幂函数、二次函数及函数图像类型题练习(带答案)
函数图象通关100题(含答案)

给出以下 个论断:
① 点到 点只进水不出水;
② 点到 㔴 点不进水只出水;
③ 㔴 点到 点不进水不出水;
则一定能确定正确的论断序号是
.
31. 将函数 函
tt
t 的图象绕坐标原点逆时针旋转 ( 为锐角),若所
得曲线仍是一个函数的图象,则 的最大值为
.
32. 若函数 函 的图象经过点 㔴t ,则函数 函 log 的图象是
t t 的解集是
.
39. 已知 h 为常数,函数 函 t
ht 在区间 t 上的最大值为 ,则 h 函
.
40. 已知函数 围是
函 log .
tt t
t 若函数 o
函
t 有 个零点,则实数 t 的取值范
41. 已知函数
函 t t t , 函 h .若方程
函
有两个不等实数根,则实数 h 的
取值范围是
.
42. 函数 是
.
t
33. 已知 t t t 㔴
sinπ 函 ,则 t t t 㔴 的最小值为
.
34. 如图 1,动点 从直角梯形 t
点 运动的路程 为自变量,
的面积是
.
的直角顶点 t 出发,沿 t
的顺序运动,得到以
t 的面积 为因变量的函数的图象,如图 2,则梯形 t
35. 函数 函
是 上的增函数,且 函
t 的解集为
的的
9. 将函数 函 函
的图象沿向量 函 .
t 平移后,得到函数 函 t t 的图象,则函数
10. 二次函数 函 t t t
的图象如下图,试确定下列各式的正负:t
,
, tt
.
11. 若函数 是定义在 上的偶函数,且在
专题:函数图像精选训练题(有答案)

专题:函数图像训练题精选一、选择题1.下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )y y y yO x O x O x O xA B C D11112.若函数()()22m xf x x m-=+的图象如图所示,则m 的取值范围是( )A.(),1-∞-B. ()1,2C. ()1,2-D. ()0,23.已知函数()y f x =的图象与ln y x =的图象关于直线y x =对称,则()2f =( )A .1B .eC .2eD .()ln 1e -4.函数()2cos ln f x x x =-⋅的部分图象大致是( )5.将()y f x =的图象的横坐标伸长为原来的3倍,纵坐标缩短为原来的13,则所得函数的解析式为( ) A .3(3)y f x = B .11()33y f x =C .1(3)3y f x =D .13()3y f x = 6.如图所示的四个容器高度都相同,将水从容器顶部一个小孔以相同的速度注入其中,注满为止.用下面对应的图像显示该容器中水面的高度h 和时间t 之间的关系,其中不正确的....是A .1个B .2个C .3个D .4个7.在同一坐标系中,函数1()x y a=与)(log x y a -=(其中0a >且1a ≠)的图象只可能是( )8.如图,函数()y f x =的图象为折线ABC ,设()()g x f f x =⎡⎤⎣⎦, 则函数()y g x =的图象为( )9.如图,函数y =f (x )的图像为折线ABC ,设f 1(x )=f (x ),f n+1(x )=f [f n+1(x )], n ∈N *,则函数y =f 4(x )的图像为yxo 1 1 yx o 1 1 yx o 1-1 yx o 1-1ABCD10.已知1a >,函数x y a =与log ()a y x =-的图像可能是( )11.若函数)1,0()1()(≠>--=-a a a a k x f x x 在R 上既是奇函数,又是减函数,则)(log )(k x x g a +=的图像是( )12.函数|1|||ln --=x e y x 的图象大致是 ( )13.),10(log )(,)(2≠>==-a a x x g a x f a x 且,0)4()4(<-⋅g f 若则)(),(x g y x f y ==在同一坐标系内的大致图象是第5题14.已知函数2()4f x x =-,()y g x =是定义在R 上的奇函数,当0x >时,2()log g x x =,则函数()()f x g x ⋅的大致图象为 ( )15.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,则f (x )与g (x )在同一坐标系里的图像是( )16.当0<a <1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( )17.函数1||2)(+-=x x f 的图像大致为 ( ▲ )y xy yy xxxoo o-1 1-1 1 2-112 1 o-1 112 121 B A C D18.函数||2x y =的定义域为],[b a ,值域为]16,1[,则点),(b a 表示的图形可以是( ▲ )19.设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射是20.二次函数bx ax y +=2与指数函数xab y )32(=的图象,只有可能是下列中的哪个选项21.已知函数bx ax y +=2和xbay =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能... 是( )BC DAxy123123 B.xy123123 C.xy0123123 A.A .B .C .D .22.已知函数9()4,(0,4)1f x x x x =-+∈+,当x a =时,()f x 取得最小值b ,则函数b x )a ()x (g +=1的图象为( )23.已知0,1a a >≠,函数log ,,x a y x y a y x a ===+在同一坐标系中的图象可能是24.函数()112xf x =-的图像是1xy11xy11xy 1-01xy1-25.函数()()112122x x f x ⎡⎤=+--⎣⎦的图象大致为26.若直角坐标平面内的两个不同点M 、N 满足条件:① M 、N 都在函数()y f x =的图像上; ② M 、N 关于原点对称. 则称点对[,]M N 为函数()y f x =的一对“友好点对”. (注:点对[,]M N 与[,]N M 为同一“友好点对”)已知函数32log (0)()4(0)x x f x x x x >⎧=⎨-- ⎩≤,此函数的“友好点对”有A. 0对B. 1对C. 2对D. 3对27.已知定义在区间[0,2]上的函数=()y f x 的图象如图所示,则=(2-)y f x 的图象为28.已知函数x x x f sin 21)(2+=,则)('x f 的大致图象是( )29.下列函数图象中,正确的是30.已知函数32()(,0)f x ax bx x a b R ab =++∈≠且的图像如图,且12||||x x >,则有( )A .0,0a b >>B .0,0a b <<C .0,0a b <>D .0,0a b ><31.如下图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )32.已知二次函数()x f 的图象如图1所示 , 则其导函数()x f '的图象大致形状是( )33.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )34.已知0lg lg =+b a ,则函数x a x f =)(与函数x x g b log )(-=的图象可能( )35.已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =+的图象可能是( )A .B . C. D.36.已知函数log (1)3,a y x =-+(01)a a >≠且的图像恒过点P ,若角α的终边经过点P ,则2sin sin2αα- 的值等于( )A.133 B.135 C. 133- D. 135- 37.已知函数的图象如图所示则函数的图象是( )38.如右图,一个直径为l 的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大致是( )39.已知在函数||y x =([1,1]x ∈-)的图象上有一点(,||)P t t ,该函数的图象与 x 轴、直线x =-1及 x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )40.函数|)1lg(|-=x y 的图象是( )41.函数2()log 2f x x =与1()2x g x -=在同一直角坐标系下的图象大致是( )42.已知,()()()a b f x x a x b >=--函数的图象如右图,则函数()log ()a g x x b =+的图象可能为43.函数lg ||x y x=的图象大致是二、填空题44.已知函数211x y x -=-的图像与函数2y kx =-的图像恰有两个交点,则实数k 的取值范围是 .45.当直线y kx =与曲线|ln ||2|x y e x =--有3个公共点时,实数k 的取值范围是 .46.已知函数8log (3)9a y x =+-(0,1a a >≠)的图像恒过定点A ,若点A 也在函数()3x f x b =+的图像上,则b = 。
幂函数的图像专题含答案

幂函数的图像专题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 幂函数f(x)=xα的图象必不经过平面直角坐标系中的第几象限( )A.一B.二C.三D.四2. 已知幂函数y=x n,y=x m,y=x p的图象如图,则()A.m>n>pB.m>p>nC.n>p>mD.p>n>m3. 函数y=|x−1|的图象是()A. B.C. D.4. 下列图象中幂函数y=x 32的大致形状的是()A. B.C. D.5. 已知幂函数y=x a,y=x b,y=x c的部分图象如下,则点(ab−b,c2−c)所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限6. 幂函数y=x a(α是常数)的图象()A.一定经过点(0, 0)B.一定经过点(1, 1)C.一定经过点(−1, 1)D.一定经过点(1, −1)7. 在直角坐标系xOy的第一象限内分别画出了函数y=x,y=√x,y=x2,y=x3,y=x−1的部分图象,则函数y=x4的图象通过的阴影区域是()A. B.C. D.8. 函数y=x 43的图象是()A. B. C. D.9. 下图为两幂函数y=xα和y=xβ的图象,其中α,β∈{−12, 12, 2, 3},则不可能的是()A. B. C. D.10. 下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系.()(1)y=x32;(2)y=x13;(3)y=x23;(4)y=x−2;(5)y=x−3;(6)y=x−12.A.(1)↔(A),(2)↔(F),(3)↔(E),(4)↔(C),(5)↔(D),(6)↔(B)B.(1)↔(B),(2)↔(E),(3)↔(C),(4)↔(D),(5)↔(A),(6)↔(F)C.(1)↔(A),(2)↔(E),(3)↔(B),(4)↔(D),(5)↔(C),(6)↔(F)D.(1)↔(B),(2)↔(F),(3)↔(A),(4)↔(C),(5)↔(D),(6)↔(E)11. 如图,曲线是幂函数y=x n在第一象限的图象,已知n取2,3,12,−1四个值,则相应于曲线C1,C2,C3,C4的n依次为________.12. 已知幂函数f(x)=(m2−5m+7)x−m−1(m∈R)为偶函数.则m=________.13. 若幂函数f(x)=xα的图象经过点(3, 81),则实数α的值为________.14. 幂函数f(x)图象过点A(2,√2),则f(4)的值为________.15. 当α∈{12, 1, 3}幂函数y=xα的图象不可能经过的是第________象限(符合条件的要全填).16. 函数f(x)=(x−1)1m+1的图象恒过定点________.17. 如果幂函数y=(m2−3m+3)x m2−m−1的图象不过原点,则m的值是________.18. 若y=x n的图象在x>1时,位于y=x的上方,则n的取值范围是________.19. 当x∈(1, +∞)时,幂函数y=xα的图象恒在直线y=x的下方,则α的取值范围________.20. 