塑性力学讲义-全量理论与增量理论
塑性力学03-塑性本构关系

3-2 广义Hooke定律 • 在弹性范围内, 广义Hooke定律可以表达为 1 ij 1 ij ij kk E 1 2 1 • 也可以表示为: ii ii eij Sij E 2G 由应力和应变的分解式,即 ij Sij ij m , ij eij ij m 代入上面广义Hooke定律的公式,考虑到 G E / 2 1 1 eij ij m 1 S ij ij m ij kk E 1 1 1 2 1 S 3 S ij m ij ij m ij m ij E 2G E 所以可以写成两个相应分解张量之间的关系. 我们来证明一下:
因为应力强度和应变强度的公式为:
3 i Sij Sij 2 2 i eij eij 3
把 eij Sij 代入上面右式并考虑上面左式得到
(3)应力强度是应变强度的强度函数 i i 线假定的硬化条件.
3 i 2 i , 即按单一曲
综上所述, 全量型塑性本构方程为 3 i 1 2 eij Sij i i ii ii 2 i E 注意的是上式只是描述了加载过程中的弹塑性变形规律. 加 载的标志是应力强度 i 成单调增长. i 下降时为卸载过 程, 它时服从增量Hooke定律.
1. Levy-Mises流动法则 这个理论认为应变增量主轴和应力 主轴重合, 应变增量分量与相应的应力偏量分量成比例, 即
d ij d Sij
d 0
式中的比例系数决定于质点的位置和荷载的水平. 这一理论是 Levy和Mises分别在1871年和1931年独立提出的, 所以被称为 Levy-Mises流动法则. 这个关系式不包括弹性变形部分, 所以 只适用刚塑性体. 2. Prandtl-Reuss流动法则 这个理论考虑了塑性状态变形中 的弹性变形部分, 并认为弹性变形服从广义Hooke定律; 而对 于塑性变形部分, 被认为塑性应变增量的主轴和应力偏量的主 轴重合. 即 1 e e deij deij deij dSij d Sij 这就是 2G Prandtl1 2 又由塑性不可压缩性, Reuss流 d ii d ii 体积变化式弹性的,有 E 动法则
第4章 弹塑性力学全量理论的定解问题

3-6 卸载定律
σ A • 从单向拉伸实验的应力应变曲线看: 从单向拉伸实验的应力应变曲线看 加载至过弹性极限达到A点 然后卸载 加载至过弹性极限达到 点,然后卸载 σ′ % 至B点, 此时总应变 ε 的弹性部分ε e 中 点 % σ 得到恢复,塑性应变部分 的部分应变 ε ′得到恢复 塑性应变部分ε p B 要被保留下来.此时的应力和应变的改 要被保留下来 此时的应力和应变的改 σ 变量, 即B点的应力和应变为 变量 点的应力和应变为 o ε % % σ = σ − σ ′, ε = ε − ε ′ p e ε ε 因为卸载要服从弹性本构关系, 因为卸载要服从弹性本构关系 ε ε′ 这就是说,我们可以 即 σ ′ = Eε.′ 这就是说 我们可以 % ε 由因为卸载引起的荷载的改变 % 按弹性计算得到. 量 P′ = P − P 按弹性计算得到 • 推广到复杂应力的卸载情况 即应力强度 σ i 减小 得到 推广到复杂应力的卸载情况(即应力强度 减小)得到 得到: 卸载定律 . 即: 卸载后的应力或应变等于卸载前的应力或应变 % 减去卸载时的荷载改变量 P′ = P − P 为假想荷载按弹性计算所 得之应力或应变(即卸载过程中应力或应变的改变量 即卸载过程中应力或应变的改变量. 得之应力或应变 即卸载过程中应力或应变的改变量
V
Fi
O x
σ ij , j + Fi = 0
几何方程
1 − 2ν 3ε i ε ii = σ ii eij = Sij σ i = Φ ( ε i ) E 2σ i 其中 3 2 σi = Sij Sij ε i = eij eij 这就是塑性力学全量 2 3 理论的边值问题. 理论的边值问题 边界条件 Sσ : σ ij l j = pi , Su : ui = ui
塑性理论2

(20) (21)
2 d i (d 1p d 2p ) 2 (d 2p d 3p ) 2 +(d 3p d 1p ) 2 3
式(19)说明d 是由塑性变形过程中某瞬时 i 和 i 来确定。对于 理想刚塑性材料,式中的 i = s 将式(19)代入(17),得
一、Drucker公设
