近世代数试题库
近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。
答案:半群2. 一个群G的所有子群的集合构成一个________。
答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。
答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。
答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。
答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。
答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。
正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。
2. 请解释什么是群的同态和同构。
答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。
群的同构是同态,并且是双射,即存在逆映射。
3. 请解释什么是环的零因子和非零因子。
答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。
如果环R中不存在零因子,则称R为无零因子环。
(精选)近世代数练习题题库

§1 第一章 基础知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )1.2 A ×B = B ×A ( )1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。
( ) 1.4 如果ϕ是A 到A 的一一映射,则ϕ[ϕ(a)]=a 。
( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。
( )1.6 设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )1.7 在整数集Z 上,定义“ ”:a b=ab(a,b ∈Z),则“ ”是Z 的一个二元运算。
( )1.8 整数的整除关系是Z 的一个等价关系。
( )2填空题:2.1 若A={0,1} , 则A A= __________________________________。
2.2 设A = {1,2},B = {a ,b},则A ×B =_________________。
2.3 设={1,2,3} B={a,b},则A ⨯B=_______。
2.4 设A={1,2}, 则A A=_____________________。
2.5 设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。
2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。
2.7 设A ={a 1, a 2,…a 8},则A 上不同的二元运算共有 个。
2.8 设A 、B 是集合,| A |=| B |=3,则共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。
2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},则A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},则A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合下列三个条件:_____________________________________________。
(精选)近世代数练习题题库

§1 第一章 基础知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )1.2 A ×B = B ×A ( )1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。
( ) 1.4 如果ϕ是A 到A 的一一映射,则ϕ[ϕ(a)]=a 。
( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。
( )1.6 设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )1.7 在整数集Z 上,定义“ ”:a b=ab(a,b ∈Z),则“ ”是Z 的一个二元运算。
( )1.8 整数的整除关系是Z 的一个等价关系。
( )2填空题:2.1 若A={0,1} , 则A A= __________________________________。
2.2 设A = {1,2},B = {a ,b},则A ×B =_________________。
2.3 设={1,2,3} B={a,b},则A ⨯B=_______。
2.4 设A={1,2}, 则A A=_____________________。
2.5 设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。