把函数y=x 12的图象上各点的横坐标扩大到原来的3倍,纵坐标也扩大到原来的3倍,所得图象的函数解析式是________.21. 画出y=x−12的函数图象.22. 画出y=x−12,y=x−13,y=x12,y=x13的图象.23. 已知幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴,y轴都无交点,且关于y轴对称.(1)确定f(x)的解析式;(2)画出f(x)的图象.24. 已知幂函数f(x)=x9−3m(m∈N∗)的图象关于原点对称,且在R上函数值随x的增大而增大.(1)求f(x)表达式;(2)求满足f(a+1)+f(2a−3)<0的a的取值范围.25. 已知幂函数y=f(x)的图象经过点(8,m)和(9,3).(1)求实数m的值;(2)若函数g(x)=logaf(x) (a>0,a≠1)在区间[16,36]上的最大值比最小值大1,求实数a的值.26. 若点(√2, 2)在幂函数f(x)的图象上,点(2, 12)在幂函数g(x)的图象上,定义ℎ(x)={f(x),f(x)≤g(x)g(x),f(x)>g(x)求函数ℎ(x)的最大值及单调区间.27. 已知幂函数f(x)=x−m2+2m+3(m∈Z)为偶函数,且在区间(0, +∞)上是单调增函数.(1)求函数f(x)的解析式;(2)设函数g(x)=q⋅√f(x)+2x(q>0),若g(x)≥0对任意x∈[1, +∞)恒成立,求实数q的取值范围.28. 已知幂函数y=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点,且关于y轴对称,求m的值.29. 已知幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴、y轴无公共点且关于y轴对称.(1)求m的值;(2)画出函数y=f(x)的图象(图象上要反映出描点的“痕迹”).30. a、b、c、m∈R+,a m=b m+c m,若长为a、b、c三线段能构成三角形,求m的取值范围.31. 已知函数f(x)=(m2+3m−3)x m为幂函数,且在区间(0,+∞)上单调递减.(1)求实数m的值;(2)请画出函数f(x)的草图.32. 已知幂函数f(x)=x m2−2m−3(m∈N∗)的图象关于y轴对称,且在(0, +∞)上是减函数.(1)求m的值;(2)求满足(1+a)−2m3<(1−2a)−2m3的a的取值范围.33. 已知函数y=x 2 3,(1)求定义域;(2)判断奇偶性;(3)已知该函数在第一象限的图象如图所示,试补全图象,并由图象确定单调区间.参考答案与试题解析幂函数的图像专题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】幂函数的图像【解析】利用幂函数性质,直接求解即可.【解答】解:利用幂函数的性质即可得:当x>0时,xα不可能为负数,所以不经过第四象限.故选D.2.【答案】C【考点】幂函数的图像【解析】根据幂函数的图象特征:在区间(1, +∞)上,幂函数的指数越大,图象越远离x轴,结合图象即可得到答案.【解答】解:因为在区间(1, +∞)上,幂函数的指数越大,图象越远离x轴,所以由图象可得:n>p>m,故选:C.3.【答案】A【考点】幂函数的图像【解析】先根据函数的定义域排除B、C,然后根据函数的值域可排除D,从而得到正确的选项.【解答】解:根据函数的定义域为{x|x≠0}可知选项B,选项C不正确;根据函数y=|x−1|的值恒正可知选项D不正确.故选A.4.【答案】B【考点】幂函数的图像【解析】根据幂函数y=x 32性质,即可得出正确的选项.【解答】解:幂函数y=x 32的定义域是[0,+∞),可以排除CD选项;当x>1时,幂函数y=x 32的函数值大于y=x的函数值,故当x>1时,幂函数y=x 32的图象高于y=x的图象,故排除选项A.故选B.5.【答案】C【考点】幂函数的图像【解析】由幂函数的由幂函数的图像得,a>1,b<0,0<c<1,进而判断得结论.【解答】解:由幂函数的图象得,a>1,b<0,0<c<1,∴ ab−b=(a−1)b<0,c2−c=c(c−1)<0,∴ 点(ab−b,c2−c)在第三象限.故选C.6.【答案】B【考点】幂函数的图像【解析】利用幂函数的图象与性质及1α=1即可得出.【解答】解:取x=1,则y=1α=1,因此幂函数y=x a(α是常数)的图象一定经过(1, 1)点.故选B.7.【答案】B【考点】幂函数的图像【解析】根据幂函数的图象和性质判断函数y=x14的单调性和大小关系即可.【解答】解:当0<x<1时,函数y=x n为单调递减函数,所以x4<x3.排除A,D.当x>1时,函数y=x n为单调递增函数,所以x4>x3.排除C.故选B.8.【答案】A幂函数的图像【解析】本题要用函数的性质与图象性质的对应来确定正确的选项,故解题时要先考查函数y= x43性质,单调性奇偶性等,再观察四个选项特征,选出正确答案.【解答】解:研究函数y=x 43知,其是一个偶函数,且在(0, +∞)上增,在(−∞, 0)上减,由此可以排除C,D,又函数的指数43>1,故在(0, +∞)其递增的趋势越来越快,由此排除B,故A正确.故选A.9.【答案】B【考点】幂函数的图像【解析】根据所给的幂函数的α,β的值,逐个说明函数的图象所经过的象限,最后得到函数的图象情况,从而得出答案.【解答】解:α,β∈{−12, 12, 2, 3}时,幂函数y=xα和y=xβ的图象列举如下:则不可能的是:B.故选B.10.【答案】A【考点】幂函数的图像函数(1)的定义域为[0, +∞)且幂指数大于0故(1)↔(A)函数(2)的定义域为R且为奇函数图象关于原点对称幂指数大于0在第一象限单调递增故(2)↔(F)观察答案知选A.【解答】解:函数(1)的定义域为[0, +∞)且幂指数大于0在第一象限单调递增故:(1)↔(A)函数(2)的定义域为R且为奇函数图象关于原点对称幂指数大于0在第一象限单调递增故:(2)↔(F)函数(3)的定义域为R且为偶函数图象关于y轴对称且幂指数大于0小于1在第一象限单调递增且上凸;故(3)↔(E)函数(4)的定义域为(−∞, 0)∪(0, +∞)且为偶函数图象关于y轴对称且幂指数小于0在第一象限单调递减故:(4)↔(C)函数(5)的定义域为(−∞, 0)∪(0, +∞)且为奇函数图象关于原点对称且幂指数小于0在第一象限单调递减故:(5)↔(D)函数(6)的定义域为(0, +∞)且幂指数小于于0在第一象限单调递减故:(6)↔(B)故选A二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】3,2,1,−12【考点】幂函数的图像【解析】利用幂函数的图象与性质即可得出.【解答】解:利用幂函数的图象与性质可得:相应于曲线C1,C2,C3,C4的n依次为3,2,1,−1.2,−1.故答案为:3,2,1212.【答案】3【考点】幂函数的图像【解析】根据幂函数的定义和函数奇偶性的性质进行求解建立.【解答】解:∵f(x)是幂函数,∴m2−5m+7=1,即m2−5m+6=0,解得m=2或m=3,若m=2,则f(x)=x−2−1=x−3为奇函数,不满足条件.若m=3,则f(x)=x−3−1=x−4为偶函数,满足条件.故m=3,故答案为:3.13.【答案】4【考点】幂函数的图像【解析】将点的坐标代入函数解析式,求出f(x),将x用100代替,求出值.【解答】解:∵幂函数f(x)=xα的图象经过点(3, 81),∴81=3α,解得α=4.故答案为:4.14.【答案】2【考点】幂函数的图像【解析】先由已知条件求幂函数的解析式,再求f(4)【解答】解:设幂函数f(x)=x a∵f(x)的图象过点(2, √2)∴2a=√2=212∴a=12∴f(x)=x12∴f(4)=412=2故答案为:215.【答案】二、四【考点】幂函数的图像【解析】利用幂函数的图象与性质即可得出.【解答】解:当α=1时,y=x值经过第一、三象限和原点;时,y=√x值经过第一象限和原点;当α=12当α=3时,y=x3值经过第一、三象限和原点.综上可知:幂函数y=xα的图象不可能经过的是第二、四象限.故答案为:二、四.16.【答案】【解析】根据幂函数的性质即可得到结论.【解答】解:∵对所有的幂函数都过定点(1, 1),∴当x−1=1,即x=2时,f(2)=1+1=2,即函数f(x)=(x−1)1m+1的图象恒过定点(2, 2).故答案为:(2, 2).17.【答案】1【考点】幂函数的图像【解析】幂函数的图象不过原点,所以幂指数小于0,系数为1,求解即可.【解答】解:幂函数y=(m2−3m+3)x m2−m−1的图象不过原点,所以{m 2−m−1≤0m2−3m+3=1解得m=1,符合题意.故答案为:118.【答案】n>1【考点】幂函数的图像【解析】幂函数图象恒过(1, 1)点,结合图象容易推出n的取值范围.【解答】解:由题意画出幂函数图象,如图在第一象限内的图象,显然n>1故答案为:n>119.【答案】【解析】直接利用幂函数的图象,结合已知条件,求出a的范围.【解答】解:根据幂函数的图象的特点,画出函数的图象,当x∈(1, +∞)时,幂函数y=xα的图象恒在直线y=x的下方,则α的取值范围是:(−∞, 1).故答案为:(−∞, 1).20.【答案】)12.y=3×(x3【考点】幂函数的图像【解析】,纵坐图象的变换体现在自变量和函数的变化,横坐标扩大到原来的3倍就是将x→x3标也扩大到原来的3倍就是将y→y,从而得解.3【解答】解:∵函数y=lg x图象横坐标扩大到原来的3倍∴得y=(x)123∵纵坐标也扩大到原来的3倍∴得y=3×(x)12.3)12.故填:y=3×(x3三、解答题(本题共计 13 小题,每题 10 分,共计130分)21.【答案】,所以定义域为(0, +∞),解:将函数化为y=√x<0.根据幂函数的性质可知,图象在第一象限为减函数.且过点(1, 1).又指数为−12做出图象如下:【考点】幂函数的图像【解析】研究函数的定义域,单调性,根据幂函数的性质判断.【解答】,所以定义域为(0, +∞),解:将函数化为y=1√x<0.根据幂函数的性质可知,图象在第一象限为减函数.且过点(1, 1).又指数为−12做出图象如下:22.【答案】解:根据幂函数的图象与性质,在同一坐标系中画出函数y=x−12,y=x−13,y=x12,y=x13的图象,如图所示;【考点】幂函数的图像【解析】根据幂函数的图象与性质,在同一坐标系中画出这几个函数的图象即可.【解答】解:根据幂函数的图象与性质,在同一坐标系中画出函数y=x−12,y=x−13,y=x12,y=x13的图象,如图所示;23.【答案】解:(1)∵幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴,y轴都无交点,且关于y轴对称∴m2−2m−3≤0且m2−2m−3为偶数解得−1≤m≤3∴m=−1或m=0或m=1或m=2或m=3∴f(x)=x−4或f(x)=x0=1(x≠0)(2)【考点】幂函数的概念、解析式、定义域、值域【解析】(1)有幂函数的性质判断出幂函数的指数小于或等于0;指数为偶数.列出不等式求出m(2)借助幂函数的解析式画出幂函数的图象. 【解答】解:(1)∵ 幂函数f(x)=x m 2−2m−3(m ∈Z)的图象与x 轴,y 轴都无交点,且关于y 轴对称∴ m 2−2m −3≤0且m 2−2m −3为偶数 解得−1≤m ≤3∴ m =−1或m =0或m =1或m =2或m =3 ∴ f(x)=x −4或f(x)=x 0=1(x ≠0)(2)24.【答案】 解:(1)∵ 函数在(0, +∞)上递增,∴ 9−3m >0,解得m <3. 又m ∈N ∗,∴ m =1,2.又函数的图象关于原点对称,∴ 3m −9为奇数,故m =2,故f(x)=x 3. (2)∵ f(a +1)+f(2a −3)<0,∴ f(a +1)<−f(2a −3). 又f(x)为奇函数,∴ f(a +1)<f(3−2a), 又函数在R 上递增,∴ a +1<3−2a , 解得a <23,即a 的范围为(−∞, 23).【考点】函数单调性的性质函数解析式的求解及常用方法 幂函数的图像【解析】(1)函数在(0, +∞)上递增,可得9−3m >0,再由m ∈N ∗,且3m −9为奇数,可得m 的值,从而得到f(x)的解析式.(2)由题意可得不等式即f(a +1)<f(3−2a),根据函数在R 上递增,可得a +1<3−2a ,由此求得a 的范围.【解答】 解:(1)∵ 函数在(0, +∞)上递增,∴ 9−3m >0,解得m <3. 又m ∈N ∗,∴ m =1,2.又函数的图象关于原点对称,∴ 3m −9为奇数,故m =2,故f(x)=x 3.