1. 稳定材料和不稳定材料. 材料的拉伸应力应变曲线可能有: , 0 应变都增 加 0 ,材料是硬化的。 在这一变形工程中, 附加应力在应变增量上作正功,这种特性的材料被称为稳定材 料或硬化材料。 b 、 c 所示,应力应变曲线在过D点以后, 应变增加,应力减 小,存在 0 ,此时应力增量作负功, 这种特性的材料 被称为材料不稳定或软化材料
f d ij 2[(2 1 2 3 ) d 1 (2 2 1 3 ) d 2 ij (2 3 2 1 ) d 3 ] 从
(0) ij
f , d ij = 8 104 MPa,为卸载; ij
塑性本构关系
塑性本构关系即塑性力学中应力与应变之间的关 系,即本构关系,建立的方程称为本构方程或物性方 程。由于塑性变形规律的复杂性, 到目前为止这个塑 性本构关系问题还没有得到满意的解决。经典塑性本 构关系的理论分为两大类: 增量理论:建立了应力偏量与应变偏量间的正比关系; 全量理论:也叫形变理论,它建立了应力与应变全量 间的关系。
1870年St-Venant就提出,在塑性应变时,应力主轴与 应变增量主轴相重合的见解,并发表了应力分量与 应变速率分量成正比的等式关系。1871年Levy提出 了应力与应变增量的比例关系。直到1913年Mises独 立提出了与Levy相同的塑性变形方程,才形成了著 名的Levy-Mises(莱维-米泽斯)增量理论的本构方程。
塑性力学讲义全量理论与增量理论

故
ij
3 2
或ii Sij
Sij
2 i 3 i
ij
又因为 S zzm z 1 3z 3 2,S zz
其展开式为
i , i
i
3i
又由于r 1 2 z 1 2 ,z1 2 z1 2
故
i
2 1 2 (2)
3
(二)对于理想塑性材料: i s (3)
将(2)、(3)代入式(1),得到
A
s
解:1、分析 圆筒为均匀应力状态,且已知应力公式,
二、依留申小弹塑性形变理论
1943年,依留申考虑了与弹性变形同量
级的塑性变形,给出了微小弹塑性变形下的
应力—应变关系
在弹性阶段:
e ij
(S ijG即剪切弹性模量)
2G
在塑性阶段:
( eij
S ij 2G
即2
1 G
)
上式自乘求和后开方得:
2G
SijSij eklekl
J2 J2
13i2 2i 43i2 3i
二、Prandtl—Reuss流动法则
diP jdS 适ij用d于0 弹塑性体。
1924年Prandtl将Levy—Mises关系式推
广应用于塑性平面应变问题。考虑了塑性状
态的变形之中的弹性变形,且认为弹性变形
服从广义Hooke定律。而塑性变形部分,则
假设塑性应变增量张量和应力偏张量相似且
同轴。1930年,Reuss推广到三维问题。
2、与初始屈服与后继加载面相关连的某一 流动法则。即要有一个应力和应变(或它们 的增量)间的关系,此关系包括方向关系和 分配关系。实际是研究它们的偏量之间的关 系; 3、确定一种描述材料强化(硬化)特性的 强化条件,即加载函数。有了这个条件才能 确定应力、应变或它们的增量之间的定量关 系。
塑性力学--第四章 塑性本构关系

向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
(2) 材料是不可压缩的.
(3)应力强度和应变强度之间幂指数关系,
3i 2 i
(3)应力强度是应变强度的函数 i i , 即按单一曲线假
定的硬化条件.
综上所述, 全量型塑性本构方程为
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
注意的是上式只是描述了加载过程中的弹塑性变形规律. 加
载的标志是应力强度 i 成单调增长. i 下降时为卸载过
程, 它时服从增量Hooke定律.
y
些基本未知量的基本方程有
x
Su : ui
平衡方程 ij, j Fi 0
几何方程
ij
1 2
ui. j u j,i
本构方程
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
其中
i
3 2
Sij Sij
i
2 3
eij eij
这就是对于全量 理论的塑性力学
边界条件 S : ijl j pi , Su : ui ui
(1)全量理论, 又称为形变理论, 它认为在塑性状态下仍有应力 和应变全量之间的关系. 有Hencky(亨奇)理论和Il’yushin (伊柳 辛)理论.
