【课件一】26.3实际问题与二次函数

合集下载

26.3_实际问题与二次函数_第1课时

26.3_实际问题与二次函数_第1课时

1 0.5( x 2 )2 2
例:某工厂大门是一抛物线形的水泥建筑物,大门底部宽 AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车 欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽 车能否顺利通过大门?若能,请你通过计算加以说明;若不能, 请简要说明理由.
(2).写出该专卖店当一次销售x(只)时,所获利润y(元)与x
之间的函数关系式,并写出自变量x的取值范围; (3)若店主一次卖的只数在10至50只之间,问一次卖多少 只获得的利润最大?其最大利润为多少?
【解析】(1)设一次购买x只,才能以最低价购买,则有: 0.1(x-10)=20-16,解这个方程得x=50. 答:一次至少买50只,才能以最低价购买 (2)
∴当水面下降1m时,水面宽 度增加了( 2 6 4 )m 返回
解三 如图所示,以抛物线和水面的两个交点的连线为x轴,以其中 的一个交点(如左边的点)为原点,建立平面直角坐标系.
此时,抛物线的顶点为(2,2) ∴可设这条抛物线所表示 的二次函数的解析式为:
y a( x 2 )2 2
a 0.5
a 0.5
2 a 2 2
∴这条抛物线所表示的二 次函数为: y 0.5 x 2 当水面下降1m时,水面的 纵坐标为y=-3,这时有:
这时水面宽度为 6 m 2
∴当水面下降1m时,水面宽 度增加了( 2 6 4 )m 返回
3 0.5 x 2 x 6
解二 如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线 的对称轴为y轴,建立平面直角坐标系. 此时,抛物线的顶点为(0,2) ∴可设这条抛物线所表示 的二次函数的解析式为:
一般地,因为抛物线y=ax2+bx+c的顶点是最低(高)

《实际问题与二次函数》PPT优秀教学课件1

《实际问题与二次函数》PPT优秀教学课件1
第二十二章 二次函数
22.3 实际问题与二次函数
第2课时 最大利润问题
自主学习
知识点:销售中的最大利润 1.(长葛月考)服装店将进价为100元的服装按x元出售,每天可销售(200-x)
件,若想获得最大利润,则x应定为( A )
A.150元 B.160元 C.170元 D.180元
2.某产品进货单价为9元,按10元一件出售时,能售出50件.若每件每涨
第函2数课(关3时系)设式最为每大y=利月-润n问获2+题得14n-的24利,则润该企为业w一年元中,应停由产的题月意份是得( :)w=(x-30)(-2x+200)-450=-
(2)设该公司日获利为W元,由题意得W=(x-30)(-2x+200)-450=-2(x-65)2+2000,∵-2<0; ②在生产该产品的过程中,当天利润不低于2400元的共有多少天?
C.135元 (2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?
第2.2课 某销时产售品最进统货大单利计价润为问,9题元一,件按10工元一艺件出品售每时,降能售价出510元件.,若每则件每每涨天价1可元,多销售售量就出减4少件10件,,则要该使产品每能获天得的获最得大利的润为(
A )8.生利产润季节最性产大品,的企则业,每当件它的的产品售无价利润应时就定会为及时(停产.现)有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的
(2)设该公司日获利为W元,由题意得W=(x-30)(-2x+200)-450=-2(x -65)2+2000,∵-2<0;∴抛物线开口向下;∵对称轴x=65;∴当x<65 时,W随着x的增大而增大;∵30≤x≤60,∴当x=60时,W有最大值;W最大 值=-2×(60-65)2+2000=1950.即当销售单价为每千克60元时,日获利最 大,最大获利为1950元

26.3实际问题与二次函数(1)

26.3实际问题与二次函数(1)

