近世代数练习试题试题库完整
近世代数题库

近世代数题库(总12页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除群一、填空题1. 设4)(x x f =是复数集到复数集的一个映射, 则)1(1-f ={_______}.2. 设τ=(134),σ=(13)(24), 则τσ=____________________.3. 群G 的元素a 的阶是m ,b 的阶是n ,ba ab =,则≤ab ,如果),(m n = 1,则=ab_____.4. 设<a >是任意一个循环群.若|a |=∞,则<a >与________________同构;若|a |=n ,则<a >与______________同构.5. 设σ=(14)(235),τ=(153)(24),则|σ| = ____,στσ1- =______.6. 设群G 的阶为m ,G a ∈,则=m a .7. 设“~”是集合A 的一个关系,如果“~”满足_________________,则称“~”是A 的元素间的一个等价关系.8. 设σ=(23)(35),τ=(1243)(235)∈S 5,那么στ=___________(表示成若干个没有公共数字的循环置换之积), τ是 (奇、偶)置换.9. 设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为 .10. 一个群G 的非空子集H 做成一个子群的充分必要条件是 .11. 设G 为群,若对于任意的元G b a ∈,,都有ba ab =,则称群G 为 群.12.n 次对称群n S 的阶是____________.13.设G =<a >是10阶循环群,则G 的全部生成元有 ,G 的子群有 个,分别是 .14.设H 是群G 的子群,G b a ∈,,则⇔=Hb Ha .15.设G =<a >是循环群,则G 与整数加群同构的充要条件是 .16.在3次对称群3S 中,H ={(1),(123),(132)}是3S 的一个正规子群,则商群H S 3中的元素(12)H ={}.17.如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 .18.设集合A 有一个分类,其中i A 与j A 是A 的两个类,如果j i A A ≠,那么=j i A A .19. 凯莱定理说:任一个群都与一个 同构.20. 设G =<a >是12阶循环群, 则G 的生成元集合为{ }.21. 一个群G 的一个子群H 的右陪集(或左陪集)的个数叫做H 在G 中的 .22. 设G 是一个pq 阶群,其中q p ,是素数,则G 的子群的一切可能的阶数是 ____ .23. 写出S 3的一个非平凡的正规子群_____.24. 已知群G 中的元素a 的阶等于50,则4a 的阶等于 .25. 一个有限非可换群至少含有____________个元素.26. 设G 是p 阶群(p 是素数),则G 的生成元有____________个.27. 一个有限群中元素的个数叫做这个群的 .28.设R 是实数集,规定R 的一个代数运算ab b a 2:= ,(右边的乘法是普通乘法),就结合律、交换律而言,“ ”适合如下运算律: .29. 设H 是群G 的子群,G b a ∈,,则⇔=bH aH .30. 写出三次对称群3S 的子群()(){}13,1=H 的一切左陪集 .31. 如果G 是一个含有15个元素的群,那么,G 有 个5阶子群,对于∀∈a G ,则元素a 的阶只可能是___________.32.设G 是一个pq 阶群,其中q p ,都是素数,则G 的真子群的一切可能的阶数是 ,G 的子群的一切可能的阶数是 .33. 已知群G 中的元素a 的阶等于n ,则k a 的阶等于n 的充分必要条件是 .34. 设(G ,·)是一个群,那么对于∀∈b a ,G ,(ab )-1=___________.k36.若一个群G 的每一个元都是G 的某一个固定元a 的方幂,则G 称为 .37.5-循环置换)31425(=π,那么=-1π .38.设G 为群,G N ≤,且对于任意的G a ∈,有 ,则N 叫做G 的正规子群.39. 设G 为乘群,G a ∈,则能够使得e a m =的最小正整数m ,叫做a 的___________.设G 为加群,G a ∈,则能够使得 的最小正整数m ,叫做a 的阶.40.设τ=(1243)(235)∈5S ,那么1-τ=___ _.τ是 (奇、偶)置换.41. 设~是集合A 的元间的一个等价关系,它决定A 的一个分类:则a 所在的等价类a ={ }.42. 设A ={d c b a ,,,},则A 到A 的映射共有________个,A 到A 的一一映射共有 ________个,A A ⨯到A 的映射共有________个(A 上可以定义 个代数运算).43. 设G 是6阶循环群,则G 的生成元有____________个.44. 