(整理)数学奥林匹克初中训练题5
初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)

初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)一、填空题1. 如果函数 f(x)=x^2-2x+1的根为 a,b,那么a + b 等于_____.答案:-12. 已知正整数 m、n 满足 mx+ny=1(m、n 都不为 0),若 m + n 等于 8,则 m - n 等于_____.答案:73. 若等差数列{an}的前 n 项和为 Sn,且 a1=3,Sn=15,则 n 的值是_____.答案:64. 在△ABC 中,已知 a=4,b=4,c=8,若 AB+AC=9,则∠B =_____.答案:45°二、选择题5. 已知 A、B 两点的坐标分别为(3,1)、(5,-1),则 AB 是_______.A. 水平的直线B. 斜率为 1 的直线C. 斜率为 -1/3 的直线D. 竖直的直线答案:B6. 若正方形的边长为 x,周长为 5x,则 x 的值等于_______.A. 4B. 5C. 8D. 10答案:A7. 已知tanα=2,cotβ=-3,则 tan(α-β)等于_______.A. 5B. -5C. -1/5D. 1/5答案:B8. 把一个正整数分成 K 份,第一份的数量是剩下的 K-1 份的总和的()A. 1/2B. 3/2C. 2/3D. 3/4答案:B三、解答题9. 已知函数 f(x)=2x+1,若直线 4x+3y=37 与曲线 f(x) 相切,求该曲线上点 P 的坐标答:设点 P 的坐标为 (x,y),因为直线 4x+3y=37 与曲线 f(x) 相切,所以曲线上点 P 的 y 值可由 4x+3y=37 中求得,即 y=12-4/3x,由函数 f(x)可得 12-4/3x=2x+1,故 x=7,代入 y=12-4/3x 可得 y=12-4/3(7)=8。
点 P的坐标即为 (7, 8)。
10. 已知△ABC 中,a=3,b=3,∠A=120°,求 B 的坐标答:由△ABC 中 A 的坐标为(0,0),a=3,b=3 可知 C 的坐标为(3,0),∠A=120°,∠C=60°,因为∠B=60,则以 C 为外接圆圆心,半径为3 的圆○上可得点B,即B(√3,1),综上所述,点B 的坐标为(√3,1)。
初中数学奥林匹克训练题及答案五

又 AD ∥BC ,故 ∠ABC + ∠BAD = 180°,
即 ∠ADC + ∠BAD = 180°.
所以 ,AB ∥CD ,四边形 ABCD 是平行四边形.
5. (A) . 因为 aabb = 1 000 a + 100 a + 10 b + b
= 11 (100 a + b) , 由题意可设 100 a + b = 11 c2 ( c 是正整数) , 所以 ,101 < 100 a + b = 11 c2 < 999 , 即 9 < c2 < 90. 于是 ,4 ≤c ≤9. 经检验 , c = 8 时满足条件 ,此时 a = 7 , b = 4. 故 a + b = 11.
数学奥林匹克初中训练题
第一试
一 、选择题 (每小题 7 分 ,共 42 分) 1. 若 a 、b 都是质数 ,且 a2 + b = 2 003 , 则 a + b 的值等于 ( ) . (A) 1 999 (B) 2 000 (C) 2 001 (D) 2 002
2.设 a > 0 > b > c , a + b + c = 1 , M =
所以 , x - 8 = 30 ,知 x = 38.
即汽车在途中排除故障花了 38 min.
ab - ac = 360 ,则 abc 的最大值是 .