二、探究新知探究课本22页问题问题设置:1.矩形的一边长为lm,则另一边长为?矩形的面积S 怎样表示?2. 本题中有几个变量?分别是?S是l的函数吗?l的取值范围是什么?3. 利用什么知识来确定l是多少时S的值最大?结果:l是15m时S的值最大(225m)题后归纳:一般地,因为抛物线的顶点是最低(高)点,所以知道它的顶点坐标,即可知道,二次函数何时取最值.完成课本23页探究1问题设置:1.本题中涉及到哪几个量?它们之间有哪些关系式?2.调整价格包括几种情况?3.先看涨价的情况:如何计算利润y?设涨价x元,则每星期少卖多少件?实际卖出多少件?销售额是1.如图(1)所示,要建一个长方形的养鸡场,鸡场的一边靠墙,如果用50m长的篱笆围成中间有一道篱笆的养鸡场,没靠墙的篱笆长度为xm.(1)要使鸡场的面积最大,鸡场的应为多少米?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?(3)比较(1)、(2)的结果,你能得到什么结论?2.某产品每件成本10元,试销阶段每件产品的销售价x(元)•与产品的日销售量y(件)之间的关系如下表:x(元)152030…y(件)252010…若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?四、小结归纳1.利用二次函数解决实际问题中最值问题的一般步统,总结本节课内容,把握解常见实际问题的技巧.骤.2.学完本节课你有什么疑惑?五、作业设计复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做;学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重复练习.补充作业: 1.已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm).(1)写出□ABCD的面积y与x的函数关系式,并求自变量x的取值范围.(2)当x取什么值时,y的值最大?并求最大值.(3)求二次函数的函数关系式.2.某超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)•与销售单价x(元)(x≥30)存在如图所示的一次函数关系式.(1)试求出y与x的函数关系式;(2)设超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?(3)根据市场调查,该绿色食品每天可获利润不超板书设计。

人教版26.3实际问题与二次函数(3)课件PPT

人教版26.3实际问题与二次函数(3)课件PPT
B

A 1m


D

o 1m 2.5m
4m
解:由题意,设抛物线解析式为 y =ax2+bx+1, 把 B(1,1.5),D(4,1)代入得: 1 a 6 , y 1 x 2 2 x 1 1.5 a b 1, 解得 6 3 1 16 a 4b 1. 2 b . 3 把x=2.5代入得y=1.625 ∴C点的坐标为(2.5, 1.625) ∴丁的身高是1.625米 y
具有二次函数的图象抛物线的特征
探究1:
如图是某公园一圆形喷水池,水流在各方向沿形状相 同的抛物线落下,如果喷头所在处A距地面1.25米,水流路 线最高处B距地面2.25米,且距水池中心的水平距离为1米. 试建立适当的坐标系,表示该抛物线的解析式 为 y= -(x-1)2 +2.25,如果不考虑其他因素,那么水池的 半径至少要 2.5 米,才能使喷出的水流不致落到池外。 y
1 B(1,2.25 ) B
.A A(0,1.25)
1.25 2.25 C
. .
O
x
探究2:
如图的抛物线形拱桥,当水面在 l时,拱桥顶离水面 2 m,水面宽 4 m,水面下降 1 m, 水面宽度增加多少?
y
y
0
x
0
X
注意:
在解决实际问题时,我们应建立简单方便的平面直角坐标 系.
探究2:
0
(-2,-2)
0.7
E x D
CO
0.4
解 :如图,以CD所在的直线为X轴,CD的中垂线为Y轴建立
则 直角坐标系, B(0.8, 2.2),F(- 0.4, 0.7) 设 y = ax 2 + k ,从而有 25 a= 0.64a + k = 2.2 解得: 8 0.16a + k = 0.7 K = 0.2 所以,y = 25 x 2 + 0.2

《实际问题与二次函数》课件

《实际问题与二次函数》课件
(两边足够长),用 28 m 长的篱笆围成一个矩形花园 ABCD (篱笆
只围 AB,BC 两边),设 AB=x m,花园面积为 S m2.
(1)求 S 与 x 之间的函数关系式;
(2)当 x 为何值时,S 有最大值?请求出最大值.
解:(1)由题意得 AD=(28-x) m,
则 S=x(28-x)=-x2+28x(0<x<28).
篱笆 EF 与 GH 将矩形ABCD 分割成①②③三块矩形区域,而且
这三块矩形区域的面积相等,现有总长 80 m的篱笆,当围成的
花圃 ABCD 的面积 y m2最大时,AB 的长为 15 m.
∵a= -
1
x+10>0,∴x<40.
4
∵y= -
3 2
x (
2
+ 300(0<x<40),