(2)增量理论, 又称为流动理论, 它认为在塑性状态下是塑性应 变增量和应力及应力增量之间有关系.有Levy-Mises(莱维-米泽 斯)理论和Prandtl-Reuss(普朗特-罗伊斯)理论.
塑性力学增量和全量本构关系讨论

塑性力学中本构关系的讨论摘要:本构方程是塑性力学解决问题不同于弹性力学的一大不同点,本文从主要描述塑性变形问题的两个本构理论出发,借鉴现有理论和实验结果,对比增量理论和全量理论的优缺及各自在工程中的适用性。
关键词:塑性力学;增量理论;全量理论;有限元法引言塑性力学和弹性力学之间的根本差别在于弹性力学是以应力与应变成线性关系的广义胡克定律为基础的。
而塑性力学研究范畴中,应力与应变一般成非线性关系,而这种非线性的特征又不能一概而论,对于不同的材料,在不同的条件下,都具有不同的规律。
塑性变形的基本规律是建立在实验的基础上,根据实验结果简化抽象出塑性状态下应力与应变关系的特征。
与弹性力学比较,主要影响塑性力学本构方程的有以下几点:应力与应变之间的关系是非线性的,其比例系数不仅与材料有关而且与塑性应变有关;由于塑性变形的出现,弹塑性材料在卸载时,体元的应力-应变状态不能沿原来的加载路径返回,应力与应变之间不再存在一一对应的关系,而与加载历史有关;变形体中可分为弹性区和塑性区,在弹性区,加载与卸载都服从广义胡克定律,在塑性区,加载过程服从塑性规律而卸载过程服从广义胡克定律。
因此在塑性力学发展初期,最初提出的是以增量方法来讨论应力增量与应变增量之间的关系,它不受加载条件的限制,但在实际计算过程中,需要按加载过程中的变形路径进行积分,计算比较复杂。
Hencky于1924年提出的全量理论在实践中使用方便很多,但全量本构关系仅能应用于特定情况,及体元应力-应变过程为单调过程,不能描述弹塑性变形规律全貌。
1.增量理论塑性应力应变关系的重要特点是非线性和非简单对应,非线性及应力与应变关系不是线性关系,非简单对应及应变不能由应力唯一确定。
在材料变形的塑性阶段,应变状态不仅由应力状态决定,还由整个应力变化过程决定。
材料进入塑性变形阶段,任一点的总应变由弹性应变和塑性应变组成:e p ij ij ij εεε=+当外载荷有微小增量时总应变也有微小增量,其为弹性增量与塑性增量之和,因此有:p e ij ij ij d d d εεε=-根据静水压力实验,提出假设:塑性应变不引起体积改变。
塑性力学-塑性本构关系

第三章塑性本构关系全量和增量理论•全量理论(形变理论):在塑性状态下仍有应力和应变之间的关系。
Il’yushin(伊柳辛)理论。
•增量理论(流动理论):在塑性状态下是塑性应变增量和应力及应力增量之间的关系。
Levy-Mises理论和Prandtl-Reuss理论。
3-5 全量理论的适用范围简单加载定律变形:小变形加载:简单加载适用范围:物体内每一点应力的各个应力分量,在加载过程中成比例增长简单加载:()0ij ijt σασ=0ijσ非零的参考应力状态()t α随着加载单调增长加载时物体内应力和应变特点:应力和应变的主方向都保持不变应力和应变的主分量成比例增长应力Lode参数和应力Lode角保持常数应力点的轨迹在应力空间是直线小变形前提下,判断简单加载的条件:荷载按比例增长(包括体力);零位移边界材料不可压缩应力强度和应变强度幂函数关系m i iA σε=实际应用:满足荷载比例增长和零位移边界条件3-6 卸载定律卸载:按照单一曲线假设,应力强度减小•外载荷减小,应力水平降低•塑性变形发展,应力重分布,局部应力强度降低简单卸载定律:•各点的应力分量按比例减少•不发生新的塑性变形¾以卸载时的荷载改变量为假想荷载,按弹性计算得到应力和应变的改变量¾卸载前的应力和应变减去卸载过程中的改变量塑性本构关系的基本要素•初始屈服条件–判断弹性或者塑性区•后继屈服条件–描述材料硬化特性,内变量演化•流动法则–应变增量和应力以及应力增量之间的关系,包括方向和分配关系Saint-Venant(1870):应变增量和应力张量主轴重合•继承这个方向关系•提出分配关系()0ij ij d d S d ελλ=≥应变增量分量和应力偏量分量成比例Levy-Mises 流动法则(M. Levy,1871 & Von Mises,1913)适用范围:刚塑性材料3-7 流动法则--Levy-Mises & Prandtl-Reuss。