3. 若
abc
=
1
,
1
+
x a+
ab
+ 1+
x b+
bc
+
1
+
x c+
初中数学奥林匹克竞赛模拟试卷(八年级)

初中数学奥林匹克竞赛模拟试卷(八年级)全国初中数学奥林匹克竞赛试卷(八年级)一、选择题1、已知三点A(2,3),B(5,4),C(-4,1)依次连接这三点,则三点在同一直线上。
解析:AB的解析式为y= 3x+3,当x= -4时,y=1,即点C在直线AB上,∴选D。
2、边长为整数,周长为20的三角形个数是8个。
解析:设三角形的三边为a、b、c且a≥b≥c,a+b+c=20,a≥7,又b+c>a,2a<20a<10,又7≤a≤9,可列出(a、b、c)有:(9,9,2)(9,8,3)(9,7,4)(9,6,5)(8,8,4)(8,7,5)(8,6,6)(7,7,6)共八组,选C。
3、N=++,则N的个位数字是9.解析:的个位数字为3,的个位数字为9,的个位数字为7,∴N的各位数字为9,选C。
4、P为正方形ABCD内一点,若解析:过P作BP’⊥BP,且使BP’=BP,连P’A。
易得△P’AB≌△PBC,则P’A=PC,设PA=k,则PB=2k,PC=P’A=3k,连PP’,则Rt△PBP’中,∠P’PB=45°且PP’=22k,在△P’AP中有:P’A2=P’P2+PA2,∴∠P’PA=90°,∴∠APB=135°选B。
5、在函数y= -x(a为常数)的图象上有三点:(-1,y1)(-4,y2)(2,y3),则函数值y1,y2,y3的大小关系是y3<y1<y2.解析:-(a2+1)<0,∴在每个象限,y随x的增大而增大,因此y1<y2.又∵(-1,y1)在第二象限,而(2,y3)在第四象限,∴y3<y1,选C。
6、已知a+b+c≠0,且c=a=b。
解析:由c=a=b,可得a=b=c,代入a+b+c≠0中,得3a≠0,∴a≠0,选D。
数学奥林匹克初中训练题(6套)

数学奥林匹克初中训练题(1)第 一 试一. 选择题.(每小题7分,共42分)( )1.已知33333a b c abc a b c++-=++,则22()()()()a b b c a b b c -+-+--的值为: (A)1 (B)2 (C)3 (D)4( )2.规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果对任意实数,a b 都有(,)a b Δ(,)(,),x y a b =则(,)x y 为:(A)(0,1) (B)(1,0) (C)(1,0)- (D)(0,1)-( )3.在ΔABC 中,211a b c=+,则∠A: (A)一定是锐角 (B)一定是直角 (C)一定是钝角 (D)非上述答案( )4.下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②2;a =③若点(,)P a b 在第三象限,则点1(,1)P a b --+在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等.其中正确的命题的个数是:(A)2个 (B)3个 (C)4个 (D)5个( )5.设P 为等腰Rt ΔABC 斜边AB 上或其延长线上一点,22S AP BP =+,那么:(A)22S CP (B)22S CP = (C)22S CP (D)不确定 ( )6.满足方程222()x y x y xy +=++的所有正整数解有:(A)一组 (B)二组 (C)三组 (D)四组二. 填空题.(每小题7分,共28分)1.一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问再过分钟,货车追上了客车.2.若多项式2228171642070P a ab b a b =-+--+,那么P 的最小值是 .3.如图1, ∠AOB=30O , ∠AOB 内有一定点P,且OP=10.在OA 上有一点Q,OB 上有一点R.若ΔPQR 周长最小,则最小周长是 .4.已知二次函数2(1)y ax a =≥的图象上两点A,B 的横坐标分别为1,2-,O 是坐标原点,如果ΔAOB 是直角三角形,则ΔAOB 的周长为 .第 二 试一.(20分)已知实数,,a b c 满足不等式,a b c b c a ≥+≥+,c a b ≥+,求a b c ++的值.二.(25分)如图2,点D 在ΔABC 的边BC 上,且与B,C 不重合,过点D 作AC 的平行线DE 交AB 于E,作AB 的平行线DF 交AC 于点F.又知BC=5.(1) 设ΔABC 的面积为S.若四边形AEFD 的面积为25S .求BD 长.(2) 若,AC 且DF 经过ΔABC 的重心G,求E,F 两点的距离.三.(25分)已知定理:”若三个大于3的质数,,a b c 满足关系式25a b c +=,则a b c ++是整数n 的倍数.”试问:上述定理中整数n 的最大可能值是多少?并证明你的结论.数学奥林匹克初中训练题(2)第一试一. 选择题.(每小题7分,共42分)( )1.有铅笔,练习本,圆珠笔三种学习用品.若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元.现购铅笔,练习本,圆珠笔各1件,共需:(A)1.2元 (B)1.05元 (C)0.95元 (D)0.9元( )2.三角形的三边,,a b c 都是整数,且满足7abc bc ca ab a b c ++++++=,则此三角形的面积等于:(A)2 (B)4 (C)4 (D)2( )3.如图1,ΔABC 为正三角形,PM ⊥AB,PN ⊥AC.