非零复数乘群*C 中由i -生成的子群是____________.45. )125(=σ,)246(=τ,则στ的阶数等于 .46.素数阶群G 的非平凡子群个数等于____________.47. 设G 是一个n 阶交换群,a 是G 的一个m (n m ≤)阶元,则商群><a G 的阶等于 .48. 设σ是集合A 到集合B 的一个映射,则存在B 到A 的映射τ,使στσ⇔=A 1 为 ;存在B 到A 的映射τ,使σστ⇔=B 1为 .49. 若群G 中的每个元素的阶都有限,则称G 为 群. 若群G 中除了单位元外,其余元素的阶都无限,则称G 为 群.50. n 阶循环群有 个生成元,有且仅有 个子群.51. 若n k ,则n 阶循环群>=<a G 必有k 阶子群,其k 阶子群为 .52. 在同构意义下,4阶群只有两个,一个是4阶循环群,另一个是 .53. 在同构意义下,6阶群只有两个,一个是6阶循环群,另一个是 .54. 非交换群G 的每个子群都是其正规子群,则称G 为 群.55. n 元置换)(21k i i i 的阶为 ,=-12121)])([(m k j j j i i i .二、选择题1. 设R B A == (实数集),如果A 到B 的映射R x x x ∈∀+→,2:ϕ,则ϕ是从A 到B 的( ).A) 满射而非单射; B) 单射而非满射;C) 一一映射; D) 既非单射也非满射.2.3S 中可以与(123)交换的所有元素有( ).A) (1),(123),(132); B) (12),(13),(23); C) (1),(123); D)3S 中的所有元素.3.设15Z 是以15为模的剩余类加群,那么15Z 的子群共有( )个.A) 2 B) 4 C) 6 D) 8.4. 设c b a ,,和x 都是群G 中的元素且xac acx bxc a x ==-,12,那么=x ( ).A) 11--a bc B) 11--a c C) 11--bc a D) ca b 1-.5. 设f 是复数集到复数集的一个映射. 如果对任意的复数x ,有4)(x x f =,则))1((1f f -=( ).A) {1,-1}; B) {i ,-i }; C) {1, -1,i ,-i }; D) 空集.6. 设A ={所有实数},A 的代数运算是普通乘法,则以下映射作成A 到A 的一个子集A 的同态满射的是( ).A) x x 10→ B) x x 2→ C) x x → D) x x -→.7. 设G 是实数集,定义乘法k b a b a ++= :,这里k 为G 中固定的常数,那么群() ,G 中的单位元e 和元x 的逆元分别是( ).A) 1和x -; B) 1和0; C) -k 和k x 2-; D)k -和)2(k x +-.8.下面的集合对于给定的代数运算不能成为群的是( ).A) 全体整数对于普通减法; B) 全体不为零的有理数对于普通乘法;C) 全体整数对于普通加法; D) 1的3次单位根的全体对于普通乘法.9. 设G 是群,c b a ,,是群G 中的任意三个元素, 则下面阶数可能不相等的元素对为( ).A)ba ab , B) bac abc , C) 1,-bab a D) 1,-a a .10. 设R 是实数集合,规定R 的元素间的四个关系如下,( )是R 的等价关系.A)b a aRb ≤⇔; B) 0≥⇔ab aRb ; C) 022≥+⇔b a aRb ; D) ab aRb ⇔<0.11.设G 是一个半群,则下面的哪一个不是做成群的充要条件( ).A) G 中有左单位元,同时G 中的每个元素都有左逆元;B) 对于G 中任意元素a 和b ,G 中恰好有一个元素x 满足a x =b ;同时G 中恰好有一个元素y满足y a =b ;C) G 中有单位元,同时G 中的每个元素都有逆元;D) 在G 中两个消去律成立.12.设H 是群G 的子群,且G 有左陪集分类{}cH bH aH H ,,,. 如果子群H 的阶是6,那么G 的阶=G ( ).A) 6 B) 24 C) 10 D) 1213. 三次对称群3S = {(1),(12),(13),(23),(123),(132)},那么下面关于3S 的四个论述中,正确的个数是( ).(1) 3S 是交换群;(2) 3S 的2阶互异子群有三个;(3) 3S 的3阶互异子群有两个;(4) 3S 的元素(123)和(132)生成相同的循环群.A) 1 B ) 2 C) 3 D) 414. 设Z 15是以15为模的剩余类加群,那么,Z 15的子群共有( )个。
近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。
答案:半群2. 一个群G的所有子群的集合构成一个________。
答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。
