一.








菜单
新课标 ·数学 选修4-7


前 自
(2)确定试点的方法
达 标
素进行优选.已知此因素范围为[1 000,2 000],用 0.618 法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学拓展知识 戴德金分割
无理数引发的数学危机一直延续到19世纪。

直到1872年,德国数学家戴德金(Dedekind )从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。

事实上,实数系的逻辑结构问题在19世纪后叶才引起数学家的重视。

欧几里得(Euclid )关于比的理论的发展,两个无公度比的相等,只是在几何上可以适用。

尽管如此,他的理论已经具备定义无理数的基本思想了。

实际上,戴德金(Dedekind )定义无理数的方法确实借鉴了这种思想。

戴德金(Dedekind )是在直线划分的启发下来定义无理数的。

他注意到把直线上的点划分为两类,使一类中的每一个点位于另一类中每一个点的左边,就必有一个且只有一个点产生这个划分。

这一事实使得直线是连续的。

他把这个思想运用到数系上来,就得到戴德金(Dedekind )划分。

将一切有理数的集合划分为两个非空不相交的子集1A 和2A ,使得1A 中的每一个元素小于2A 中的每一个元素,这时戴德金把这个划分定义为有理数的一个分割。

即(1A ,2A )表示这个分割。

用数学语言表述戴德金分割:设1A 和2A 是满足以下三个条件的Q 的两个子集:
(1)1A 和2A 都不是空集;
(2)1A ∪2A Q =;
(3)若1α∈1A ,2α∈2A ,则21αα<(从而1A ∩2A =φ)。

我们称序对(1A ,2A )为一个分割,并分别称1A 和2A 为该分割的下类和上类。

在一些分割中,或者1A 有最大数,或者2A 有最小数,这样的分割由一个有理数确定。

例如,对任一Q α∈,令A 1={x ∈Q|x<α},2A x Q |x α={∈≥},则(1A ,2A )显然是一个分割。

又令1B x Q |x α={∈≤},2B x Q |x α={∈>},显然(1B ,2B )也是一个分割。

其中,(1A ,2A )的上类A 2有最小数α,(1B ,2B )的下类有最大数α,我们把这种分割称为有端分割。

有端分割对应所有的有理数。

下类无最大数且上类无最小数的分割称为无端分割。

无端分割是存在的。

例如213C x Q |x ={∈<},223C x Q |x ={∈>}。

显然(C 1,C 2)的下类C 1无最大数,上类C 2无最小数。

对每一个可能的Q 的无端分割,都定义一个新数来填补Q 中的空隙;反之,每一个新数()Q α∉也可对应Q 的一个无端分割:
{}A x Q x α=∈<, {}A x Q x α'=∈>。

正是因为无端分割与新数一一对应的,所以不妨把无端分割本身用来充当新数。

我们称Q 的全体分割为分割集,用R 表示。

其中R 中任意两个元素(,)A A α'=与(,)B B β'=之间的序关系可定义如下: 在下类A 与B 都无最大元的约定下,若A B ≠
⊂,则说αβ<;若A B =,则说αβ=;若A B ≠
⊃,则说αβ>。

容易证明,R 上的顺序“>”具有下述性质:
(1)传递性:若βα>,γβ>,则γα>;
(2)全序性:对于R 中任何两元α与β,βα<,βα=,βα>三个关系中有且仅有一个关系成立;
(3)稠密性:对于R 中任何两元α与β,若βα<,必存在Q ∈γ,使得
βγα>>。

戴德金还定义实数的运算。

给定R 中两个元素(,)A A α'=,(,)B B β'=,任取c ∈Q ,如果有a ∈A ,b ∈B ,使得c b a ≥+,则把c 放在集合C 中,把其他的有理数都放在C'中,这样,C 和C'构成分割γ,即=(,)C C γ',γ称为(),A A α'=和(),B B β'=的和。

其他运算可以类似地定义。

在定义了加法“+”和乘法“”运算后,可以证明(R ,+,)是一个域。

实数集具有连续性是戴德金分割理论中最标志性的成果之一。

戴德金定理:对于实数集的任一分割(S ,T ),或者S 有最大实数,或者T 有最小实数,二者必居其一。

从戴德金定理可以看出,对新获得的实数集R 施行像对有理数集Q 进行的那种分割,将不会产生新的数。

相关文档
最新文档