设四边形AMPN, ΔABC 的周长分别是,m n ,则有: (A)1325m n (B)2334m n (C)80%83%m n (D)78%79%mn( )4.满足22(3)(3)6x y -+-=的所有实数对(,)x y ,使y x取最大值,此最大值为:(A)3+4+5+ (D)5( )5.设p .其中,,,a b c d 是正实数,且满足1a b c d +++=.则p 满足: (A)p >5(B)p <5 (C)p <2 (D)p <3( )6.如图2,点O 是正六边形ABCDEF 的中心,OM ⊥CD,N为OM 的中点.则:ABN BCN S S 等于:(A)9:5 (B)7:4 (C)5:3 (D)3:2二. 填空题.(每小题7分,共28分)1.若实数,x y 满足(1x y =,则x y += .2.如图3,CD 为直角ΔABC 斜边AB 上的高,DE ⊥AC.设ΔADE,ΔCDB,ΔABC 的周长分别是12,,p p p .当12p p p + 取最大值时,∠A= .3.若函数2543kx y kx kx +=++中自变量的取值范围是一切实数,则实数k 的取值范围是 .4.如图4所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= .第 二 试一.(共20分)n 是一个三位数,b 是一个一位数,且22,1a a b b ab ++都是整数,求a b +的最大值与最小值.二.(共25分)如图5,在ΔABC 中,∠A=60O ,O,I,H 分别是它的外心,内心,垂心.试比较ΔABC 的外接圆与ΔIOH 的外接圆的大小,证明你的论断.三.(共25分)求方程组33333x y z x y z ++=⎧⎨++=⎩的所有整数解.参考答案一.1.(B)数学奥林匹克初中训练题(四)第 一 试三. 选择题.(每小题7分,共42分)( )1.在11,,0.2002,7223πn 是大于3的整数)这5个数中,分数的个数为: (A)2 (B)3 (C)4 (D)5( )2.如图1,正方形ABCD 的面积为256,点F 在AD上,点E 在AB 的延长线上,Rt ΔCEF 的面积为200,则BE 的长为:(A)10 (B)11 (C)12 (D)15( )3.已知,,a b c 均为整数,且满足2223a b c +++<32ab b c ++.则以,a b c b +-为根的一元二次方程是:(A)2320x x -+= (B)2280x x +-=(C)2450x x --= (D)2230x x --=( )4.如图2,在Rt ΔABC 中,AF 是高,∠BAC=90O ,且BD=DC=FC=1,则AC 为:( )5.若222a b c a b c k c b a+++===,则k 的值为: (A)1 (B)2 (C)3 (D)非上述答案( )6.设0,0,26x y x y ≥≥+=,则224363u x xy y x y =++--的最大值是: (A)272(B)18 (C)20 (D)不存在四. 填空题.(每小题7分,共28分)1.方程222111013x x x x++=+的实数根是 . 2.如图3,矩形ABCD 中,E,F 分别是BC,CD 上的点,且2,3,4A B E C E F A D F S S S ===,则AEF S = .3.已知二次函数2(1)y x a x b =+++(,a b 为常数).当3x =时,3;y =当x 为任意实数时,都有y x ≥.则抛物线的顶点到原点的距离为 .4.如图4,半径为2cm ,圆心角为90O 的扇形OAB 的AB 上有一运动的点P.从点P 向半径OA 引垂线PH 交OA 于点H.设ΔOPH 的内心为I,当点P 在AB 上从点A 运动到点B 时,内心I 所经过的路径长为 .第 二 试一.(20分)在一个面积为1的正方形中构造一个如下的小正方形;将单位正方形的各边n 等分,然后将每个顶点和它相对应顶点最接近的分点连结起来,如图5所示.若小正方形的面积恰为13281,求n 的值. 二.(25分)一条笔直的公路l 穿过草原,公路边有一卫生站A,距公路30km 的地方有一居民点B,A,B 之间的距离为90km .一天某司机驾车从卫生站送一批急救药品到居民点.已知汽车在公路上行驶的最快速度是60/km h ,在草地上行驶的最快速度是30/km h .问司机应以怎样的路线行驶,所用的行车时间最短?最短时间是多少?三.(25分)从1,2,3,……,3919中任取2001个数。
数学奥林匹克初中训练题_128_

AB = BC = CD = DE = EA, 且 则 CAD = BAC + EAD. ). BAE的度数为 (
( A) 30# ( B) 45# ( C) 60# ( D) 75# 5. 已知 a、 b、 c 是三角 形的三边长, 实数 p、 q 满足 p + q = 1 . 则 pa + qb - pqc 的结果 为( ). ( A) 正数 ( B) 零 ( C )负数 ( D) 以上均有可能 6. 直线 : l (2 m + 1 ) x + (m + 1 ) y = 7 m+ 4 被以点 A ( 1 , 2 ) 为圆心、 3 为半径的 A 所截 得的最短弦长为 ( ( A) 15 ( B) 4 ). ( C) 17 (D)3 2
图 1
因为 CAD = BAC + EAD, 所以, CAD = EAF + EAD = FAD. 易知 ∋CAD CD = DF ∋FAD DF = DE = EF
∋ DEF 是等边三角形 DEF = 60# .