30
因此,当l=- ==15时,
2
2×(−1)
4−2 −302
S 有最大值
=
=225.
4
4×(−1)
也就是说,当 l 是 15 m 时,场地的面积 S 最大.
例2 如图,用一段长为60 m的篱笆围成一个一边靠墙的
矩形菜园,墙长18 m,这个矩形的长、宽分别为多少时,
菜园的面积最大?最大面积是多少?
《实际问题与二次函数》
知识回顾
写出下列抛物线的开口方向、对称轴和顶点坐标,并写出其最
值.
(1) y=x2-4x-5;(配方法) (2) y=-x2-3x+4.(公式法)
解:(1) y = x2-4x-5
(2) y=-x2-3x+4 中 a=-1,b=-3,c=4,
= x2-4x+4-9 a=-1<0,开口方向:向下;

实际问题与二次函数课件

实际问题与二次函数课件

03 二次函数的应用
最大最小值问题
要点一
总结词
通过求二次函数的顶点,解决生活中的最大最小值问题。
要点二
详细描述
在二次函数中,顶点坐标可以通过公式$-frac{b}{2a}$和 $fleft(-frac{b}{2a}right)$求得。在解决实际问题时,我们 可以通过找到二次函数的顶点,来找到某个量的最大值或 最小值。例如,在建筑设计中,为了使建筑物的窗户或阳 台获得最好的视野,需要找到最佳的窗户或阳台的高度和 宽度。
02 实际问题与二次函数
生活中的二次函数问题
抛物线运动
在投掷、射箭等运动中,物体的运动 轨迹可以近似地用二次函数描述。这 是因为物体在空中的运动受到重力的 影响,形成抛物线形状。
桥梁振动
大型桥梁在风力或地震作用下会产生 振动,其振动幅度和频率与二次函数 相关,通过研究这些函数的特性,可 以预测桥梁的安全性。
04 实际问题的解决策略
建模策略
总结词
将实际问题转化为数学模型的关键步 骤
详细描述
通过理解问题的本质,将实际问题的 语言描述转化为数学表达式,构建出 反映问题内在规律的数学模型。
图像分析策略
总结词
利用二次函数的图像解决实际问题的有 效方法
VS
详细描述
通过绘制二次函数的图像,直观地展示函 数的性质和变化规律,从而解决与二次函 数相关的实际问题,如最值问题、交点问 题等。
面积问题
总结词
利用二次函数解决生活中的面积问题。
详细描述
在解决与面积相关的问题时,我们可以将面积表示为二次函数的形式。例如,在农业中,为了最大化 农作物的产量,需要找到最佳的种植密度。通过将种植密度表示为二次函数,可以找到最佳的种植密 度,从而最大化农作物的产量。

九年级数学下册 26.3 实际问题与二次函数(1) 课件 人教新课标版

(1)降价x元时,每星期多卖 20x 件, 实际卖出 (300+20x) 件;
探究 ★、某商品现在的售价为每件60元,每 星期可卖出300件。市场调查反映:如 调整价格,每涨价1元,每星期要少卖 出10件;每降价1元,每星期可多卖出 20件。已知商品的进价为每件40元,如 何定价才能使利润最大?
(2)降价x元时,每件定价为 (60-x) 元, 销售额为 (60-x)(300+20x) 元,所得利 润为 (60-x)(300+20x)-40(300+20x) 元.
探究 y=(60-x)(300+20x)-40(300+20x)
y=-20x2+100x+6000(0≤x≤20) (3)当x= 2.5 时,y最大= 6125 元. ∴在降价情况下,当定价为57.5时, 利润最大,最大利润为 6125 元.
探究
∵在涨价情况下,当定价为 65 时, 利润最大,最大利润为 6250 元.
变化而变化,具体关系式为 2x 240。
设这种绿茶在这段时间内的销售利润为 y(元),解答下列问题: (1)求y与x的函数关系式; (2)当x取何值时,y的值最大?
巩固 4、某公司销售一种绿茶,每千克成本为 50元,经市场调查发现:在一段时间内, 销售量ω(千克)随销售单价x(元/千克)的
变化而变化,具体关系式为 2x 240。
归纳
求实际问题极值的一般步骤: (1)求出函数解析式,写出自变量取值 范围; (2)画出大致图象; (3)用配方或公式法求最大值或最小值, 或根据自变量的取值范围求最大值或最 小值。
巩固 4、某公司销售一种绿茶,每千克成本为 50元,经市场调查发现:在一段时间内, 销售量ω(千克)随销售单价x(元/千克)的