4塑性增量本构理论

p
。
2
即加载面φ必须外凸。
2
如果加载面内凹,如右图,则会使
。
二、Drucker公设的推论
2. d p 的正交性
参见下图(反证法):如果 d ijp 不与n 重合,就一定可 以找到一点A,使得
ij
A B d ij 0
p
,故而d ijp 必为 的梯度方
d 0 , 加 载 硬化塑性: d 0 , 中 性 变 载 d 0 , 卸 载
§4.2 加载条件与加载准则
二、理想塑性材料的加载准则
1. 正则屈服面上的加载准则
当屈服函数处处可微时,相应的屈服面称正则屈服面。 对于对于理想塑性材料,如果以f(ij)=0表示屈服面,应 力位于极限曲面之内,材料处于弹性状态;应力位于极限曲 面之上,则塑性变形将可无限发展;而应力点不能达到屈服 之外。因此,保证应力不脱离屈服面就是加载准则: f(ij)=0
d d
d d
o
o
§4.3 塑性共设
一、Drucker公设
2. 公设的涵义 德鲁克公设可陈述为:对于处在某一状态下的稳定材料 的质点 ( 试件 ) ,借助于一个外部作用,在其原有应力状态之 上,缓慢地施加并卸除一组附加应力,在附加应力的施加和 卸除循环内,外部作用所作之功是非负的。 即:
d d d
n1
n2
§4.2 加载条件与加载准则
三、硬化材料的加载准则
1. 正则屈服面上的加载准则
( 加载条件:
a
ij
, H a) 0
,则
d
ij
d
ij
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i2 3 S iS jij , i3 2 e ie jij ,J 2 1 2 S iS jij ,J 2 1 2 e ie jij 以0代.5 入 i Ei1 得到 i 3G i1
则 Sij2G 1eij
这是全量理论的另一种表达形式。
例4-1、在薄壁筒的拉伸与扭转问题中,若
材料为理想弹塑性,且 0。.5设拉力为P,扭 矩为M,筒的平均半径为r,壁厚为t。于是
故
ij
3 2
或ii Sij
Sij
2 i 3 i
ij
又因为 S zzm z 1 3z 3 2,S zz
其展开式为
i , i
i
3i
又由于r 1 2 z 1 2 ,z1 2 z1 2
故
i
2 1 2 (2)
3
(二)对于理想塑性材料: i s (3)
将(2)、(3)代入式(1),得到
2、与初始屈服及后继加载面相关连的某一 流动法则。即要有一个应力和应变(或它们 的增量)间的关系,此关系包括方向关系和 分配关系。实际是研究它们的偏量之间的关 系; 3、确定一种描述材料强化(硬化)特性的 强化条件,即加载函数。有了这个条件才能 确定应力、应变或它们的增量之间的定量关 系。
§4-2 广义Hooke定律
当应力从加载面卸载时,也服从广义Hooke
定律,但是不能写成全量形式,只能写成增
量形式。d ii1 E 2 d ii,
dije 2 1 G dijS
§4-3 全量型本构方程
由于在塑性变形状态应力和应变不存在一 一对应的关系。因此,必须用增量形式来表 示它们之间的关系。只有在知道了应力或应 变历史后,才可能沿加载路径积分得出全量 的关系。由此可见,应力与应变的全量关系 必然与加载的路径有关,但全量理论企图直 接建立用全量形式表示的,与加载路径无关 的本构关系。所以全量理论一般说来是不正 确的。不过,从理论上来讲,沿路径积分总 是可能的。但要在积分结果中引出明确的
筒内应力为均匀应力状态,有
z
2Prt,z
M
2r2t
其余应力分量为零。当按照同时拉伸与扭转,
在 的比值保持不变条件下进入塑性状态
到
s
s
E
,s,G用s 全量理论求筒中的应力。