答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。
答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。
答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。
答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。
正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。
2. 请解释什么是群的同态和同构。
答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。
群的同构是同态,并且是双射,即存在逆映射。
3. 请解释什么是环的零因子和非零因子。
答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。
如果环R中不存在零因子,则称R为无零因子环。
近世代数期末考试题库(包括模拟卷和1套完整题)

多所高校近世代数题库一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。
( )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。
( )5、如果群G 的子群H 是循环群,那么G 也是循环群。
( )6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。
( )7、如果环R 的阶2≥,那么R 的单位元01≠。
( )8、若环R 满足左消去律,那么R 必定没有右零因子。
( )9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。
( )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。
( )二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( )①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换;③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同;④一个元()n a a a ,,,21 的象可以不唯一。
2、指出下列那些运算是二元运算( ) ①在整数集Z 上,abb a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。
(精选)近世代数练习题题库

§1 第一章 基础知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )1.2 A ×B = B ×A ( )1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。
( ) 1.4 如果ϕ是A 到A 的一一映射,则ϕ[ϕ(a)]=a 。
( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。
( )1.6 设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )1.7 在整数集Z 上,定义“ ”:a b=ab(a,b ∈Z),则“ ”是Z 的一个二元运算。
( )1.8 整数的整除关系是Z 的一个等价关系。
( )2填空题:2.1 若A={0,1} , 则A A= __________________________________。
2.2 设A = {1,2},B = {a ,b},则A ×B =_________________。
2.3 设={1,2,3} B={a,b},则A ⨯B=_______。
2.4 设A={1,2}, 则A A=_____________________。
2.5 设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。
2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。
2.7 设A ={a 1, a 2,…a 8},则A 上不同的二元运算共有 个。
2.8 设A 、B 是集合,| A |=| B |=3,则共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。
2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},则A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},则A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合下列三个条件:_____________________________________________。