实际问题与二次函数_课件

(2)当x=20时,绿化带面积最大
练习
如图,用一段长为 60 m 的篱笆围成一个一边靠墙的矩形菜园 ,墙长32 m,这个矩形的长、宽各为多少时,菜园的面积最大 ,最大面积是多少?
练习
如图,用一段长为 60 m 的篱笆围成一个一边靠墙的矩形菜园 ,墙长18 m,这个矩形的长、宽各为多少时,菜园的面积最大 ,最大面积是多少?
225.
0<15<30 满足要求
即l是15m时,场地的面积S最大(. S=225㎡)
归纳
篱笆问题的求解步骤
①写出关系式:写出面积和边长之间的函数关系式
取顶点时,一定要 考虑自变量的范围 是否符合要求
练习
(1)求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围. (2)当 x 为何值时,满足条件的绿化带的面积最大 ?答案:
抛球问题
小球的运动时间是多少时,小球最高? 小球运动中的最大高度是多少?
小球运动的时间是3 s 时,小球最高. 小球运动中的最大高度是 45 m.
归纳
顶点是最低(高)点,


最小(大)值
练习 7
篱笆问题
用总长为 60 m 的篱笆围成矩形场地,矩形面积 S 随矩形一边 长 l 的变化而变化.当 l 是多少米时,场地的面积 S 最大?
练习
(1) 求 y 关于 x 的函数表达式,并直接写出自变量 x 的取值范围;
答案:(1) (2)能.
(0<x<15);
定价问题 某商品现在的售价为每件 60 元,每星期可卖出300件.市场调 查反映:如调整价格,每涨价 1 元,每星期要少卖出 10 件; 每降价 1 元,每星期可多卖出 20 件. 已知商品的进价为每件 40 元, 如何定价才能使利润最大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂寄语
二次函数是一类最优化问题的数 学模型,能指导我们解决生活中的实 际问题,同学们,认真学习数学吧, 因为数学来源于生活,更能优化我们 的生活。
能力拓展
1.已知某商品的进价为每件40元。现在的售价
是每件60元,每星期可卖出300件。市场调查 反映:如调整价格 ,每涨价一元,每星期要 少卖出10件;每降价一元,每星期可多卖出20 件。如何定价才能使利润最大? …
(1)列出二次函数的解析式,并根 据自变量的实际意义,确定自变量的 取值范围; (2)在自变量的取值范围内,运用 公式法或通过配方求出二次函数的最 大值或最小值。
做一做
何时橙子总产量最大
驶向胜利 的彼岸
某果园有100棵橙子树,每一棵树平均结600个橙子.现 准备多种一些橙子树以提高产量,但是如果多种树,那么 树之间的距离和每一棵树所接受的阳光就会减少.根据 经验估计,每多种一棵树,平均每棵树就会少结5个橙子. (1)问题中有那些变量?其中哪 些是自变量?哪些是因变量? (2)假设果园增种x棵橙子树,那么 果园共有多少棵橙子树?这时平均 每棵树结多少橙子? (3)如果果园橙子的总产量为y 个,那么请你写出y与x之间的关 系式.
想一想
何时橙子总产量最大
驶向胜利 的彼岸
果园共有(100+x)棵树,平均每棵树结(600-5x) 个橙子,因此果园橙子的总产量
y=(100+x)(600-5x)=-5x² +100x+60000.
在上述问题中,种多少棵橙子树,可以使果园橙子的总产量 最多? 1 2 3 4 5 6 7 8 9 10 11 12 13 14
,有最 点,函数有最 下 高 ,有最

.