2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。
2.7 设A ={a 1, a 2,…a 8},则A 上不同的二元运算共有 个。
2.8 设A 、B 是集合,| A |=| B |=3,则共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。
2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},则A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},则A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合下列三个条件:_____________________________________________。
近世代数题库

群一、填空题1. 设4)(x x f =是复数集到复数集的一个映射, 则)1(1-f ={_______}.2. 设τ=(134),σ=(13)(24), 则τσ=____________________.3. 群G 的元素a 的阶是m ,b 的阶是n ,ba ab =,则≤ab ,如果),(m n = 1,则=ab _____.4. 设<a >是任意一个循环群.若|a |=∞,则<a >与________________同构;若|a |=n ,则<a >与______________同构.5. 设σ=(14)(235),τ=(153)(24),则|σ| = ____,στσ1- =______.6. 设群G 的阶为m ,G a ∈,则=m a .7. 设“~”是集合A 的一个关系,如果“~”满足_________________,则称“~”是A的元素间的一个等价关系.8. 设σ=(23)(35),τ=(1243)(235)∈S 5,那么στ=___________(表示成若干个没有公共数字的循环置换之积), τ是 (奇、偶)置换.9. 设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为 .10. 一个群G 的非空子集H 做成一个子群的充分必要条件是 .11. 设G 为群,若对于任意的元G b a ∈,,都有ba ab =,则称群G 为 群.12.n 次对称群n S 的阶是____________.13.设G =<a >是10阶循环群,则G 的全部生成元有 ,G 的子群有 个,分别是 .14.设H 是群G 的子群,G b a ∈,,则⇔=Hb Ha .15.设G =<a >是循环群,则G 与整数加群同构的充要条件是 .16.在3次对称群3S 中,H ={(1),(123),(132)}是3S 的一个正规子群,则商群H S 3中的元素(12)H ={}.17.如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 .18.设集合A 有一个分类,其中i A 与j A 是A 的两个类,如果j i A A ≠,那么=j i A A I .19. 凯莱定理说:任一个群都与一个 同构.20. 设G =<a >是12阶循环群, 则G 的生成元集合为{ }.21. 一个群G 的一个子群H 的右陪集(或左陪集)的个数叫做H 在G 中的 .22. 设G 是一个pq 阶群,其中q p ,是素数,则G 的子群的一切可能的阶数是 ____ .23. 写出S 3的一个非平凡的正规子群_____.24. 已知群G 中的元素a 的阶等于50,则4a 的阶等于 .25. 一个有限非可换群至少含有____________个元素.26. 设G 是p 阶群(p 是素数),则G 的生成元有____________个.27. 一个有限群中元素的个数叫做这个群的 .28.设R 是实数集,规定R 的一个代数运算ab b a 2:=οο,(右边的乘法是普通乘法),就结合律、交换律而言,“ο”适合如下运算律: .29. 设H 是群G 的子群,G b a ∈,,则⇔=bH aH .30. 写出三次对称群3S 的子群()(){}13,1=H 的一切左陪集 .31. 如果G 是一个含有15个元素的群,那么,G 有 个5阶子群,对于∀∈a G ,则元素a 的阶只可能是___________.32.设G 是一个pq 阶群,其中q p ,都是素数,则G 的真子群的一切可能的阶数是 ,G 的子群的一切可能的阶数是 .33. 已知群G 中的元素a 的阶等于n ,则k a 的阶等于n 的充分必要条件是 .34. 设(G ,·)是一个群,那么对于∀∈b a ,G ,(ab )-1=___________.35. 群中元素a 的阶为n 3,k a 的阶为n ,则)3,(n k = .36.若一个群G 的每一个元都是G 的某一个固定元a 的方幂,则G 称为 .37.5-循环置换)31425(=π,那么=-1π .38.设G 为群,G N ≤,且对于任意的G a ∈,有 ,则N 叫做G 的正规子群.39. 设G 为乘群,G a ∈,则能够使得e a m =的最小正整数m ,叫做a 的___________.设G 为加群,G a ∈,则能够使得 的最小正整数m ,叫做a 的阶.40.设τ=(1243)(235)∈5S ,那么1-τ=___ _.τ是 (奇、偶)置换.41. 设~是集合A 的元间的一个等价关系,它决定A 的一个分类:则a 所在的等价类a ={ }.42. 