近世代数试题及答案

近世代数试题及答案一、单项选择题(每题3分,共30分)1. 群的元素a的阶是指最小的正整数n,使得a^n=e,其中e是群的()。
A. 单位元B. 零元C. 负元D. 逆元答案:A2. 环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R 是()。
A. 交换环B. 非交换环C. 整环答案:A3. 向量空间V中,如果存在非零向量α,使得对于V中任意向量β,都有α⊥β,则称α是V的一个()。
A. 基B. 零向量C. 法向量D. 正交向量答案:C4. 有限域F中,如果存在元素a∈F,使得a^p=a对于所有a∈F 成立,则称F是()。
A. 素域B. 特征域C. 完全域答案:B5. 群G的一个子群H,如果对于任意的h∈H,g∈G,都有ghg^-1∈H,则称H是G的一个()。
A. 正规子群B. 非正规子群C. 子群D. 群答案:A6. 环R中,如果对于任意的a,b∈R,都有ab=ba,则称R是()。
A. 交换环B. 非交换环C. 整环答案:A7. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。
A. 基B. 零向量C. 法向量D. 正交向量答案:A8. 群G的一个子群H,如果H=G,则称H是G的一个()。
A. 正规子群B. 非正规子群C. 子群答案:C9. 环R中,如果对于任意的a,b∈R,都有a-b=b-a,则称R 是()。
A. 交换环B. 非交换环C. 整环D. 除环答案:A10. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得这些向量线性无关,并且V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。
A. 基B. 零向量C. 法向量D. 正交向量答案:A二、填空题(每题4分,共40分)1. 群G中,如果对于任意的a,b∈G,都有ab=ba,则称G是________。
答案:交换群2. 环R中,如果对于任意的a,b∈R,都有ab=0,则称R是________。
2023年新版近世代数练习题题库

§1 第一章基础知识1.1鉴定题:1.2设和所有是非空集合, 那么。
()1.3A×B = B×A ()1.4只要是到一一映射, 那么必有唯一逆映射。
()1.5假如ϕ是A到A一一映射,则ϕ[ϕ(a)]=a。
( )1.6集合A到B可逆映射一定是A到B双射。
()1.7设、、所有是非空集合, 则到每个映射所有叫作二元运算。
()1.8在整数集Z上, 定义“”:a b=ab(a,b∈Z), 则“”是Z一个二元运算。
()1.9整数整除关系是Z一个等价关系。
( )1.10填空题:1.11若A={0,1} , 则A⨯A= __________________________________。
1.12设A = {1, 2}, B = {a, b}, 则A×B =_________________。
1.13设={1,2,3} B={a,b},则A⨯B=_______。
1.14设A={1,2}, 则A⨯A=_____________________。
1.15设集合;, 则有。
1.16假如是和间一一映射, 是一个元, 则。
1.17设A ={a1, a2,…a8}, 则A上不同样二元运算共有个。
1.18设A、B是集合, | A |=| B |=3, 则共可定义个从A到B映射, 其中有个单射, 有个满射, 有个双射。
1.19设A是n元集, B是m元集, 那么A到B映射共有____________个.1.20设A={a,b,c},则A到A一一映射共有__________个.1.21设A={a,b,c,d,e}, 则A一一变换共有______个.1.22集合元间关系~叫做等价关系, 假如~适合下列三个条件: _____________________________________________。
1.23设 A ={a, b, c}, 那么A所有不同样等价关系个数为______________。
近世代数测试试卷(满分100)

近世代数测试试卷(满分100)姓名 学号 分数一、判断题(对的打√,错的打×,共30分,每小题2分)1.设G 是群,则群G 的任意两个子群的并仍是群G 的子群。