又f(x)为奇函数,∴ f(a +1)<f(3−2a), 又函数在R 上递增,∴ a +1<3−2a , 解得a <23,即a 的范围为(−∞, 23). 25.【答案】解:(1)设f(x)=x a ,依题意可得9a =3. 所以a =12. 所以f(x)=x 12.所以实数m =f(8)=812=2√2. (2)函数g(x)=log a f(x), 即为g(x)=log a √x .又因为√x ∈[4,6],所以:①当0<a <1时,g(x)min =log a 6,g(x)max =log a 4, 由log a 4−log a 6=log a 23=1, 解得a =23.②当a >1时,g(x)min =log a 4,g(x)max =log a 6, 由log a 6−log a 4=log a 32=1, 解得a =32.综上,所求实数a 的值为23或32.【考点】 幂函数的性质 幂函数的图像 对数函数的值域与最值【解析】 此题暂无解析 【解答】解:(1)设f(x)=x a ,依题意可得9a =3. 所以a =12. 所以f(x)=x 12.1(2)函数g(x)=log a f(x), 即为g(x)=log a √x .又因为√x ∈[4,6],所以:①当0<a <1时,g(x)min =log a 6,g(x)max =log a 4, 由log a 4−log a 6=log a 23=1, 解得a =23.②当a >1时,g(x)min =log a 4,g(x)max =log a 6, 由log a 6−log a 4=log a 32=1, 解得a =32.综上,所求实数a 的值为23或32. 26. 【答案】解:设f(x)=x α,因为点(√2,2)在幂函数f(x)的图象上, 所以(√2)α=2,解得α=2,所以f(x)=x 2. 设f(x)=x β,因为点(2,12)在幂函数g(x)的图象上, 所以(√2)β=12,解得β=−1,所以g(x)=x −1.在同一坐标系中画出函数f(x)=x 2和g(x)=x −1的图象,由题意及图,可知 ℎ(x)={x −1,x <0或x >1x 2,0<x ≤1.根据函数ℎ(x)的解析式及图象(如图),可知函数ℎ(x)的最大值为1.ℎ(x)的单调递增区间是(0,1],单调递减区间是(−∞,0)和(1,+∞).【考点】幂函数的图像函数的单调性及单调区间分段函数的解析式求法及其图象的作法【解析】设f(x)=x n,g(x)=x m,代入点的坐标,解方程可得f(x),g(x)的解析式,再由定义,求得ℎ(x)的解析式,通过二次函数和反比例函数的性质,可得最大值和单调区间.【解答】解:设f(x)=xα,因为点(√2,2)在幂函数f(x)的图象上,所以(√2)α=2,解得α=2,所以f(x)=x2.设f(x)=xβ,因为点(2,12)在幂函数g(x)的图象上,所以(√2)β=12,解得β=−1,所以g(x)=x−1.在同一坐标系中画出函数f(x)=x2和g(x)=x−1的图象,由题意及图,可知ℎ(x)={x−1,x<0或x>1 x2,0<x≤1.根据函数ℎ(x)的解析式及图象(如图),可知函数ℎ(x)的最大值为1.ℎ(x)的单调递增区间是(0,1],单调递减区间是(−∞,0)和(1,+∞).27.【答案】解:(1)幂函数f(x)=x−m2+2m+3(m∈Z)为偶函数,且在区间(0, +∞)上是单调增函数∴−m2+2m+3>0,∴−1<m<3,又m∈Z,函数f(x)为偶函数,故m=1,∴f(x)=x4;(2)g(x)=q⋅√f(x)+2x =qx2+2x≥0对任意x∈[1, +∞)恒成立,∴q≥−2x2对任意x∈[1, +∞)恒成立,∴q≥−2,而q>0,∴q>0.【考点】函数恒成立问题幂函数的概念、解析式、定义域、值域幂函数的图像幂函数图象及其与指数的关系【解析】(1)利用幂函数f(x)=x−m2+2m+3(m∈Z)为偶函数,且在区间(0, +∞)上是单调增函数,确定m的值,即可求函数f(x)的解析式;(2)分离参数,求最值,即可求实数q的取值范围.【解答】解:(1)幂函数f(x)=x−m2+2m+3(m∈Z)为偶函数,且在区间(0, +∞)上是单调增函数∴−m2+2m+3>0,∴−1<m<3,又m∈Z,函数f(x)为偶函数,故m=1,∴f(x)=x4;(2)g(x)=q⋅√f(x)+2x =qx2+2x≥0对任意x∈[1, +∞)恒成立,∴q≥−2x2对任意x∈[1, +∞)恒成立,∴q≥−2,而q>0,∴q>0.28.【答案】解:由题意可得:根据题意,幂函数y=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点,则m2−2m−3≤0,①m2−2m−3=0,解可得m=−1或3,此时y=1(x≠0),符合题意;②m2−2m−3<0解得−1<m<3,∴m2−2m−3是偶数,故m的值为±1或3.【考点】幂函数的实际应用幂函数的图像【解析】幂函数y=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点说明指数为负数或0,而图形关于y轴对称说明函数为偶函数.【解答】解:由题意可得:根据题意,幂函数y=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点,则m2−2m−3≤0,①m2−2m−3=0,解可得m=−1或3,此时y=1(x≠0),符合题意;②m2−2m−3<0解得−1<m<3,又∵m∈Z,∴m=0,1,2∵图象关于y轴对称∴m2−2m−3是偶数,故m的值为±1或3.29.【答案】解:(1)由于幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴、y轴都无公共点,且关于y轴对称,故幂函数是偶函数,且m2−2m−3=(m−3)(m+1)为非正的偶数.由m2−2m−3≤0可得−1≤m≤3,即m=−1、0、1、2,3.再由m2−2m−3为偶数,可得m=−1、1、3.(2)当m=−1或3时,f(x)=x0;当m=1时,f(x)=x−4;图象如图所示.【考点】幂函数的单调性、奇偶性及其应用幂函数的性质幂函数的图像幂函数的概念、解析式、定义域、值域【解析】(1)幂函数f(x)=x m2−2m−3(m∈Z)的图象与x,y轴都无公共点说明指数为负数,而图形关于y轴对称说明指数数为偶函数,由此求得整数m的值.(2)根据(1)中结论写出幂函数的解析式,画出函数y=f(x)的图象.【解答】解:(1)由于幂函数f(x)=x m2−2m−3(m∈Z)的图象与x轴、y轴都无公共点,且关于y轴对称,故幂函数是偶函数,且m2−2m−3=(m−3)(m+1)为非正的偶数.由m2−2m−3≤0可得−1≤m≤3,即m=−1、0、1、2,3.再由m2−2m−3为偶数,可得m=−1、1、3.(2)当m=−1或3时,f(x)=x0;当m=1时,f(x)=x−4;图象如图所示.30.【答案】解:根据题意,由a m=b m+c m,可得(ba )m+(ca)m=1,且a>b,a>c;设(ba )m=sin2θ;(ca)m=cos2θ,(0∘<θ<90∘)化简可得:b =a ⋅√sin 2θm,c =a ⋅√cos 2θm;若长为a 、b 、c 三线段能构成三角形,则b +c >a ,即a ⋅√sin 2θm+a ⋅√cos 2θm>a ;整理可得,√sin 2θm+√cos 2θm>1=sin 2θ+cos 2θ,由幂函数的性质分析可得,当且仅当m >1时,√sin 2θm>sin 2θ与√cos 2θm>cos 2θ同时成立,即b +c >a ,故m 的取值范围为m >1. 【考点】同角三角函数基本关系的运用 幂函数的图像 【解析】根据题意,由a m =b m +c m 变形可得(b a )m +(ca )m =1,由常数1联系同角三角函数的平方关系,可以设(b a )m =sin 2θ;(ca )m =cos 2θ,(0∘<θ<90∘),又由题意,可得b +c >a ,将b 、c 与a 的关系代入可得,a ⋅√sin 2θm+a ⋅√cos 2θm>a ;进而整理变形可得,√sin 2θm+√cos 2θm >1=sin 2θ+cos 2θ,结合幂函数的性质,分析可得答案.【解答】解:根据题意,由a m =b m +c m ,可得(ba)m +(ca)m =1,且a >b ,a >c ;设(b a )m =sin 2θ;(ca )m =cos 2θ,(0∘<θ<90∘)化简可得:b =a ⋅√sin 2θm,c =a ⋅√cos 2θm;若长为a 、b 、c 三线段能构成三角形,则b +c >a ,即a ⋅√sin 2θm+a ⋅√cos 2θm>a ;整理可得,√sin 2θm+√cos 2θm>1=sin 2θ+cos 2θ,由幂函数的性质分析可得,当且仅当m >1时,√sin 2θm>sin 2θ与√cos 2θm>cos 2θ同时成立,即b +c >a ,故m 的取值范围为m >1. 31.【答案】解:(1)由m 2+3m −3=1,得m =1或m =−4,①当m =1时,f(x)=x ,此时函数在区间(0,+∞)为增函数,不符合题意; ②当m =−4时,f(x)=x −4,此时函数在区间(0,+∞)为减函数,符合题意. 故实数m 的值为−4.(2)由(1)知f(x)=x−4,由函数f(x)的定义域为(−∞,0)∪(0,+∞),f(−x)=f(x)可知函数f(x)为偶函数,可画出函数f(x)草图为:【考点】幂函数的单调性、奇偶性及其应用幂函数的图像幂函数的概念、解析式、定义域、值域【解析】此题暂无解析【解答】解:(1)由m2+3m−3=1,得m=1或m=−4,①当m=1时,f(x)=x,此时函数在区间(0,+∞)为增函数,不符合题意;②当m=−4时,f(x)=x−4,此时函数在区间(0,+∞)为减函数,符合题意. 故实数m的值为−4.(2)由(1)知f(x)=x−4,由函数f(x)的定义域为(−∞,0)∪(0,+∞),f(−x)=f(x)可知函数f(x)为偶函数,可画出函数f(x)草图为:32.【答案】解:(1)∵幂函数f(x)=x m2−2m−3在(0, +∞)上是减函数,∴m2−2m−3<0,解得−1<m<3,∵m∈N∗,∴m=1,或m=2.当m=1时,f(x)=x−4,其图象关于y轴对称,符合题意;当m=2时,f(x)=x−3是奇函数,不符合题意,∴m=1.(2)∵ m =1,∴ 满足(1+a)−2m3<(1−2a)−2m3的a 即满足(1+a)−23<(1−2a)−23. ∵ y =x −23为偶函数,且定义域为(−∞, 0)∪(0, +∞),在(0, +∞)上单调减, ∴ {|1+a|>|1−2a|1+a ≠01−2a ≠0,即{(1+a)2>(1−2a)2a ≠−1a ≠12, 从而0<a <2且a ≠12,故a 的取值范围是(0, 12)∪(12,2). 【考点】其他不等式的解法幂函数的单调性、奇偶性及其应用 幂函数的性质 幂函数的图像幂函数的概念、解析式、定义域、值域 【解析】(1)由幂函数f(x)=x m 2−2m−3在(0, +∞)上是减函数,知m 2−2m −3<0,由此能求出m .(2)由m =1,知满足(1+a)−2m 3<(1−2a)−2m 3的a 即满足(1+a)−23<(1−2a)−23.由此能求出a 的取值范围. 【解答】解:(1)∵ 幂函数f(x)=x m 2−2m−3在(0, +∞)上是减函数, ∴ m 2−2m −3<0, 解得−1<m <3,∵ m ∈N ∗,∴ m =1,或m =2.当m =1时,f(x)=x −4,其图象关于y 轴对称, 符合题意;当m =2时,f(x)=x −3是奇函数,不符合题意, ∴ m =1.(2)∵ m =1, ∴ 满足(1+a)−2m 3<(1−2a)−2m 3的a 即满足(1+a)−23<(1−2a)−23.∵ y =x −23为偶函数,且定义域为(−∞, 0)∪(0, +∞),在(0, +∞)上单调减, ∴ {|1+a|>|1−2a|1+a ≠01−2a ≠0,即{(1+a)2>(1−2a)2a ≠−1a ≠12, 从而0<a <2且a ≠12,故a 的取值范围是(0, 12)∪(12,2).33. 【答案】解:(1)∵ 函数y =x 23=√x 23,∴ 函数的定义域为R .(2)∵ f(−x)=√(−x)23=√x 23=f(x),∴ 函数y =x 23=√x 23是偶函数. (3)∵ 函数y =x 23=√x 23是偶函数.∴ 函数图象关于y 轴对称,且(−∞, 0]为减函数,[0, +∞)为增函数, 对应的图象为: 【考点】 幂函数的性质 幂函数的图像【解析】根据幂函数的性质分别求出函数的定义域和奇偶性. 【解答】解:(1)∵ 函数y =x 23=√x 23,∴ 函数的定义域为R .(2)∵ f(−x)=√(−x)23=√x 23=f(x),∴ 函数y =x 23=√x 23是偶函数. (3)∵ 函数y =x 23=√x 23是偶函数.∴ 函数图象关于y 轴对称,且(−∞, 0]为减函数,[0, +∞)为增函数, 对应的图象为:。