设A ={d c b a ,,,},则A 到A 的映射共有________个,A 到A 的一一映射共有________个,A A ⨯到A 的映射共有________个(A 上可以定义 个代数运算).43. 设G 是6阶循环群,则G 的生成元有____________个.44. 非零复数乘群*C 中由i -生成的子群是____________.45. )125(=σ,)246(=τ,则στ的阶数等于 .46.素数阶群G 的非平凡子群个数等于____________.47. 设G 是一个n 阶交换群,a 是G 的一个m (n m ≤)阶元,则商群><a G 的阶等于 .48. 设σ是集合A 到集合B 的一个映射,则存在B 到A 的映射τ,使στσ⇔=A 1为 ; 存在B 到A 的映射τ,使σστ⇔=B 1为 .49. 若群G 中的每个元素的阶都有限,则称G 为 群. 若群G 中除了单位元外,其余元素的阶都无限,则称G 为 群.50. n 阶循环群有 个生成元,有且仅有 个子群.51. 若n k ,则n 阶循环群>=<a G 必有k 阶子群,其k 阶子群为 .52. 在同构意义下,4阶群只有两个,一个是4阶循环群,另一个是 .53. 在同构意义下,6阶群只有两个,一个是6阶循环群,另一个是 .54. 非交换群G 的每个子群都是其正规子群,则称G 为 群.55. n 元置换)(21k i i i Λ的阶为 ,=-12121)])([(m k j j j i i i ΛΛ .二、选择题1. 设R B A == (实数集),如果A 到B 的映射R x x x ∈∀+→,2:ϕ,则ϕ是从A 到B 的( ).A) 满射而非单射; B) 单射而非满射;C) 一一映射; D) 既非单射也非满射.2.3S 中可以与(123)交换的所有元素有( ).A) (1),(123),(132); B) (12),(13),(23); C) (1),(123); D)3S 中的所有元素.3.设15Z 是以15为模的剩余类加群,那么15Z 的子群共有( )个.A) 2 B) 4 C) 6 D) 8.4. 设c b a ,,和x 都是群G 中的元素且xac acx bxc a x ==-,12,那么=x ( ).A) 11--a bc B) 11--a c C) 11--bc a D) ca b 1-.5. 设f 是复数集到复数集的一个映射. 如果对任意的复数x ,有4)(x x f =,则))1((1f f -=( ).A) {1,-1}; B) {i ,-i }; C) {1, -1,i ,-i }; D) 空集.6. 设A ={所有实数},A 的代数运算是普通乘法,则以下映射作成A 到A 的一个子集A 的同态满射的是( ).A) x x 10→ B) x x 2→ C) x x → D) x x -→.7. 设G 是实数集,定义乘法k b a b a ++=οο:,这里k 为G 中固定的常数,那么群()ο,G 中的单位元e 和元x 的逆元分别是( ).A) 1和x -; B) 1和0; C) -k 和k x 2-; D)k -和)2(k x +-.8.下面的集合对于给定的代数运算不能成为群的是( ).A) 全体整数对于普通减法; B) 全体不为零的有理数对于普通乘法;C) 全体整数对于普通加法; D) 1的3次单位根的全体对于普通乘法.9. 设G 是群,c b a ,,是群G 中的任意三个元素, 则下面阶数可能不相等的元素对为( ).A)ba ab , B) bac abc , C) 1,-bab a D) 1,-a a .10. 设R 是实数集合,规定R 的元素间的四个关系如下,( )是R 的等价关系.A)b a aRb ≤⇔; B) 0≥⇔ab aRb ; C) 022≥+⇔b a aRb ; D) ab aRb ⇔<0.11.设G 是一个半群,则下面的哪一个不是做成群的充要条件( ).A) G 中有左单位元,同时G 中的每个元素都有左逆元;B) 对于G 中任意元素a 和b ,G 中恰好有一个元素x 满足a x =b ;同时G 中恰好有一个元素y 满足y a =b ;C) G 中有单位元,同时G 中的每个元素都有逆元;D) 在G 中两个消去律成立.12.设H 是群G 的子群,且G 有左陪集分类{}cH bH aH H ,,,. 如果子群H 的阶是6,那么G 的阶=G ( ).A) 6 B) 24 C) 10 D) 1213. 三次对称群3S = {(1),(12),(13),(23),(123),(132)},那么下面关于3S 的四个论述中,正确的个数是( ).(1) 3S 是交换群;(2) 3S 的2阶互异子群有三个;(3) 3S 的3阶互异子群有两个;(4)3S 的元素(123)和(132)生成相同的循环群.A) 1 B ) 2 C) 3 D) 414. 设Z 15是以15为模的剩余类加群,那么,Z 15的子群共有( )个。
近世代数期末考试题库完整

世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A=B=R(实数集),如果A至UB的映射中:x-x+2,Vx€R,则中是从A至UB的(c)A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合AXB中含有(d)个元素。
A、2B、5C、7D、103、在群G中方程ax=b,ya=b,a,b6G都有解,这个解是(b)乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c)A、不相等B、0C、相等D、不一定相等。