( )2. 一个群G 同它的每个一个商群G N同态; ( ) 3.一个子群的右陪集的个数和左陪集的个数一定相等; ( )4.一个有限群G 的任一个元a 的阶都是整除G 的阶; ( )5.整数加群Z 是个无限循环群; ( )6.S(M)双射变换群关于变换的乘法作成一个群; ( )7.仅有集合A 的元间的一个等价关系不一定能确定A 的一个分类; ( )8.所有一一变换不一定作成一个变换群; ( )9.设G 为整数群,则G 对运算b a b a ⋅=作成一个群; ( )10.A R =,A 的代数运算是普通乘法,则映射2x x →为A 的自同构映射; ( )11.一个集合的所有一一变换可以作成一个变换群; ( )12.整数加群Z 是个无限循环群; ( )13.群G 的不变子群N 的不变子群M 必是G 的不变子群; ( ) 14 n 次单位根乘群n U 是一个n 阶循环群; ( )15.A={所有有理数},A 对于普通加法来说可以自同构; ( )二、填空题(共30分,每小题2分)1. 无限循环群一定和 同构;2. n 次对称群n S 的任意子群,都叫做一个n 次 置换群 ;3.设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为 ;4. G 是一个群,假定G 和G 对于它们的乘法来说 ,则G 是一个群;5.任何一个群都同一个 同构;6.素数阶有限群G 的子群个数等于 ;7.一个群G 的一个不空有限子集H 作为G 的一个子群的充分而且必要条件是 ;8.一个群G 的一个子群N 的陪集所作成的群叫做 ;9. 设G 是p 阶群,(p 是素数),则G 的生成元有 个;10.一个群G 的一个子群H 的 的个数叫做H 在G 里的指数;11. 含有n 元素的任意集合共有 个双射变换;12.如果群G 可由一个元素a 生成,则称G 为由a 生成的一个 ;13.以集合A 的所有子集为元素的集合为A 的幂集,记为()P A ,若集合A 含有n 个元素,则()P A = ;14.M 为实数集,运算23a b a b =+ (满足或不满足)结合律;15.设群G 中元素a 的阶是n ,则k a n =⇔ ;三、解答题(共40分,每小题8分)1. 设{}{}{}=1,2,A B D ==奇,偶,验证()1,2=12→:奇是一个A B ⨯到D 的代数运算。
《近世代数》练习题及参考答案

《近世代数》练习题及参考答案1.设A={a ,b ,c ,d}试写出集合A 的所有不同的等价关系。
2.证明::实数域R 上全体n 阶方阵的集合Mn(R),关于矩阵的加法构成一个交换群。
3.证明:实数域R 上全体n 阶正交矩阵的集合On(R)关于矩阵的乘法构成群.这个群称为n 阶正交群.4.设G=。
⎭⎬⎫⎩⎨⎧≠∈⎪⎪⎭⎫ ⎝⎛0,a R a a a a a 证明:G 关于矩阵的乘法构成群。
5.证明:所有形如n m 32的有理数(m ,n ∈Z )的集合关于数的乘法构成群。
参考答案1. 设A= 试写出集合A 的所有不同的等价关系。
解2.证明::实数域R 上全体n 阶方阵的集合Mn(R),关于矩阵的加法构成一个交换群。
证:(1)显然,Mn(R)为一个具有“+”的代数系统。
(2)∵矩阵的加法满足结合律,那么有结合律成立。
(3)∵矩阵的加法满足交换律,那么有交换律成立。
(4)零元是零矩阵。
∀A ∈Mn(R),A+0=0+A=A 。
(5)∀A ∈Mn(R),负元是-A 。
A+(-A)=(-A)+A=0。
∴(Mn(R),+)构成一个Abel 群。
3.证明:实数域R 上全体n 阶正交矩阵的集合On(R)关于矩阵的乘法构成群.这个群称为n 阶正交群.证:(1)由于E ∈On (R),∵On (R)非空。
(2 ) 任意A,B ∈On (R),有(AB )T=B T A T =B -1A -1=(AB) -1,∴AB ∈On(R),于是矩阵的乘法在On(R)上构成代数运算。
(3) ∵矩阵的乘法满足结合律,那么有结合律成立。
(4)对任意A ∈On (R),有AE=EA=A .∴E 为On (R)的单位元。
(5)对任意A ∈On (R),存在A T ∈On (R),满足AA T =E=AA -1, A T A=E=A -1A .∴A T 为A 在On (R)中的逆元。
∴On (R)关于矩阵的乘法构成一个群。
{}d c b a ,,,4.设G=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 第一章 基础知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )1.2 A ×B = B ×A ( )1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。
( ) 1.4 如果ϕ是A 到A 的一一映射,则ϕ[ϕ(a)]=a 。
( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。
( )1.6 设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )1.7 在整数集Z 上,定义“ο”:a οb=ab(a,b ∈Z),则“ο”是Z 的一个二元运算。
( )1.8 整数的整除关系是Z 的一个等价关系。