高考数学一轮复习专题2.7二次函数及幂函数练习(含解析)

第七讲二次函数与幂函数1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较R R R{x|x≥0}{x|x≠0}(1)二次函数解析式的三种形式:一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数图像R R考向一 幂函数概念及性质【例1】已知幂函数223(22)n nf x n n x -=+-(n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为________. 【答案】 1【解析】由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意. 【举一反三】1.已知函数f (f )=(f 2−f −1)f f 2+2f −3是幂函数,且其图象与两坐标轴都没有交点,则实数f =() A .−1 B .2 C .3 D .2或−1【答案】A【解析】∵函数f (f )=(f 2−f −1)f f2+2f −3是幂函数,∴f 2−f −1=1,解得:f =2或f =−1,f =2时,f (f )=f ,其图象与两坐标轴有交点不合题意,f =−1时,f (f )=1f 4,其图象与两坐标轴都没有交点,符合题意,故f =−1,故选:A .2.已知函数f(f)=(3f2−2f)f f是幂函数,若f(x)为增函数,则m等于()A.−13B.−1C.1 D.−13或1【答案】C【解析】函数f(x)=(3m2-2m)x m是幂函数,则3m2-2m=1,解得m=1或m=-13,又f(x)为增函数,则m=1满足条件,即m的值为1.故选:C.3.已知幂函数f(f)=f f的图像过点(2,√2),则下列说法正确的是()A.f(f)是奇函数,且在(0,+∞)上单调递增B.f(f)是偶函数,且在(0,+∞)上单调递减C.f(f)既不是奇函数也不是偶函数,且在(0,+∞)上单调递增D.f(f)既不是奇函数也不是偶函数,且在(0,+∞)上单调递减【答案】C【解析】∵幂函数y=xα的图象过点(2,√2),∴√2=2α,解得α=12,故f(x)=√f,故f(x)既不是奇函数也不是偶函数,且在(0,+∞)上是增函数,故选:C.4.设α∈{−1,1,12,3},则使函数y=f f的定义域为R且为奇函数的所有α的值为()A.−1,1,3 B.12,1 C.−1,3 D.1,3【答案】D【解析】当α=﹣1时,函数的定义域为{x|x≠0},不满足定义域为R;当α=1时,函数y=f f的定义域为R且为奇函数,满足要求;当α=12函数的定义域为{x|x≥0},不满足定义域为R;当α=3时,函数y=f f的定义域为R且为奇函数,满足要求;故选:D.考向二图像问题【例2】(1)当f∈{−1,12,1,3}时,幂函数f=f f的图象不可能经过的象限是A.第二象限 B.第三象限 C.第三、四象限 D.第二、四象限(2)在同一直角坐标系中,函数f(x)=f f(x≥0),g(x)=fff f x的图象可能是()A. B.C. D.【答案】(1)D (2)D【解析】(1)因为f=f−1经过第一、三象限;f=f12经过第一象限;f=f1经过第一、三象限;f=f3经过第一、三象限;所以不可能经过的象限是第二、四象限,选D.(2)∵实数a>0且a≠1,∴函数f(x)=x a(x>0)是上增函数,故排除A;∴当a>1时,在同一直角坐标系中,函数f(x)=x a(x>0)是下凹增函数,g(x)=log a x的是增函数,观察四个选项,没有符合条件选项;当0<a<1时,∴在同一直角坐标系中,函数f(x)=x a(x>0)是增函数,g(x)=log a x是减函数,由此排除B和C,符合条件的选项只有D.故选:D.【举一反三】1.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数f=f 12的图象可能是()A.① B.② C.③ D.④【答案】D【解析】幂函数y=f12为增函数,且增加的速度比价缓慢,只有④符合.故选:D.2.下图给出四个幂函数的图象,则图象与函数的大致对应是()①②③④A.①f=f 13,②f=f2,③f=f12,④f=f−1B.①f=f3,②f=f2,③f=f 12,④f=f−1C.①f=f2,②f=f3y=x3,③f=f−1,④f=f 1 2D.①f=f 13,②f=f12,③f=f2,④f=f−1【答案】B【解析】②的图象关于y轴对称,②应为偶函数,故排除选项C,D,①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A故选:B.3.在同一直角坐标系中,函数f(f)=f f(f≥0),f(f)=log f f(f>0,且f≠1)的图象可能是().A. B. C. D.【答案】D【解析】对于A项,对数函数过(1,0)点,但是幂函数不过(0,1)点,所以A项不满足要求;对于B项,幂函数f>1,对数函数0<f<1,所以B项不满足要求;对于C项,幂函数要求0<f<1,而对数函数要求,f>1,所以C项不满足要求;对于D项,幂函数与对数函数都要求0<f<1,所以D项满足要求;故选D.4.如图是幂函数y=x m和y=x n在第一象限内的图象,则( )A.-1<n<0,0<m<1 B.n<-1,0<m<1 C.-1<n<0,m>1 D.n<-1,m>1【答案】B【解析】由题图知,f=f f在[0,+∞)上是增函数,f=f f在(0,+∞)上为减函数,∴f>0,f<0,又当f>1时,f=f f的图象在f=f的下方,f=f f的图象在f=f−1的下方,∴f<1,f<−1,从而0<f <1,f <−1,故选B.考向三 比较大小【例3】设f =(35)25,f=(25)35,f=(25)25,则f ,f ,f 的大小关系是A .f >f >fB .f >f >fC .f >f >fD .f >f >f【答案】A【解析】对于函数f =(25)f ,在(0,+∞)上是减函数,∵35>25,∴(25)35<(25)25,即f <f ;对于函数f =f 25,在(0,+∞)上是增函数,∵35>25,∴(35)25>(25)25,即f >f .从而f <f <f .故A 正确. 【举一反三】1.已知点(f ,9)在幂函数f (f )=(f −2)f f 的图象上,设f =f (f − 13),f =f (ln 13),f =f (√22) 则f ,f ,f 的大小关系为( )A .f <f <fB .f <f <fC .f <f <fD .f <f <f【答案】A【解析】由f (f )=(f −2)f f 为幂函数得f −2=1,f =3, 因为点(3,9)在幂函数f (f )上,所以3f =9,f =2,即f (f )=f 2, 因为f =f (f − 13)=f (3− 13),f =f (ln 13)=f (ff3),又3− 13<√22<1<ff3,所以f <f <f ,选A.2.设f =20.3,f =30.2,f =70.1,则f 、f 、f 的大小关系为( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f【答案】B【解析】由题意得:f =20.3=√2310=√810,f =30.2=√3210=√910,f =70.1=√710f =√f 10在(0,+∞)上是增函数且9>8>7∴f >f >f 本题正确选项:f3..已知f =(√2)125,f =925,f =4log 4f 2,则下列结论成立的是( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f 【答案】A【解析】f =265=6415,f =345=8115,∵64<81,∴6415<8115,即f <f ,f =e 2>4>3>345=f ,故f <f <f ,选A .考向四 二次函数解析式【例4】 (1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. (3)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________.【答案】(1)f (x )=x 2-2x +3 (2)x 2+2x (3)x 2+2x +1【解析】(1)由f (0)=3,得c =3,又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称,∴b2=1,∴b =2,∴f (x )=x 2-2x +3.(2)设函数的解析式为f (x )=ax (x +2)(a ≠0),所以f (x )=ax 2+2ax ,由4a ×0-4a24a=-1,得a =1,所以f (x )=x 2+2x .(3)设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a (a ≠0),又f (x )=ax 2+bx +1,所以a =1, 故f (x )=x 2+2x +1. 【举一反三】1.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 【答案】 x 2-4x +3【解析】因为f (2-x )=f (2+x )对任意x ∈R 恒成立,所以f (x )图象的对称轴为直线x =2.又因为f (x )的图象被x 轴截得的线段长为2,所以f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3),所以3a =3,即a =1,所以f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.2.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【套路总结】1. 求二次函数解析式的方法【答案】f (x )=-4x 2+4x +7.【解析】设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7.3.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式. 【答案】f (x )=x 2-4x +3.【解析】∵f (2-x )=f (2+x )对x ∈R 恒成立,∴f (x )的对称轴为x =2. 又∵f (x )图象被x 轴截得的线段长为2,∴f (x )=0的两根为1和3. 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0).又∵f (x )的图象过点(4,3),∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.4.已知二次函数f (x )=x 2+2bx +c (b ,c ∈R).(1)若f (x )≤0的解集为{x |-1≤x ≤1},求实数b ,c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b 的取值范围.【答案】⎝ ⎛⎭⎪⎫15,57【解析】(1)设x 1,x 2是方程f (x )=0的两个根.由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-2b ,x 1x 2=c ,即⎩⎪⎨⎪⎧-2b =0,c =-1.所以b =0,c =-1.(2)由题,知f (1)=1+2b +c =0,所以c =-1-2b .记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1,则⎩⎪⎨⎪⎧g (-3)=5-7b >0,g (-2)=1-5b <0,g (0)=-1-b <0,g (1)=b +1>0⇒15<b <57,即实数b 的取值范围为⎝ ⎛⎭⎪⎫15,57. 考向五 二次函数的性质【例5】(1)设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是________.