5、n阶有限群G的子群H的阶必须是n的(d)A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合A“T0」>;B=42},则有BMA=。
2、若有元素e6R使每a6A,都有ae=ea=a,则e称为环R的单位元。
3、环的乘法一般不交换。
如果环R的乘法交换,则称R是一个交换环。
4、偶数环是整数环的子环。
5、一个集合A的若干个-变换的乘法作成的群叫做A的一个变换全。
6、每一个有限群都有与一个置换群同构。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a的逆元是a-1。
8、设I和S是环R的理想且1=S=R,如果I是R的最大理想,那么。
9、一个除环的中心是一个-域-----。
三、解答题(本大题共3小题,每小题10分,共30分)[写成对换的乘积。
2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
奇1、解:把仃和工写成不相杂轮换的乘积:二三(1653)(247)(8).=(123)(48)(57)(6)可知仃为奇置换,七为偶置换。
近世代数试题

近 世 代 数 试 卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。
( )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。
( )5、如果群G 的子群H 是循环群,那么G 也是循环群。
( )6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。
( )7、如果环R 的阶2≥,那么R 的单位元01≠。
( )8、若环R 满足左消去律,那么R 必定没有右零因子。
( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。
( )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。
( )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( )①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同;④一个元()n a a a ,,,21 的象可以不唯一。
2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ;③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。
近世代数10套试题

《近世代数》试卷1(时间120分钟)二、判断题(对打“√”,错打“×”,每小题2分,共20分)1. ()循环群的子群是循环子群。
2. ()满足左、右消去律的有单位元的半群是群。
3. ()存在一个4阶的非交换群。
4. ()素数阶的有限群G的任一子群都是G的不变子群。
5. ()无零因子环的特征不可能是2001。
6. ()无零因子环的同态象无零因子。
7. ()模97的剩余类环Z97是域。
8. ()在一个环中,若左消去律成立,则消去律成立。
9. ()域是唯一分解整环。
10. ()整除关系是整环R的元素间的一个等价关系。
一、填空题(共20分,第1、4、6小题各4分,其余每空2分)1. 设A、B是集合,| A |=3,| B |=2,则共可定义个从A到B的映射,其中有个单射,有个满射,有个双射。
2. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=< a3>的在G中的指数是。
3. 设G=< a>是10阶循环群,则G的非平凡子群的个数是。
4. 在模12的剩余环R={[0], [1], ……, [11]}中,[5]+[10]=,[5]·[10]=,方程x2=[1]的所有根为。
5. 环Z6的全部零因子是。
6. 整环Z[√-3 ]不是唯一分解整环,因为它的元素α=在Z[√-3 ]中有两种本。
(共30分)1.设S3是3次对称群,a=(123)∈S3.(1)写出H=< a>的所有元素.(2)计算H的所有左陪集和所有右陪集.(3)判断H是否是S3的不变子群,并说明理由.2. 求模18的剩余类加群(Z18,+,[0])的所有子群及这些子群的生成元。
3. 在整数环Z中,求由2004,125生成的理想A=(2004,125)。
四、证明题(共30分)1.设G是一个阶为偶数的有限群,证明(1)G中阶大于2的元素的个数一定为偶数;(2)G中阶等于2的元素的个数一定为奇数。
近世代数10套试题

《近世代数》试卷1(时间120分钟)二、判断题(对打“√”,错打“×”,每小题2分,共20分)1. ()循环群的子群是循环子群。
2. ()满足左、右消去律的有单位元的半群是群。
3. ()存在一个4阶的非交换群。
4. ()素数阶的有限群G的任一子群都是G的不变子群。
5. ()无零因子环的特征不可能是2001。
6. ()无零因子环的同态象无零因子。
7. ()模97的剩余类环Z97是域。
8. ()在一个环中,若左消去律成立,则消去律成立。
9. ()域是唯一分解整环。
10. ()整除关系是整环R的元素间的一个等价关系。