( )2 填空题:2.1 若A={0,1} , 则A ⨯A= __________________________________。
2.2 设A = {1,2},B = {a ,b},则A ×B =_________________。
2.3 设={1,2,3} B={a,b},则A ⨯B=_______。
2.4 设A={1,2}, 则A ⨯A=_____________________。
2.5 设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。
2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。
2.7 设A ={a 1, a 2,…a 8},则A 上不同的二元运算共有 个。
2.8 设A 、B 是集合,| A |=| B |=3,则共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。
2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},则A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},则A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合下列三个条件:_____________________________________________。
2.13 设A ={a , b, c },那么A 的所有不同的等价关系的个数为______________。
2.14 设~是集合A 的元间的一个等价关系,它决定A 的一个分类:[][]b a ,是两个等价类。
则[][]⇔=b a ______________。
2.15 设集合A 有一个分类,其中i A 与j A 是A 的两个类,如果j i A A ≠,那么=j i A A I ______________。
2.16 设A ={1, 2, 3, 4, 5, 6},规定A 的等价关系~如下:a ~ b ⇔2|a-b ,那么A的所有不同的等价类是______________ 。
2.17 设M 是实数域R 上的全体对称矩阵的集合,~是M 上的合同关系,则由~给出M 的所有不同的等价类的个数是______________。
2.18 在数域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~:A~B ⇔秩(A)=秩(B),则这个等价关系决定的等价类有________个。
2.19 设M 100 (F)是数域F 上的所有100阶方阵的集合,在M 100 (F)中规定等价关系~如下:A~B ⇔秩(A)=秩(B),则这个等价关系所决定的等价类共有_______个。
2.20 若 M={有理数域上的所有3级方阵},A,B ∈M,定义A~B ⇔秩(A)=秩(B),则由”~”确定的等价类有_____________________个。
3 证明题:3.1 设φ是集合A 到B 的一个映射,对于A b a ∈,,规定关系“~”:)()(~b a b a φφ=⇔.证明:“~”是A 的一个等价关系.3.2 在复数集C 中规定关系“~”:||||~b a b a =⇔.证明:“~”是C 的一个等价关系.3.3 在n 阶矩阵的集合)(F M n 中规定关系“~”:||||~B A B A =⇔.证明:“~”是)(F M n 的一个等价关系.3.4 设“~”是集合A 的一个关系,且满足:(1)对任意A a ∈,有a a ~;(2)对任意A c b a ∈,,,若,~,~c a b a 就有c b ~.证明:“~”是A 的一个等价关系.3.5 设G 是一个群,在G 中规定关系“~”:⇔b a ~存在于G g ∈,使得ag g b 1-=.证明:“~”是G 的一个等价关系.第二章 群论1 判断题:§2.1 群的定义.1.1 设非空集合G 关于一个乘法运算满足以下四条:(A) G 对于这个乘法运算都是封闭的;(B)∀a,b,cG ,都有(ab)c=a(bc)成立;(C) 存在G ,使得∀aG ,都有ea=a 成立;(D)∀aG ,都存在aG ,使得aa=e 成立。
则G 关于这个乘法运算构成一个群。
( )1.2 设非空集合G 关于一个乘法运算满足以下四条:A )G 对于这个乘法运算是封闭的;B )∀a,b,c ∈G ,都有(ab )c=a(bc)成立;C )存在e r ∈G ,使得∀a ∈G ,都有ae r =a 成立;D )∀a ∈G ,都存在a 1-∈G ,使得a 1-a=e r 成立。
则G 关于这个乘法运算构成一个群。
( )1.3 设G 是一个非空集合,在G 中定义了一个代数运算,称为乘法,如果(1)G 对乘法运算是封闭的(2)G 对乘法适合结合律(3)G 对乘法适合消去律,则G 构成群。