38
中 等 数 学
由 AE = DE = EF, 可得 E 是 ∋ADE 的 外心. 根据圆周角与圆心角的关系有 1 DAF = DEF = 30# . 2 故 BAE = 2 5 . A.
2 2
得
由 0< t< 1 , 易知 [ x ] = - 11, t =
图 3
故 x = - 11+ 8 = - 10 3 . 11 11 4. 5+ 1 . 4
由垂径定理得 CD = 2BC = 4 .
ห้องสมุดไป่ตู้如 图 5, 作 ∋ABC, 使 AB = AC = 1, BAC = 36# . 则 ABC = ACB = 72# . 作 ABC 的平分线 BD, 交 AC 于 点 D.
初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:互为相反数。
b,由此a、-2,满足2+(-2)=0令a=2,b=2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D33222解析:3是多项式,排除A+x之和为xx,x。
两个单项都是单项式.两个单项式x,x22223之和为2x3x是个单-之和为3xx是单项式,排除B。
两个多项式x3+x2式x2x,与。
,因此选D项式,排除C3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:错误。
C最大的负整数是-1,故4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,13/ 1初中数学奥林匹克竞赛题及答案。
个.选C0共4-1,6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:。
,应选D、B、C,马上可以排除令a=0A8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
初中数学奥林匹克竞赛题及答案
初中数学奥林匹克竞赛题及答案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。
两个单项式x2,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
初中数学奥林匹克竞赛题word版含答案
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
初中数学奥林匹克训练题(五)及答案
数学奥林匹克初中训练题(五)第 一 试一. 选择题.(每小题7分,共42分)( )1.若,a b 均为质数,且22003a b +=,则a b +的值为:(A)1999 (B)2000 (C)2001 (D)2002( )2.设0,1,a b c a b c ++=f f f ,,,b c a c a b M N P a b c +++===,则,,M N P 之间的关系是:(A)M N P f f (B)N P M f f(C)P M N f f (D)M P N f f( )3.设ΔABC 的三边长为,,a b c 满足28,1252b c bc a a +==-+,则ΔABC 的周长是: (A)10 (B)14 (C)16 (D)不能确定( )4.下面四个命题:①直角三角形的两边长为3,4,则第三边长为5;②1x x x-=-,③对角线相等且互相垂直的四边形是正方形;④若四边形ABCD 中,AD ∥BC,且 AB+BC=AD+DC,则四边形ABCD 是平行四边形.其中正确的命题的个数为:(A)0 (B)1 (C)2 (D)3( )5.一个四位数aabb u u u u u r 为平方数,则a b +的值为:(A)11 (B)10 (C)9 (D)8( )6.如果满足60,12,O ABC AC BC k ∠===的ΔABC 恰有一个,那么k 的取值范围是:(A)83k = (B)012k ≤p (C)12k ≥ (D)012k ≤p 或83k =二. 填空题.(每小题7分,共28分)1.已知,,a b c 为实数,且多项式32x ax bx c +++能被234x x +-整除,则22a b c --的值是 .2.设正整数,,a b c 满足518,360ab bc ab ac +=-=,则abc 的最大值是 . 3,若abc =1,2003111x x x a ab b bc c ac++=++++++,则x = . 4.如图1,AB 是半圆O 的直径,四边形CDMN 和DEFG 都是正方形,其中C,D,E 在AB 上,F,N 在半圆上.若AB=10,则正方形CDMN 的面积与正方形DEFG 的面积之和是 .第 二 试一.(20分)若AD 是ΔABC 角平分线,I 是线段AD 上的点,且1902O BIC BAC ∠=+∠. 求证:I 是ΔABC 的内心.二.(25分)用汽船拖载重量相等满载货物的小船若干只,在两港之间来回送货物.已知每次拖4只小船,一日能来回16次;每次拖7只小船,一日能来回10次.每日来回次数是拖小船只数的一次函数(一天中每次拖小船只数不变).问每日来回多少次,每次拖多少只小船,才能使运货问题达到最大?三.(25分)设,,a b c 是从1到9的互不相同的整数,求a b c abc++的最大的可能值.。
(完整版)初一数学奥林匹克竞赛题(含标准答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学奥林匹克初中训练题5
姓名
第一试
一、选择题(每小题7分,共42分)
1.方程xy+41z=2 009的质数解有( )组.