一、填空题(共20分,第1、4、6小题各4分,其余每空2分)1. 设A、B是集合,| A |=3,| B |=2,则共可定义个从A到B的映射,其中有个单射,有个满射,有个双射。
2. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=< a3>的在G中的指数是。
3. 设G=< a>是10阶循环群,则G的非平凡子群的个数是。
4. 在模12的剩余环R={[0], [1], ……, [11]}中,[5]+[10]=,[5]·[10]=,方程x2=[1]的所有根为。
5. 环Z6的全部零因子是。
6. 整环Z[√-3 ]不是唯一分解整环,因为它的元素α=在Z[√-3 ]中有两种本。
(共30分)1.设S3是3次对称群,a=(123)∈S3.(1)写出H=< a>的所有元素.(2)计算H的所有左陪集和所有右陪集.(3)判断H是否是S3的不变子群,并说明理由.2. 求模18的剩余类加群(Z18,+,[0])的所有子群及这些子群的生成元。
3. 在整数环Z中,求由2004,125生成的理想A=(2004,125)。
四、证明题(共30分)1.设G是一个阶为偶数的有限群,证明(1)G中阶大于2的元素的个数一定为偶数;(2)G中阶等于2的元素的个数一定为奇数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近世代数一、单项选择题A⋂=()1、若A={1,2,3,5},B={2,3,6,7},则BA、{1,2,3,4}B、{2,3,6,7}C、2AC3A、C4A、B、5、设是从A到B的()A、单射B、满射C、一一映射D、既非单射也非满射答案:D6、有限群中的每一个元素的阶都()A、有限B、无限C 、为零D 、为1答案:A7、整环(域)的特征为()A 、素数B 、无限C 、有限D 、或素数或无限答案:D8、若S 是半群,则()A C 9A 、C 、10A 、C 、11A B 、A 1C 、n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同;D 、一个元()n a a a ,,,21 的象可以不唯一。
答案:B12、指出下列那些运算是二元运算()A 、在整数集Z 上,abb a b a += ;B 、在有理数集Q 上,ab b a = ;C 、在正实数集+R 上,b a b a ln = ;D 、在集合{}0≥∈n Z n 上,b a b a -= 。
答案:D13、设 是整数集Z 上的二元运算,其中{}b a b a ,m ax = (即取a 与b 中的最大者),那么 在Z 中()A C 14() ,G A 、015A 、bc 16()A 、61721A 、f 的同态核是1G 的不变子群;B 、2G 的不变子群的逆象是1G 的不变子群;C 、1G 的子群的象是2G 的子群;D 、1G 的不变子群的象是2G 的不变子群。
答案:D18、设21:R R f →是环同态满射,b a f =)(,那么下列错误的结论为()A 、若a 是零元,则b 是零元;B 、若a 是单位元,则b 是单位元;C 、若a 不是零因子,则b 不是零因子;D 、若2R 是不交换的,则1R 不交换。
答案:C19、下列正确的命题是()AC 20A 、(E C 、(I :12、设答:3.设21Rl l 答:是4、设群G 中的元素a 的阶为m ,则e a n =的充要条件是()。
答:n m5、群G 的非空子集H 作成G 的一个子群的充要条件是()。
答:,,H b a ∈∀有H ab ∈-16、n 次对称群n S 的阶是()。
答:!n7、设G 是有限群,H 是G 的子群,且H 在G 中的指数为n ,则=G ()。
答:H n8、设G 是一个群,e 是G 的单位元,若,G a ∈且a=a,则()答:910答:{11答:⊆121314、n 答:G 15答:n16、如果环R 的乘法满足交换律,即,a b R ∀∈,有ab ba =,则称R 为()环答:交换环17、数集关于数的加法和乘法作成的环叫做()环。
答:数环18、设有限域F 的阶为81,则的特征=p ()。
答:319、已知群G 中的元素a 的阶等于50,则4a 的阶等于()。
答:2520、一个有单位元的无零因子()称为整环。
答:交换环a 是一个国际标准书号,那么=a ()。
答:22.答:23答:24、6答:26答:27答:({28答:a 29。
答:φ31、凯莱定理说:任一个子群都同一个()同构。
答:变换群32、给出一个5-循环置换)31425(=π,那么=-1π()。
答:()1352433、若I 是有单位元的环R 的由a 生成的主理想,那么I 中的元素可以表达为()。
答:R y x ay x i i i i ∈∑,,34、若R 是一个有单位元的交换环,I 是R 的一个理想,那么IR 是一个域当且仅当I 是()。
答:一个最大理想35、整环I 的一个元p 叫做一个素元,如果()。
答:p 既不是零元,也不是单位,且q 只有平凡因子36、若域F 的一个扩域E 叫做F 的一个代数扩域,如果()。
答:E 1、设2、设3456、群789、(F 10)p 是由素四、解答题1、A={数学系的全体学生},规定关系R :同在一个班级与b a aRb A b a ⇔∈,,,证明R 是A 的一个等价关系。