4ac b 2 当a>0时,抛 4a
值,是
4ac b 2 a<0时,抛物线开口向 4a
;当 大 值,
点,函数有最


知识回顾
直线x=3 3. 二次函数y=2(x-3)2+5的对称轴是 ,顶点 坐标是 (3 ,5) 。当x= 3 时,y的最 小值是 5 。
2.利用函数图象描述橙子的总产量与增种橙子树的 棵数之间的关系? 3.增种多少棵橙子,可以使橙子的总产量在60400个 以上? 当y 60400时, 得
5x 10 60500 60400.
2
用抛物线的知识解决生活中的一些实 际问题的一般步骤:
建立直角坐标系 二次函数 问题求解 找出实际问题的答案
在上题中,若商场规定试销期间获利不得低于 40%又不得高于60%,则销售单价定为多少时, 商场可获得最大利润?最大利润是多少?
中考链接
2.(09中考)某超市经销一种销售成本为每件 40元的商品.据市场调查分析,如果按每件 50元销售,一周能售出500件;若销售单价 每涨1元,每周销量就减少10件.设销售单 价为x元(x≥50),一周的销售量为y件. (1)写出y与x的函数关系式(标明x的取值范围) (2)设一周的销售利润为S,写出S与x的函数关 系式,并确定当单价在什么范围内变化时,利 润随着单价的增大而增大? (3)在超市对该种商品投入不超过10000元的 情况下,使得一周销售利润达到8000元,销 售单价应定为多少?
0
2
x
求函数的最值问题,应注意什么?
自主探究
问题1.已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调 整价格 ,每涨价1元,每星期要少卖出10件。要想获 得6090元的利润,该商品应定价为多少元?
分析:没调价之前商场一周的利润为 6000 元; 设销售单价上调了x元,那么每件商品的利润 (20+x) 可表示为 元,每周的销售量可表示为 (300-10x)件,一周的利润可表示为 (20+x)( 300-10x)元,要想获得6090元利润可 列方程 (20+x)( 300-10x) =6090 。
已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映: 如果调整价格 ,每涨价1元,每星期要少卖出 10件。要想获得6090元的利润,该商品应定价 为多少元? 若设销售单价x元,那么每件商品的利润可表 示为(x-40) 元,每周的销售量可表示 为 [300-10(x-60) ]件,一周的利润可表示 为 (x-40)[300-10(x-60)] 元,要想获得6090元 利润可列方程 (x-40)[300-10(x-60)]=6090 .
⑴ y=-x2+2x-3; ⑵ y=-x2+4x
y
7、图中所示的二次函数图像的 解析式为:
y 2 x 2 8 x 13
⑴若-3≤x≤3,该函数的最大值、最小值 分别为( 55 )、( 5 )。 ⑵又若0≤x≤3,该函数的最大值、最小 值分别为( 55 )、( 13)。
-4 -2 6 4 2
合作交流
问题2.已知某商品的进价为每件40元。现在
的售价是每件60元,每星期可卖出300件。 市场调查反映:如调整价格 ,每涨价一元, 每星期要少卖出10件;每降价一元,每星期 可多卖出20件。如何定价才能使利润最大?
解:设每件涨价为x元时获得的总利润为y元. y =(60-40+x)(300-10x) (0≤x≤30) =(20+x)(300-10x) =-10x2+100x+6000 =-10(x2-10x ) +6000 =-10[(x-5)2-25 ]+6000 =-10(x-5)2+6250 当x=5时,y的最大值是6250.
由讨论及现在的销售情况,你 知道应该如何定价能使利润 最大了吗?
答:综合以上两种情况,定价为65元时可 获得最大利润为6250元.
牛刀小试
某商店购进一批单价为20元的日用品,如果以单价30 元销售,那么半个月内可以售出400件.根据销售经验,提 高单价会导致销售量的减少,即销售单价每提高1元,销 售量相应减少20件.售价提高多少元时,才能在半个月内 获得最大利润? 解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500 ∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元
X/棵
Y/个
你能根据表格中的数据作出猜想 吗

议一议
何时橙子总产量最大
y 100 x 600 5 x 5 x ቤተ መጻሕፍቲ ባይዱ 100 x 60000
2
驶向胜利 的彼岸
1.利用函数表达式描述橙子的总产量与增种橙子树的 棵数之间的关系.
5x 10 60500.
直线x=-4 ,顶点 4. 二次函数y=-3(x+4)2-1的对称轴是 坐标是 (-4 ,-1) 。当x= -4 时,函数有最 大值,是 -1 。
直线x=2 ,顶点 5.二次函数y=2x2-8x+9的对称轴是 坐标是 (2 ,1) .当x= 2 时,函数有最 小值,是 1 。
6、求下列二次函数的最大值或最小值:
定价:60+5=65(元)
解:设每件降价x元时的总利润为y元.
y=(60-40-x)(300+20x) 怎样确定x =(20-x)(300+20x) 的取值范围 =-20x2+100x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 (0≤x≤20) 所以定价为60-2.5=57.5时利润最大,最大值为6125元.
知识回顾
1. 二次函数y=a(x-h)2+k的图象是一条抛物线 ,它的 对称轴是直线x=h ,顶点坐标是 (h,k) . 2 . 二次函数y=ax2+bx+c的图象是一条 抛物线 ,它的对 称
b 直线x 2a
b 4ac b 2 2a , 4a
轴是
物线开口向

,顶点坐标是 低
相关文档
最新文档