(A)4 (B)6 (C)8 (D)10
2.一条直线上有n个点,这条直线上线段的条数记为a n;一个平面内有n条直线,这n条直线把这个平面最多分成b n个部分、最少分成c n个部分.则a n与b n-c n的关系是( ).
(A)a n>b n-c n (B)a n=b n-c n (C)a n<b n-c n (D)以上都不正确
3.某中学从初一到高三年级学生中挑选学生会成员,至少要满足以下一个条件:①初一年级至多选1人;②初二年级至多选2人;③初三年级至多选3人;④高一年级至多选4人;⑤高二年级至多选5人;
⑥高三年级至多选6人.则至多要选出( )名同学才能做到.
(A)21 (B)22 (C)26 (D)28
1), 4.在直角坐标系中,P是抛物线y=x2上的一个动点,点M(0,
4
1),过N作直线l∥x轴.则以点P为圆心、PM为半径的⊙P N(0,-
4
与直线l的位置关系是( ).
(A)相交(B)相切(C)相离 (D)以上都有可能
5.若实数x 、y 、a 、b 满足x 2+y 2=1,a 2+b 2=25,则ax+by 的最大值是
( ).
(A)3 (B)4 (C)5 (D)6
6.在⊙O 中,弦CD 垂直于直径AB 于点E,弦DF 平分BC 交BC 于点G,弦AF 交O 于点H.则GH/AB 的值为( ).
(A)1/3 (B)1/4 (C)1/5 (D)2/5
二、填空题(每小题7分,共28分)
1.在凸四边形ABCD 中,AD=BC,∠A=∠C=100°.则四边形ABCD 的形状是 .
2.从1,2,…,2 008中,至少取 个偶数才能保证其中必定存在两个偶数之和为2 012.
3.在锐角△ABC 中,∠A=60°,AD ⊥B 于点D,BD=1,CD=2.则△ABC 的面积为 .
4.若不等式(x+y))a x 1(y
≥16对任何正实数x 、y 均成立,则实数a 的最小值是 .
第二试
一、(20分)甲、乙两辆汽车同时从A 地出发,沿同一方向直线行驶,甲车最多能带aL 汽油,乙车最多能带bL 汽油(a ≥b 且均为油箱的最大容量),途中不能再加油,但是两车可相互借对方的油,最终两车要
返回A地.请设计一种方案,使其中一辆车尽可能地远离出发点A,并求出这辆车一共行驶了多少千米? (两车耗油量相同,每升油可使一辆车前进12 km.)
二、(25分)已知在凸四边形ABCD中AB=CD,G、H分别为BD、AC的中点,延长BA到点E,延长DC到点F,使AE=CF.求证:GH平分EF.
三、(25分)“若a、b、c为正实数,则abc≤
3c
b
a+
+,其中,当且仅当a=b=c时,上式等号成立.”利用以上结论,求函数y=2x(4-x)(3-2x)(0<x<3/2)的最大值.
数学奥林匹克初中训练题5参考答案
第一试
一、1.A.
由原方程得xy=2 009-41z=41(49-z).因为x 、y 为质数,所以,x=41或y=41.
(1)当x=41时,y=49-z,知y 、z 必有一个为偶数,故(y,z)=(2,47),(47,2),此时,原方程有两组质数解;
(2)当y=41时,类似(1)得原方程也有两组质数解.
2.B.
注意到
a n =1+2+…+(n-1)=2
1)-n(n , b n =1+(1+2+…+n)=2
2n n 2++, c n =n+1.
故b n -c n =2
2n n 2++-(n+1)=an. 3.C.
从反面考虑.
假如六个条件都不能满足,则初一年级至少选2人;初二年级至少选3人;……高三年级至少选7人.此时,总共至少选2+3+4+5+6+7=27人.故至多选26人.
4.B.
如图,过点P 作PA ⊥y 轴于点A,PB ⊥l 于点.设P(a,a 2).
则PA=|a|,PB=a 2- -14=a 2+1/4.
在Rt △PAM 中,AM=a 2-1/4.
则由勾股定理得PM= a 2+1/4=PB.
故⊙P 与直线l 相切.