(2) 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________ (3) 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 【答案】(1)[0,2] (2)[-3,0] (3)38或-3【解析】(1)二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0, 又由--2a 2a=1得图象的对称轴是直线x =1,所以a >0.所以函数的图象开口向上,且在[1,2]上单调递增,f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2. (2)当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意.当a ≠0时,f (x )的对称轴为x =3-a2a ,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a <0,3-a2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. (3)f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3.【举一反三】1.已知函数f (x )=-x 2+2ax +1-a ,x ∈[0,1]有最大值2,则a =________. 【答案】 2或-1【解析】函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,其图象的对称轴方程为x =a .当a <0时,f (x )max =f (0)=1-a ,所以1-a =2,所以a =-1;当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去);当a >1时,f (x )max =f (1)=a ,所以a =2.综上可知,a =-1或a =2.2.已知函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,那么f (2)的取值范围是______.【答案】 [7,+∞)【解析】 函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.3.若函数φ(x )=x 2+m |x -1|在[0,+∞)上单调递增,则实数m 的取值范围是__________. 【答案】 [-2,0]【解析】当0≤x <1时,φ(x )=x 2-mx +m ,此时φ(x )单调递增,则m2≤0,即m ≤0;当x ≥1时,φ(x )=x 2+mx -m ,此时φ(x )单调递增,则-m2≤1,即m ≥-2.综上,实数m 的取值范围是[-2,0].考向六 二次函数恒成立【例6】 (1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值范围为____________.((2)函数f (x )=a 2x+3a x-2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________.【答案】(1) (-∞,-1) (2)2【解析】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1.(2) 令a x =t ,因为a >1,x ∈[-1,1],所以1a≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎢⎡⎦⎥⎤1a ,a ,显然g (t )在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以1<a ≤2,所以a 的最大值为2.1.已知函数f (x )=ax 2+bx +1(a ,b ∈R),x ∈R.(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. 【答案】【解析】(1)由题意得f (-1)=a -b +1=0,a ≠0,且-b2a =-1,∴a =1,b =2.∴f (x )=x 2+2x +1,单调减区间为(-∞,-1],单调增区间为[-1,+∞).(2)解法一:f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1>k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减.∴g (x )min =g (-1)=1. ∴k <1,即k 的取值范围为(-∞,1).解法二:f (x )>x +k 在区间[-3,-1]上恒成立,转化为x 2+x +1-k >0在区间[-3,-1]上恒成立,设g (x )=x 2+x +1-k ,则g (x )在[-3,-1]上单调递减,∴g (-1)>0,得k <1.2.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________.【答案】 ⎝ ⎛⎭⎪⎫12,+∞【解析】由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝ ⎛⎭⎪⎫1x -122+12,14<1x <1,∴⎝ ⎛⎭⎪⎫2x -2x 2max =12,∴a >12.3.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________. 【答案】 ⎝ ⎛⎭⎪⎫-22,0 【解析】 因为函数图象开口向上,所以根据题意只需满足⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. 考向七 二次函数根的分布【例7】一元二次方程02)12(2=-+-+a x a x 的一根比1大,另一根比-1小,则实数a 的取值范围是.【答案】203a <<【解析】记2()(21)2f x x a x a =+-+-,由已知得,(1)0,(1)0,f f <⎧⎨-<⎩解得203a <<.【举一反三】1.已知关于x 的方程11()()2042x x a -+=在区间[]1,0-上有实数根,则实数a 的取值范围是. 【答案】[]1,0-【解析】当0a =时,方程为1()202x -+=,解得1x =-,符合;当0a ≠时,记2()2f m am m =-+,其中1()2x m =.当[1,0]x ∈-时,1()[1,2]2x m =∈,所以题目条件等价于函数2()2f m am m =-+在区间[1,2]内有零点. 当0a >时有函数对称轴102x a =>,若180a ∆=-=,即18a =,此时21()28f m m m =-+的零点为4m =,不符合.因为(2)40f a =>,180a ∆=->,即18a <,所以可知对称轴142x a=>,画图可知此时()f m 在区间[1,2]内无零点. 当0a <时有函数对称轴102x a=<,此时180a ∆=->恒成立.因为(2)40f a =<,所以有(1)10f a =+≥,解得1a ≥-.所以此时10a -≤<.综上可得,10a -≤≤.2.若方程210x mx -+=的两实根分别为,αβ,且012αβ<<<<,则m 的取值范围是. 【答案】5(2,)2【解析】因为关于x 的方程012=+-mx x 的两个根为,αβ,且012αβ<<<<则满足(1)020(2)0520<-<⎧⎧∴⎨⎨>->⎩⎩f m f m ,这样可以解得m 的范围5(2,)2. 3.已知二次函数()2f x x bx c =++的两个零点分别在区间()2,1--和()1,0-内,则()3f 的取值范围是 ( )A .()12,20B .()12,18C .()18,20D .()8,18 【答案】A【解析】由题意得()()()20420{10{1000f b c f b c f c ->-+>-<⇒-+<>>,可行域如图三角形内部(不包括三角形边界,其中三角形三顶点为()()()2,0,1,0,3,2A B C ):,而()393f b c =++,所以直线()393f b c =++过C 取最大值20,过B 点取最小值12,()3f 的取值范围是()12,20,选A .4.已知函数()42f x xx x =-+,存在3210x x x >>≥,使得()()()123f x f x f x ==,则()123x x f x ⋅⋅的取值范围是__________. 【答案】()64,81【解析】根据题意,()222,442{ 6,4x x x f x x x x x x x -≥=-+=-+<,由图象可知,126,x x +=()()()1231116x x f x x x f x ∴⋅⋅=⋅-⋅()()2111166x x x x =⋅-⋅-+=()22116x x -+=()22139x ⎡⎤--+⎣⎦,()()21123,398,9x x <<∴--+∈,()()12364,81x x f x ∴⋅⋅∈,故答案为()64,81.1.已知函数f(f)=(f−1)2f f2−4f+2是在(0,+∞)上单调递增的幂函数,则f=( ) A.0或4 B.0或2 C.0 D.2【答案】C【解析】∵f(x)是幂函数,∴(m﹣1)2=1,得m=0,或m=2,∵f(x)在(0,+∞)上单调递增,∴m2﹣4m+2>0,则当m=0时,2>0成立,当m=2时,4﹣8+2=﹣2,不成立,故选C.2.已知幂函数f(x)=x a(a是常数),则()A.f(x)的定义域为R B.f(x)在(0,+∞)上单调递增C.f(x)的图象一定经过点(1,1)D.f(x)的图象有可能经过点(1,−1)【答案】C【解析】(1)对于A,幂函数f(x)=x a的定义域与a有关,不一定为R,A错误;(2)对于B,a>0时,幂函数f(x)=x a在(0,+∞)上单调递增,a<0时,幂函数f(x)=x a在(0,+∞)上单调递减,B错误;(3)对于C,幂函数f(x)=x a的图象过定点(1,1),C正确;(4)对于D,幂函数f(x)=x a的图象一定不过第四象限,D错误.故选:C.3.如图所示的曲线是幂函数f=f f在第一象限的图象,已知f∈{−4,−14,14,4},相应曲线f1,f2,f3,f4对应的f值依次为()A.−4,−14,14,4 B.4,14,−14,−4 C.−14,−4,4,14D.4,14,−4,−14【答案】B【解析】结合幂函数的单调性及图象,易知曲线f1,f2,f3,f4对应的f值依次为4,14,−14,−4.故选B.4.函数f=2|f|−f2(f∈f)的图象为( )A .B .C .D .【答案】A【解析】由于函数y=2|x|﹣x 2(x ∈R )是偶函数,图象关于y 轴对称,故排除B 、D . 再由x=0时,函数值y=1,可得图象过点(0,1),故排除C ,从而得到应选A ,故选:A .5.已知函数g (x )=log a (x ﹣3)+2(a >0,a ≠1)的图象经过定点M ,若幂函数f (x )=x α的图象过点M ,则α的值等于( )A .﹣1B .12 C .2 D .3 【答案】B【解析】∵y=log a (x ﹣3)+2(a >0,a ≠1)的图象过定点M ,∴M (4,2),∵点M (4,2)也在幂函数f (x )=x α的图象上,∴f (4)=4α=2,解得α=12,故选:B . 6.已知幂函数y =x n 在第一象限内的图象如图所示,则曲线C 1、C 2、C 3、C 4的n 值可能依次为A .–2,–12,12,2B .2,12,–12,–2C .–12,–2,2,12D .2,12,–2,–12 【答案】B【解析】由图象可知:C 1的指数n>1,C 2的指数0<n<1,C 3,C 4的指数小于0,且C 3的指数大于C 4的指数.据此可得,只有B 选项符合题意.故选B .7.幂函数y =x n是奇函数,但图象不与坐标轴相交,则n 的值可以是 A .3 B .1 C .0 D .–1 【答案】D【解析】根据幂函数的性质判断出幂函数f =f f 是奇函数时,指数f 为奇数;幂函数f =f f 的图象与两坐标轴不相交时,幂函数的指数f 小于0,对照选项,只有D 正确.故选D . 8.在函数f =1f 2,f =2f 2,f =f 2+f ,f =3f 中,幂函数的个数为A .0B .1C .2D .3 【答案】B【解析】显然,根据幂函数定义可知,只有f =1f 2=f −2是幂函数,故选B .9.