答案:自反性:自己与自己显然在同一个班级对称性:若a 与b 同在一个班级,显然b 与a 同在一个班级传递性:若a 与b 同在一个班级,b 与c 同在一个班级,显然a 与c 同在一个班级.2、在R 中的代数运算 是否满足结合率和交换率?(等式右边指的是普通数的运算)答:因为对于R c b a ∈∀,,,有()()c ab b a c b a ++=()()c ab b a c ab b a ++++++=abc bc ac c ab b a ++++++=,根据实数的加法与乘法的运算率得()()c b a c b a =。
又a3,,,()()A B A B A B A B B A ---。
{}{,,,,,B c d A B a b c d ==4、设()()()()()({,123,23,13,12,13==S ,()(){}12,1=H ,求G 关于子群H 的左陪集分解。
答:(H H ==)12(1,(()(){}123,13)123(==H H ,(H G =5 若S 还有单位元1e ,则11e ee e ==,故e 是S 的唯一单位元。
6、对于下面给出的Z 到Z 的映射,,f g h计算,,,,f g g f g h h g f g h 。
答案:7、设H 是G 的不变子群,则G a ∈∀,有H aHa =-1。
ab b a b a ++=答:因H 是G 的不变子群,故对于G a ∈∀,有Ha aH =,于是()()()H He aa H a Ha a aH aHa =====----1111。
8、设0是环R 的零元,则对于R a ∈∀,000=⋅=⋅a a 。
答:因为R a ∈,有a a a a ⋅+⋅=⋅+=⋅00)00(0,由于R 0=。
同理可得a 9,则G 是答:∀'a ,使得a a -'10当≠a 00⋅==⋅a b a ,左消去a 得0=b ,即R 中非零元均不是左零因子,故R 为无零因子。
11、若21,I I 是R 的两个理想,则{}22112121,I x I x x x I I ∈∈+=+也是R 的一个理想。
答:R r I I y x ∈∀+∈∀,,21,则有2121,y y y x x x +=+=,),;,(222111I y x I y x ∈∈,从而212211)()(I I y x y x y x +∈-+-=-;212121)(I I rx rx x x r rx +∈+=+=;212121)(I I r x r x r x x xr +∈+=+=。
所以,21I I +是R 的一个理想。
12、设)}132(),123(),23(),13(),12(),1{(3==S G ,)}12(),1{(=H ,则H 是G 的一个子群,写出G 关于HH )13(H )23(13又21 14 答:())23(13H H H G =。
15、设S 是有单位元e 的半群,S a ∈,若a 有左逆元1a ,又有右逆元2a ,则a 是可逆元,且21a a =是a 的唯一的逆元。
答:证明由条件知,,,21e aa e a a ==则有()(),11212122a e a aa a a a a ea a =====若c b ,都是a 的逆元,同理有()()c ec c ba ac b be b =====故a 有唯一的逆元。
16、设R 是环,则R b a ∈∀,,有)()()(ab b a b a -=-=-。
答:由00)()(=⋅=+-=+-b b a a ab b a ,得b a ab )()(-=-,17aha -1ha ∈∀ha a -118中有解。
b ax =和b ya =(b a a -1即1-b a 充分性。
因G 是半群,则是非空集合,取定G a ∈,则方程a ya =在G 中有解e ,即存在G 中的元素e ,使得a ea =。
下证e 是G 的左单位元。
G b a ∈∀,,方程b ax =和在G 中有解c ,即b ac =,于是()()b ac c ea ac e eb ====,则e 是G 的一个左单位元。
又G a ∈∀,方程e ya =在G 中有解'a ,即e a a =',得'a 是a 的一个左逆元。
从而得G 中的每一个元素a 都有左逆元。
故G 是群。
19、证明R 为无零因子环的充分必要条件是在环R 中关于乘法右消去律成立。
答:设环R 没有左零因子,则也无右左零因子。
于是由ca ba =,得a cb ca ba )(-=-,当0≠a 时,由于R 没有右零因子,得0=-c b ,即c b =,R 中关于乘法右消去律成立。
b20答:(即a -(2)a I ra ∈。
因此a I 21、G 规定结合法“”a b =,)是一个群。
""为G 的一个二元运算显然,设=(2)2(2)()a c a b c a b c +-+-+-=。
G 中结合法""满足结合律。
又2∈ ,易知2是(,)G 的单位元。
a G ∀∈,直接验算得4-)中的逆元。
所以(,)是一个群。
22、设G 是非Abel 群,证明存在非单位元a,b ,a ≠b 使ab=ba 。
证:利用元素和它的逆可交换,或元素和它的幂可交换。
但要求元素和它的逆(幂)不等。
由于G 是非Abel 群,必有阶数大于2的元素a ,因而a ≠a -1,取b=a -1,则ab=ba 。
23、设H ≤G ,a,b ∈G ,证明以下命题等价:(1)a-1b∈H,(2)b∈aH,(3)aH=bH,(4)aH∩bH≠?。
证本题主要熟悉陪集性质。
用循环证法。
(1)=>(2):a-1b∈H=>a-1b=h=>b=ah=>b∈aH。
(2)=>(3):b∈aH=>bh∈aH=>bH属于aH,另一方面,-1(3)(4)24252627Z则必含Z。