( )1.4 设G 是一个有限非空集合,G 中定义了一个代数运算称为乘法,如果(1). G 对乘法运算是封闭的;(2). 乘法适合结合律与消去律,则G 对所给的乘法构成一个群。
( )1.5 实数集R 关于数的乘法成群。
( )1.6 若G 是一个n 阶群,aG,|a|表示a 的阶,则|a|。
( )1.7 若 |a|=2,|b|=7,ab=ba,则|ab|=14。
1.8 设Q 为有理数集,在Q 上定义二元运算“ο”,a οb=a+b+ab(),(,,οQ Q b a 则∈∀)构成一个群。
( )§2.2 变换群、置换群、循环群1.9 一个集合上的全体一一变换作成一个变换群。
( )1.10 一个集合A 的所有变换作成一个变换群G.( )1.11 集合A 的所有的一一变换作成一个变换群。
( )1.12 素数阶群都是交换群。
( )1.13p(p为质数)阶群G是循环群.()1.14素数阶的群G一定是循环群.( )1.153次对称群3S是循环群。
()1.16任意群都同构于一个变换群.()1.17有限群都同构于一个置换群。
( )1.18任何一个有限群都与一个循环群同构。
()1.19在5次对称群5S中,(15)(234)的阶是6.( )1.20在4次对称群S4中,(12)(324)的阶为6。
()1.21在5S中,(12)(345)的阶是3。
( )1.22任意有限群都与一个交换群同构。
()1.23因为22阶群是交换群,所以62阶群也为交换群。
()1.246阶群是交换群。
()。
1.254阶群一定是交换群。
()1.264阶群一定是循环群。
()1.27循环群一定是交换群。
()1.28设G是群,a, b∈G, |a|=2, |b|=3, 则|ab|=6。
()1.2914阶交换群一定是循环群。
()1.30如果循环群()aG=中生成元a的阶是无限的,则G与整数加群同构。
()1.31有理数加群Q是循环群。
()1.32若一个循环群G的生成元的个数为2,则G为无限循环群。
()§2.3 子群、不变子群。
1.33若H是群G的一个非空子集,且∀a,b∈H都有ab∈H成立,则H是G的一个子群。
( )1.34 若H 是群G 的一个非空有限子集,且∀a,b ∈H 都有ab ∈H 成立,则H 是G 的一个子群。
( )1.35 循环群的子群也是循环群。
( )1.36 如果群G 的子群H 是循环群,那么G 也是循环群。
( )1.37 一个阶是11的群只有两个子群。
( )1.38 有限群G 中每个元素a 的阶都整除群G 的阶。
( )1.39 设G 是一个n 阶群,m|n ,则G 中一定有m 阶子群存在。
( )1.40 若G 是60阶群,则G 有14阶子群。
( )1.41 设G 是60 阶群,则G 有40阶子群。
( )1.42 阶为100的群一定含25阶元。
( )1.43 阶为100的群一定含25阶子群。
( )1.44 阶为81的群G 中,一定含有3阶元。
( )1.45 设H 是群G 的一个非空子集,则H H H G H =⋅⇔≤-1。
( ) 1.46 设H 是群G 的一个非空子集,则H H H G H ⊇⋅⇔≤-1。
( ) 1.47 群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。
( )1.48 群G 的一个子群H 元素个数与H 的每一个左陪集aH 的个数相等. ( )1.49 指数为2的子群不是不变子群。
( )1.50 若N ∆H,H ∆G ,则N ∆G 。
( )1.51 若N 是群G 的不变子群,N 是群N 的不变子群,则N 是G 的不变子群。
( )1.52 设H ≤G ,K ≤G ,则HK ≤G 。
( )1.53 若N <N ,H <G 那么NH <G 。
( )§2.4 商群、群的同态定理。
1.54 群之间的同态关系是等价关系。
( )1.55 循环群的商群是循环群。
( )1.56 设f :G G →是群G 到群G 的同态满射,a ∈G ,则a 与f (a)的阶相同。
( )1.57 设G 是有限群,H ≤G , 则||||||H G H G =。
( ) 1.58 若ϕ是群G 到G 的同态满射,N 是G 的一个不变子群,则ϕ(N )是G 的不变子群,且N G ≅)(N Gϕ 。
( )1.59 设f 是群G 到群-G 的同态映射,H ∆G ,则 f(H) ∆-G 。
( )1.60 设f 是群G 到群-G 的同态映射, H ≤G 则 f(H)≤-G 。
( )1.61 若是群G 到的一个同态满射,N 是G 的一个不变子群,则(N)是的不变子群,且~。
1.62 若是群G 到的同态满射,是的一个不变子群,()表示N 的原象,则()是G 不变子群,且≅。
( )1.63 设G 和G 都是群,G ϕ≅G , G N ∆, N=1-ϕ(N ),则N ∆G,且--≅N G N G //。
( )2 填空题:2.1 在群G 中,a ,b ∈G ,a 2 = e ,a -1ba = b 2,则|b| =_________________。