已知函数f =f f ,f =f f ,f =f f 的图象如图所示,则f ,f ,f 的大小关系为( )A .f <f <fB .f <f <fC .f <f <fD .f <f <f 【答案】A【解析】由图像可知,f >1,f =12,0<f <12,得f >f >f ,故答案为:A. 10.当f ∈{−1,12,3}时,幂函数f =f f 的图象不可能经过的象限是 A .第二象限 B .第三象限C .第四象限 D .第二、四象限 【答案】D【解析】f =f −1的图象经过第一、三象限,f =f 12的图象经过第一象限,f =f 的图象经过第一、三象限,f =f 3的图象经过第一、三象限.故选D .11.已知正实数f ,f ,f 满足log f 2=2,log 3f =13,f 6=172,则f ,f ,f 的大小关系是( ) A .f <f <f B .f <f <f C .f <f <f D .f <f <f【答案】B【解析】由题得f 2=2,∴f 6=8,f =313,∴f 6=32=9, 因为8<172<9,a,b,c 都是正数,所以f <f <f .故选:B12.已知幂函数f (x )=x a的图象经过点(2,√2),则函数f (x )为( ) A .奇函数且在(0,+∞)上单调递增 B .偶函数且在(0,+∞)上单调递减 C .非奇非偶函数且在(0,+∞)上单调递增D .非奇非偶函数且在(0,+∞)上单调递减【答案】C,【解析】∵幂函数f(x)=x a的图象经过点(2,√2),∴2a=√2,解得a=12∴函数f(x)=f12,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增.故选:C.13.已知函数f=f f2−5f+4(m∈Z)为偶函数且在区间(0,+∞)上单调递减,则m=()A.2或3 B.3 C.2 D.1【答案】A【解析】幂函数f=f f2−5f+4为偶函数,且在(0,+∞)递减,∴f2−5f+4<0,且f2−5f+4是偶数,由f2−5f+4<0得1<f<4,又由题设f是整数,故f的值可能为2或3,验证知f=2或者3时,都能保证f2−5f+4是偶数,故f=2或者3即所求.故选:A14.已知函数f(f)为偶函数,当f>0时,f(f)=f2−3f,则()A.f(tan70∘)>f(1.4)>f(−1.5)B.f(tan70∘)>f(−1.5)>f(1.4)C.f(1.4)>f(tan70∘)>f(−1.5)D.f(−1.5)>f(1.4)>f(tan70∘)【答案】A【解析】当f>0时,f(f)=(f−1.5)2−1.52,tan70∘−1.5>tan60∘−1.5≈0.232,又函数f(f)为偶函数,所以f(−1.5)=f(1.5),1.5−1.4=0.1,根据二次函数的对称性以及单调性,所以f(tan70∘)>f(1.4)>f(−1.5).故选A15.已知函数f(f)=f2+ff+1在区间(−∞,−1]上是减函数,在区间[1,+∞)上是增函数,则实数f的取值范围是( )A.[−2,2]B.(−∞,−2]C.[2,+∞)D.R【答案】A【解析】由题意,函数f(f)=f2+ff+1表示开口向上,且对称轴的方程为f=−f2,要使得函数f(f)在区间(−∞,−1]上是减函数,在区间[1,+∞)上是增函数,≤1,解得−2≤f≤2,故选A.则−1≤−f216.幂函数f(f)=(f2−2f+1)f2f−1在(0,+∞)上为增函数,则实数f的值为____________.【答案】2【解析】由函数f(f)=(f2−2f+1)f2f−1是幂函数,则f2−2f+1=1,解得f=0或f=2;当f=0时,f(f)=f−1,在(0,+∞)上为减函数,不合题意;当f=2时,f(f)=f3,在(0,+∞)上为增函数,满足题意.故答案为:2.17. 已知函数f (f )=(f 2−f −1)f f 是幂函数,且f (f )在(0,+∞)上单调递增,则实数f =________. 【答案】2【解析】∵幂函数f (x )=(m 2﹣m ﹣1)x m在区间(0,+∞)上单调递增,∴{f 2−f −1=1f>0,解得m =2或-1(舍).故答案为:2.18.已知幂函数f (f )=(f 2−2f −7)f f −1在(0,+∞)上是减函数,则实数f 的值为__________. 【答案】-2【解析】因为函数f (f )=(f 2−2f −7)f f −1是幂函数,所以f 2−2f −7=1,即(f +2)(f −4)=0, 解得f =−2或f =4,当f =−2时,f (f )=f −3,满足在(0,+∞)上是减函数,当f =4时,f (f )=f 3,在(0,+∞)上是增函数,所以f =−2,故答案是:−2. 19.若f (f )=(f −1)2f f 是幂函数且在(0,+∞)单调递增,则实数f =_______. 【答案】2【解析】f (f )=(f −1)2f f 为幂函数,所以(f −1)2=1,解得f =0或2. 当f =0时,f (f )=f 0=1,在(0,+∞)不单调递增,舍去; 当f =2时,f (f )=f 2,在(0,+∞)单调递增成立.故答案为:f =2. 20.已知幂函数f (x )=(m 3–m +1)x12(1−8f −f 2)的图象与x 轴和y 轴都无交点.(1)求f (x )的解析式;(2)解不等式f (x +1)>f (x –2). 【答案】(1)f (x )=x –4;(2){x |x <12,x ≠0}.【解析】(1)因为f (x )是幂函数,所以m 3–m+1=1,解得m ∈{0,±1},又f (x )的图象与x 轴和y 轴都无交点,经检验,只有当m=1时符合题意,所以m=1,此时f (x )=x –4; (2)f (x )=x –4是偶函数且在(0,+∞)递减,所以要使f (x+1)>f (x –2)成立,只需|x+1|<|x –2|,解得x<12, 又f (x )的定义域为{x|x ≠0},所以不等式的解集为{x|x<12,x ≠0}. 21.已知幂函数y =f (x )=f −2f2−f +3,其中m ∈[–2,2],m ∈Z ,①定区间(0,+∞)的增函数;②对任意的x ∈R ,都有f (–x )+f (x )=0;求同时满足①、②两个条件的幂函数f (x )的解析式,并求x ∈[0,3]时,f (x )的值域.【答案】f (f )=f 3;[0,27]. 【解析】∵幂函数y =f (x )=f −2f2−f +3在区间(0,+∞)为增函数,∴–2m 2–m +3>0,即2m 2+m –3<0,解得m ∈(−32,1), 又∵m ∈Z ,∴m =–1或m =0,当m =–1时,y =f (x )=x 2为偶函数,不满足f (–x )+f (x )=0; 当m =0时,y =f (x )=x 3为奇函数,满足f (–x )+f (x )=0. ∴同时满足①、②两个条件的幂函数f (x )=x 3,当x ∈[0,3]时,f (x )∈[0,27],即函数f (x )的值域为[0,27]. 22.已知函数f (f )=(f 2−2f −2)log f f 是对数函数.(1)若函数f (f )=log f (f +1)+log f (3−f ),讨论函数f (f )的单调性;(2)在(1)的条件下,若f ∈[13,2],不等式f (f )−f +3≤0的解集非空,求实数f 的取值范围. 【答案】(1)见解析;(2)[4,+∞).【解析】(1)由题意可知{f 2−2f −2=1f >0且f ≠1,解得f =3(负值舍去),所以f (f )=log 3f .因为f (f )=log f (f +1)+log f (3−f ),所以{f +1>03−f >0 ,即{f >−1f <3,即−1<f <3,故f (f )的定义域为{f |−1<f <3}.由于f (f )=log 3(f +1)+log 3(3−f )=log 3(−f 2+2f +3), 令f (f )=−f 2+2f +3(−1<f <3),则由对称轴f =1可知,f (f )在(−1,1)上单调递增,在(1,3)上单调递减; 因为f =log 3f 在(0,+∞)上单调递增,所以函数f (f )的单调递增区间为(−1,1),单调递减区间为(1,3).(2)因为不等式f (f )−f +3≤0的解集非空,所以f −3≥f (f )min ,f ∈[13,2], 由(1)知,当f ∈[13,2]时,函数f (f )的单调递增区间为[13,1],单调递减区间为(1,2], 因为f (13)=log 3329,f (2)=1,所以f (f )min =1,所以f −3≥1,即f ≥4,故实数f 的取值范围为[4,+∞). 23.设二次函数f (f )=f 2+ff +f ,f ,f ∈f .(1)若f (f )满足:对任意的f ∈f ,均有f (−f )≠−f (f ),求f 的取值范围; (2)若f (f )在(0,1)上与f 轴有两个不同的交点,求f 2+(1+f )f 的取值范围.【答案】(1) (0,+∞) (2) (0,116)【解析】(1)∵f (−f )+f (f )=(−f )2+f (−f )+f +f 2+ff +f =2(f 2+f )≠0恒成立, 所以,方程f 2+f =0无实数解所以,f 取值范围为(0,+∞)(2)设f (f )=0的两根为f 1,f 2,且0<f 1<f 2<1,则f (f )=(f −f 1)(f −f 2), 所以f 2+(1+f )f =f (1+f +f )=f (0)f (1)=(0−f 1)(0−f 2)(1−f 1)(1−f 2)=f 1f 2(1−f 1)(1−f 2)=(−f 12+f 1)(−f 22+f 2)=[−(f 1−12)2+14][−(f 2−12)2+14]≤116.又因为f 1,f 2不能同时取到12,所以f 2+(1+f )f 取值范围为(0,116). 24. 已知函数f (f )=f 2−2(f −1)f +4. (Ⅰ)若f (f )为偶函数,求f (f )在[−1,2]上的值域;(Ⅱ)若f (f )在区间(−∞,2]上是减函数,求f (f )在[1,f ]上的最大值. 【答案】(Ⅰ)[4,8];(Ⅱ)7-2f【解析】(Ⅰ)因为函数f (f )为偶函数,故f (−f )=f (f ),得f =1.f (f )=f 2+4,因为−1≤f ≤2,所以4≤f (f )≤8,故值域为:[4,8].(Ⅱ)若f (f )在区间(−∞,2]上是减函数,则函数对称轴f =f −1≥2,f ≥3因为1<f −1<f ,所以f ∈[1,f −1]时,函数f (f )递减,[f −1,f ]时,函数f (f )递增,故当f ∈[1,f ]时,f (f )max {f (1),f (f )} ,∴f (1)=7−2f ,f (f )=−f 2+2f +4,f (1)−f (f )=(7−2f )−(−f 2+2f +4)=f 2−4f +3=(f −2)2−1由于f ≥3∴f (1)≥f (f ) ,故f (f )在[1,f ]上的最大值为7-2f .25.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域; (2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 【答案】(1)⎣⎢⎡⎦⎥⎤-214,15. (2)a =-13或-1【解析】(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],函数图象的对称轴为x =-32∈[-2,3],∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)函数图象的对称轴为直线x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意; ②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意. 综上可知,a =-13或-1. 26.设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.【答案】见解析【解析】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2. 综上可知,f (x )min =⎩⎪⎨⎪⎧ t 2+1,t ≤0,1,0<t <1,t 2-2t +2,t ≥1.。
幂函数经典例题(答案)