解:(一)由全量理论
eij
ii
3 i 2 i
Sij , i
1
2
E
ii
i
(1)
第二式可以写为 m3Km
其中
K
E
312
第一式,且 0.5,,ijeij
力—应变关系。
(1)随动强化;(2)等向强化。
/ MPa
200
100 2
1
随动强化
3
/ 10 3
等向强化
解:(1)随动强化 P 时0.0,0相2 应的应力和应变分别为
24.5M 6 P , a0.003232
塑性模量的表达式为
EPmnPn1
( Sii )0。
在弹性范围内,应力和应变之间的方向关系
是应力和应变主轴重合,分配关系是应变偏
张量各分量和应力偏张量各分量成比例。为
便于推广到塑性状态,并与塑性本构方程的
写法一致, 将 eij 改21G写Si为j
eij
3i 2i
Sij,i
3Gi
(因 i E i 2 1 , 而G 塑i性状态 ) 0.5
3、‘单一曲线假设’:不论应力状态如何,
对于同一种材料来说,应力强度是应变强度
的确定函数i i, 是与Mises条件相应的。
( i Ei,1单拉时
)E1
ii
1 2 E
ii
全量型塑性 本构方程为
e ij
3 i 2 i
S ij
i i
(其中
i
3 2
SijSij,)i
2 3
eijeij
§4-1 建立塑性本构关系的基本要素
描述塑性变形规律的理论可分为两大类: 一类理论认为在塑性状态下仍是应力和应变 全量之间的关系即全量理论;另一类理论认 为在塑性状态下是塑性应变增量(或应变率 和应力及应力增量(应力率)之间的关系即 增量理论或流动理论。
为了建立塑性本构关系,需要考虑三个要 素: 1、初始屈服条件;
例4-2、如图所示,简单拉伸下材料的应力 应变关系曲线可用幂指数硬化模型表示为
EsmPn
0s s
式中 s 2M 0 ,E 0 P 2G 0 a ,m 。 0 P 3M a 0 ,n 0 0 P .3a
拉伸加载至 P 0.0,0然2后卸载并方向加载,
针对下面两种情况,求出方向加载中的应
二、依留申小弹塑性形变理论
1943年,依留申考虑了与弹性变形同量
级的塑性变形,给出了微小弹塑性变形下的
应力—应变关系
在弹性阶段:
e ij
(S ijG即剪切弹性模量)
2G
在塑性阶段:
( eij
S ij 2G
即2
1 G
)
上式自乘求和后开方得:
2G
SijSij eklekl
J2 J2
13i2 2i 43i2 3i
§4-1 建立塑性本构关系的基本要素 §4-2 Hooke定律 §4-3 全量型本构方程 §4-4 全量理论的基本方程及边值问题的提法 §4-5 全量理论的适用范围 简单加载定律 §4-6 卸载定律 §4-7 Levy—Mises和Prandtl—Reuss流动法则 §4-8 增量型本构方程 §4-9 增量理论的基本方程及边值问题的提法 §4-10 两种理论的比较
弹性范围内,广义Hooke定律:
x E 1 x y z, yz G 1yz
y E 1 y z x, z xG 1zx
z E 1 z x y, xy G 1xy
将应力张量和应变张量分解为球张量和偏张
量部分,则Hooke定律改写为
i i1 E 2i ,i
ei j2 1 G Si j
前面是一个独立式子,后者是五个独立式子
s , s
212
3(42)12
3
3
(三)在简单加载条件下,材料进入塑性时
各应变分量同时达到屈服,即 s,,s
又 s3 G s,sG s3 s G 13sG
分别代入(4)得到
s
s
3G
2
1 3
s
3G
2
s s3G 2源自0.707s3s
s
3G
2
1 3
s
3G
2
s
3G
s
6
0.408s
应力—应变的全量关系,而又不包含历史的 因素,只有在某些特殊加载历史下才有可能 因此,这种关系只能在特定条件下应用。
一、全量理论的基本假设 1、体积的改变是弹性的,且与静水应力成 正比,而塑性变形时体积不可压缩。
e ii 1 E 2 ii , P 0
2、应变偏张量与应力偏张量相似且同轴,即,
eij Sij