5.C.注意到0≤(a-5x)2+(b-5y)2=(a 2+b 2)+25(x 2+y 2)-10(ax+by)
=50-10(ax+by).
则ax+by ≤5.
当ax+by=5时,a=5x,b=5y(x 、y 为任意实数).
故ax+by 的最大值是5.
6.B.
如图,联结CF.由垂径定理得︵AD = ︵AC ,有 ∠B=∠AFD.由OC=OB,得
∠B=∠OCB.
于是,∠AFD=∠OCB.所以,C 、H 、G 、F 四点共圆.
因此,∠CGH=∠AFC=∠B.
从而,GH ∥OB. 在△OCB 中,由CG=GB,得CH=HO.
根据三角形中位线定理得GH=21OB=41AB GH/AB=4
1. 二、1.平行四边形.
如图,作DE ⊥AB 于E 、BF ⊥CD 于 F.则∠EAD=∠FCB.又AD=BC,故 △EAD ≌△FCB.因此,DE=BF,AE=CF.①联结BD.则Rt △BED ≌Rt △DFB.故BE=DF.②②-
①得AB=CD.所以,四边形ABCD 是平行四边形.
2.504.
从1,2,…,2 008中选出两个偶数,和为2 012的共有501组,即4+2
008,6+2 006,…,1 004+1 008.由于2或1 006与其中的任意一个
偶数之和均不等于2 012,因此,至少取出501+2+1=504个偶数,才能保证其中一定有两个偶数之和为2 012. 3.4
)11 3 3(+. 如图,作BE ⊥AC 于点E,交AD 于点F.则∠1=∠2.由△AFE ∽△BCE AF/BC=AE/BE AF=AE/BE ·BC=BCcot ∠BAE=3.
由△BFD ∽△ACD FD/CD=BD/AD AD BD CD AF -AD =,AD
123 -AD = AD 2- 3AD-2=0
AD=211 3+或AD=2
11 -3 (舍去) 故S △ABC =
21BC ·AD=4)11 33(+. 4.9.
由题设,将原不等式变形整理为y 2-(15-a)xy+ax 2≥0.①
将式①看作关于y 的一元二次不等式因为式①对任意实数y 均成立,所以,
Δ=[-(15-a)x]2-4ax 2≤0,
即 (a 2-34a+225)x 2≤0.
又因为x 2>0,所以,a 2-34a+225≤0.解得9≤a ≤25.
故a 的最小值是9.
第二试
一、两车由A 地行驶到B 地,乙车在地停留,先借给甲车部分汽油,让甲车油箱满,甲车最远行驶到C 地用掉油箱中一半油,再返回B 地时用掉油箱中另一半油,时,乙车再第二次借汽油给甲车,两车同时回至A 地.设甲车从A 地到C 地共用汽油xL,车从A 地到B 地共用汽油
yL.则x+y=
21(a+b),x-y=2
1a. 解得x=4b 2a +,y=b/4. 故这辆车(甲)共行驶路程为6(2a+b) (km).
二、如图,设直线GH 交EF 于点P,联结AF,取EF 、AF 、BC 的中点分别为P ′、Q 、R,联结GR 、HR 、P ′Q 、HQ 、HP ′.易知GR
21CD, HR 21AB,HQ 2
1CF,P ′Q 21AE 又AB=CD,AE=CF,则
GR=HR,HQ=P ′Q,GR ∥HQ,HR ∥P ′Q
故∠RGH=
2
GRH -180∠︒, ∠QHP ′=2HQP'-180∠︒, ∠GRH=∠HQP ′.
于是,∠RGH=∠QHP ′.
又由GR ∥HQ,有∠RGH=∠QHP. 因此,∠QHP ′=∠QHP.
从而,HP 与HP ′重合,此时,P 为EF 的中点.故GH 平分EF.
三、由已知不等式知abc ≤3)3
c b a (++.要求y 的最大值,必须使y 的三个因式之和为常数且三个因式相等时,x 的值必须存在.显然,y 的三个因式不满足以上条件为此要引进参数.设a 、b 均为正数.
则y=ab 2 [x(4a-ax)(3b-2bx)]≤3]3
2bx)-(3b ax)-(4a x [2++ab = 3]3
1)x -2b (a 34a [2+-+b ab . 当a+2b-1=0,x=4a-ax=3b-2bx 时,解得(x,a,b)=(2/3,1/5,2/5)或(3,3,-1)(舍去). 故y 的最大值为
3)334(2b a ab +=200/27.。