幂函数经典例题(答案)A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R.错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3. 点评 幂函数y =x α (α∈R),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎪⎨⎪⎧m =-3n =32, 所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z)的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3,当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意.当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝ ⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x-12,∴f (8)=8-12=24. 8.下列函数中,值域为[0,+∞)的函数是( ) A .y =2x B .y =x 2 C .y =x -2 D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________. 答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α (α∈R)的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x(x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则 ⎩⎨⎧ m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则 ⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。
二次函数与幂函数(试题部分)

一元二次方程根的分布
3.已知一元二次方程 x2+mx+3=0(m∈Z)有两个实数根 x1,x2,且 0<x1<2<x2<4,则 m 的值为(
A.-4
B.-5
答案
C.-6
D.-7
A
4.方程 x2+ax-2=0 在区间[1,5]上有解,则实数 a 的取值范围为(
A.(C.[-
23
5
23
5
答案
, + ∞)
答案
D.点(2,8)在曲线 y=f(x)上
A
2.(2013 重庆,3,5 分)√(3-)( + 6)(-6≤a≤3)的最大值为(
A.9
答案
B.
9
2
C.3
D.
)
3√2
2
B
3 4 5
3.(2014 辽宁,16,5 分)对于 c>0,当非零实数 a,b 满足 4a2-2ab+4b2-c=0 且使|2a+b|最大时, - + 的最小值为
由|a|+|b|={
得|a|+|b|≤3.
|-|, < 0,
当 a=2,b=-1 时,|a|+|b|=3, |f(x)|=|x2+2x-1|,此时易知|f(x)|在[-1,1]上的最大值为 2,即 M(2,-1)=2.
所以|a|+|b|的最大值为 3.
考点二
幂函数
5.(2014 浙江,7,5 分)在同一直角坐标系中,函数 f(x)=xa(x>0),g(x)=logax 的图象可能是(
)
D.[2,4]
D
1
5.(2020 届广东揭阳三中第一次月考,7)如图的曲线是幂函数 y=xn 在第一象限内的图象.已知 n 分别取±2,± 四个值,与
2023年高考数学一轮复习第二章函数5二次函数与幂函数练习含解析

二次函数与幂函数考试要求 1.通过具体实例,了解幂函数及其图象的变化规律.2.掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).知识梳理1.幂函数(1)幂函数的定义一般地,函数y=xα叫做幂函数,其中x是自变量,α为常数.(2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减;④当α为奇数时,y=xα为奇函数;当α为偶数时,y=xα为偶函数.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象和性质函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)图象(抛物线)定义域 R值域 ⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a 对称轴 x =-b2a顶点 坐标 ⎝ ⎛⎭⎪⎫-b 2a ,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减; 在⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递增在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增;在⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递减思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =1212x 是幂函数.( × )(2)若幂函数y =x α是偶函数,则α为偶数.( × )(3)二次函数y =ax 2+bx +c 的图象恒在x 轴下方,则a <0且Δ<0.( √ )(4)若二次函数y =ax 2+bx +c 的两个零点确定,则二次函数的解析式确定.( × ) 教材改编题1.已知幂函数y =f (x )的图象过点(2,2),则f ⎝ ⎛⎭⎪⎫14等于( ) A .-12B.12 C .±12D.22答案 B解析 设f (x )=x α, ∴2α=2,α=12,∴f (x )=12x ,∴f ⎝ ⎛⎭⎪⎫14=12.2.若函数f (x )=4x 2-kx -8在[5,20]上单调,则实数k 的取值范围为________. 答案 (-∞,40]∪[160,+∞)解析 依题意知,k 8≥20或k8≤5,解得k ≥160或k ≤40.3.已知y =f (x )为二次函数,若y =f (x )在x =2处取得最小值-4,且y =f (x )的图象经过原点,则函数解析式为________. 答案 f (x )=x 2-4x解析 因为y =f (x )在x =2处取得最小值-4, 所以可设f (x )=a (x -2)2-4(a >0),又图象过原点,所以f (0)=4a -4=0,a =1, 所以f (x )=(x -2)2-4=x 2-4x .题型一 幂函数的图象与性质例1 (1)若幂函数y =x -1,y =x m 与y =x n在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<m <12C .-1<m <0<n <12D .-1<n <0<m <1 答案 D解析 幂函数y =x α,当α>0时,y =x α在(0,+∞)上单调递增,且0<α<1时,图象上凸, ∴0<m <1.当α<0时,y =x α在(0,+∞)上单调递减. 不妨令x =2,由图象得2-1<2n,则-1<n <0. 综上可知,-1<n <0<m <1.(2)(2022·长沙质检)幂函数f (x )=(m 2-3m +3)x m的图象关于y 轴对称,则实数m =________. 答案 2解析 由幂函数定义,知m 2-3m +3=1, 解得m =1或m =2,当m =1时,f (x )=x 的图象不关于y 轴对称,舍去, 当m =2时,f (x )=x 2的图象关于y 轴对称, 因此m =2. 教师备选1.若幂函数f (x )=()12255a a a x ---在(0,+∞)上单调递增,则a 等于( )A .1B .6C .2D .-1 答案 D解析 因为函数f (x )=()12255a a a x---是幂函数,所以a 2-5a -5=1,解得a =-1或a =6. 当a =-1时,f (x )=12x 在(0,+∞)上单调递增;当a =6时,f (x )=x -3在(0,+∞)上单调递减,所以a =-1.2.若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是( )A.⎣⎢⎡⎭⎪⎫2,167B .(0,2] C.⎝ ⎛⎭⎪⎫-∞,167 D .[2,+∞)答案 A解析 因为函数f (x )=12x 在定义域[0,+∞)内为增函数,且f (x )>f (8x -16),所以⎩⎪⎨⎪⎧x ≥0,8x -16≥0,x >8x -16,即2≤x <167,所以不等式的解集为⎣⎢⎡⎭⎪⎫2,167.思维升华 (1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.跟踪训练1 (1)(2022·宝鸡检测)已知a =432,b =233,c =1225,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b答案 A解析 由题意得b =233<234=432=a ,a =432=234<4<5=1225=c ,所以b <a <c .(2)已知幂函数y =p qx (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( )A .p ,q 均为奇数,且p q>0 B .q 为偶数,p 为奇数,且p q <0 C .q 为奇数,p 为偶数,且p q >0 D .q 为奇数,p 为偶数,且p q<0 答案 D解析 因为函数y =p q x 的图象关于y 轴对称,于是函数y =p qx 为偶函数,即p 为偶数, 又函数y =p qx 的定义域为(-∞,0)∪(0,+∞),且在(0,+∞)上单调递减,则有p q<0, 又因为p ,q 互质,则q 为奇数,所以只有选项D 正确. 题型二 二次函数的解析式例2 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解 方法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7.方法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为x =2+-12=12, 所以m =12.又根据题意,函数有最大值8,所以n =8,所以f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.方法三 (利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1. 又函数有最大值8, 即4a-2a -1--a24a=8.解得a =-4或a =0(舍去).故所求函数的解析式为f (x )=-4x 2+4x +7. 教师备选若函数f (x )=(x +a )(bx +2a )(a ,b ∈R )满足条件f (-x )=f (x ),定义域为R ,值域为(-∞,4],则函数解析式f (x )=________. 答案 -2x 2+4解析 f (x )=(x +a )(bx +2a ) =bx 2+(2a +ab )x +2a 2.∵f (-x )=f (x ), ∴2a +ab =0, ∴f (x )=bx 2+2a 2.∵f (x )的定义域为R ,值域为(-∞,4], ∴b <0,且2a 2=4,∴b =-2,∴f (x )=-2x 2+4.思维升华 求二次函数解析式的三个策略:(1)已知三个点的坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图象与x 轴的两交点的坐标,宜选用零点式.跟踪训练2 (1)已知f (x )为二次函数,且f (x )=x 2+f ′(x )-1,则f (x )等于( ) A .x 2-2x +1 B .x 2+2x +1 C .2x 2-2x +1 D .2x 2+2x -1答案 B解析 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b , 由f (x )=x 2+f ′(x )-1可得ax 2+bx +c =x 2+2ax +(b -1), 所以⎩⎪⎨⎪⎧ a =1,b =2a ,c =b -1,解得⎩⎪⎨⎪⎧a =1,b =2,c =1,因此,f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),且图象被x 轴截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )的解析式为________.答案 f (x )=x 2-4x +3解析 ∵f (2+x )=f (2-x )对任意x ∈R 恒成立, ∴f (x )图象的对称轴为直线x =2, 又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3,设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), ∵f (x )的图象过点(4,3), ∴3a =3,∴a =1,∴所求函数的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.题型三 二次函数的图象与性质 命题点1 二次函数的图象例3 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )答案 D解析 因为abc >0,二次函数f (x )=ax 2+bx +c ,那么可知, 在A 中,a <0,b <0,c <0,不符合题意; B 中,a <0,b >0,c >0,不符合题意; C 中,a >0,c <0,b >0,不符合题意,故选D. 命题点2 二次函数的单调性与最值 例4 已知函数f (x )=x 2-tx -1.(1)若f (x )在区间(-1,2)上不单调,求实数t 的取值范围; (2)若x ∈[-1,2],求f (x )的最小值g (t ).解 f (x )=x 2-tx -1=⎝ ⎛⎭⎪⎫x -t 22-1-t 24.(1)依题意,-1<t2<2,解得-2<t <4,∴实数t 的取值范围是(-2,4).(2)①当t2≥2,即t ≥4时,f (x )在[-1,2]上单调递减,∴f (x )min =f (2)=3-2t . ②当-1<t2<2,即-2<t <4时,f (x )min =f ⎝ ⎛⎭⎪⎫t 2=-1-t 24.③当t2≤-1,即t ≤-2时,f (x )在[-1,2]上单调递增,∴f (x )min =f (-1)=t .综上有g (t )=⎩⎪⎨⎪⎧t ,t ≤-2,-1-t24,-2<t <4,3-2t ,t ≥4.延伸探究 本例条件不变,求当x ∈[-1,2]时,f (x )的最大值G (t ). 解 f (-1)=t ,f (2)=3-2t ,f (2)-f (-1)=3-3t ,当t ≥1时,f (2)-f (-1)≤0, ∴f (2)≤f (-1), ∴f (x )max =f (-1)=t ; 当t <1时,f (2)-f (-1)>0, ∴f (2)>f (-1), ∴f (x )max =f (2)=3-2t ,综上有G (t )=⎩⎪⎨⎪⎧t ,t ≥1,3-2t ,t <1.教师备选1.(多选)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论正确的是( )A .当x >3时,y <0B .4a +2b +c =0C .-1≤a ≤-23D .3a +b >0答案 AC解析 依题意知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ), ∴函数与x 轴的另一交点为(3,0), ∴当x >3时,y <0,故A 正确;当x =2时,y =4a +2b +c >0,故B 错误;∵抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),且a <0,∴a -b +c =0,∵b =-2a ,∴a +2a +c =0, ∴3a +b <0,c =-3a , ∵2≤c ≤3,∴2≤-3a ≤3, ∴-1≤a ≤-23,故C 正确,D 错误.2.(2022·沈阳模拟)已知f (x )=ax 2-2x +1. (1)若f (x )在[0,1]上单调,求实数a 的取值范围; (2)若x ∈[0,1],求f (x )的最小值g (a ). 解 (1)当a =0时,f (x )=-2x +1单调递减; 当a >0时,f (x )的对称轴为x =1a ,且1a>0,∴1a≥1,即0<a ≤1;当a <0时,f (x )的对称轴为x =1a 且1a<0,∴a <0符合题意. 综上有,a ≤1.(2)①当a =0时,f (x )=-2x +1在[0,1]上单调递减, ∴f (x )min =f (1)=-1.②当a >0时,f (x )=ax 2-2x +1的图象开口方向向上,且对称轴为x =1a.(ⅰ)当1a<1,即a >1时,f (x )=ax 2-2x +1图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,1上单调递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a+1=-1a +1.(ⅱ)当1a≥1,即0<a ≤1时,f (x )在[0,1]上单调递减.∴f (x )min =f (1)=a -1.③当a <0时,f (x )=ax 2-2x +1的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧,∴f (x )=ax 2-2x +1在[0,1]上单调递减. ∴f (x )min =f (1)=a -1.综上所述,g (a )=⎩⎪⎨⎪⎧a -1,a ≤1,-1a+1,a >1.思维升华 二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.跟踪训练3 (1)若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均单调递增,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-113,-3B .[-6,-4]C .[-3,-22]D .[-4,-3]答案 B解析 ∵f (x )为偶函数,∴f (x )在[1,2]上单调递减,在[3,+∞)上单调递增, 当x >0时,f (x )=x 2+ax +2, 对称轴为x =-a 2,∴2≤-a2≤3,解得-6≤a ≤-4.(2)(2022·抚顺模拟)已知函数f (x )=-x 2+2x +5在区间[0,m ]上有最大值6,最小值5,则实数m 的取值范围是________. 答案 [1,2]解析 由题意知,f (x )=-(x -1)2+6, 则f (0)=f (2)=5=f (x )min ,f (1)=6=f (x )max ,函数f (x )的图象如图所示,则1≤m ≤2.课时精练1.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x 答案 B解析 二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点, 设二次函数为g (x )=ax 2+bx ,可得⎩⎪⎨⎪⎧a +b =1,a -b =5,解得a =3,b =-2,所求的二次函数为g (x )=3x 2-2x .2.(2022·延吉检测)若函数y =()222433m m m m x +--+为幂函数,且在(0,+∞)上单调递减,则实数m 的值为( ) A .0B .1或2C .1D .2 答案 C解析 由于函数y =()222433mm m m x +--+为幂函数,所以m 2-3m +3=1,解得m =1或m =2,当m =1时,y =x -1=1x,在(0,+∞)上单调递减,符合题意.当m =2时,y =x 4,在(0,+∞)上单调递增,不符合题意.3.(2022·长沙模拟)已知函数f (x )=x 2-2mx -m +2的值域为[0,+∞),则实数m 的值为( ) A .-2或1 B .-2 C .1 D .1或2答案 A解析 因为f (x )=x 2-2mx -m +2=(x -m )2-m 2-m +2≥-m 2-m +2,且函数f (x )=x 2-2mx -m +2的值域为[0,+∞),所以-m 2-m +2=0,解得m =-2或m =1.4.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.下面四个结论中正确的是( )A .b 2<4ac B .2a -b =1 C .a -b +c =0 D .5a <b答案 D解析 因为二次函数y =ax 2+bx +c 的图象过点A (-3,0),对称轴为直线x =-1,所以⎩⎪⎨⎪⎧-b 2a=-1,9a -3b +c =0,解得⎩⎪⎨⎪⎧b =2a ,c =-3a ,因为二次函数的图象开口方向向下,所以a <0,对于A ,因为二次函数的图象与x 轴有两个交点,所以b 2-4ac =4a 2+12a 2=16a 2>0, 所以b 2>4ac ,故选项A 不正确; 对于B ,因为b =2a ,所以2a -b =0,故选项B 不正确;对于C ,因为a -b +c =a -2a -3a =-4a >0, 故选项C 不正确; 对于D ,因为a <0,所以5a <2a =b ,故选项D 正确.5.(多选)(2022·宜昌质检)已知函数f (x )=x 2-2x +a 有两个零点x 1,x 2,以下结论正确的是( ) A .a <1B .若x 1x 2≠0,则1x 1+1x 2=2aC .f (-1)=f (3)D .函数y =f (|x |)有四个零点 答案 ABC解析 二次函数对应二次方程根的判别式Δ=(-2)2-4a =4-4a >0,a <1,故A 正确; 由根与系数的关系得,x 1+x 2=2,x 1x 2=a ,1x 1+1x 2=x 1+x 2x 1x 2=2a,故B 正确;因为f (x )的对称轴为x =1,点(-1,f (-1)),(3,f (3))关于对称轴对称,故C 正确; 当a <0时,y =f (|x |)只有两个零点,故D 不正确. 6.(多选)已知幂函数f (x )=()2231m m m m x +---,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,都满足f x 1-f x 2x 1-x 2>0,若a ,b ∈R 且f (a )+f (b )<0,则下列结论可能成立的有( )A .a +b >0且ab <0B .a +b <0且ab <0C .a +b <0且ab >0D .以上都可能 答案 BC解析 因为f (x )=()2231m m m m x +---为幂函数,所以m 2-m -1=1, 解得m =2或m =-1.依题意f (x )在(0,+∞)上单调递增, 所以m =2,此时f (x )=x 3,因为f (-x )=(-x )3=-x 3=-f (x ), 所以f (x )=x 3为奇函数. 因为a ,b ∈R 且f (a )+f (b )<0, 所以f (a )<f (-b ). 因为y =f (x )为增函数, 所以a <-b ,所以a +b <0.7.(2022·张家口检测)已知幂函数f (x )=mx n+k 的图象过点⎝ ⎛⎭⎪⎫116,14,则m -2n +3k =________. 答案 0解析 因为f (x )是幂函数, 所以m =1,k =0,又f (x )的图象过点⎝ ⎛⎭⎪⎫116,14, 所以⎝ ⎛⎭⎪⎫116n =14,解得n =12,所以m -2n +3k =0.8.(2022·江苏海安高级中学模拟)函数f (x )=x 2-4x +2在区间[a ,b ]上的值域为[-2,2],则b -a 的取值范围是________. 答案 [2,4]解析 解方程f (x )=x 2-4x +2=2, 解得x =0或x =4,解方程f (x )=x 2-4x +2=-2,解得x =2, 由于函数f (x )在区间[a ,b ]上的值域为[-2,2]. 若函数f (x )在区间[a ,b ]上单调, 则[a ,b ]=[0,2]或[a ,b ]=[2,4], 此时b -a 取得最小值2;若函数f (x )在区间[a ,b ]上不单调,且当b -a 取最大值时,[a ,b ]=[0,4],所以b -a 的最大值为4.所以b -a 的取值范围是[2,4].9.已知二次函数f (x )=ax 2+(b -2)x +3,且-1,3是函数f (x )的零点. (1)求f (x )的解析式,并解不等式f (x )≤3; (2)若g (x )=f (sin x ),求函数g (x )的值域.解 (1)由题意得⎩⎪⎨⎪⎧-1+3=-b -2a,-1×3=3a,解得⎩⎪⎨⎪⎧a =-1,b =4,∴f (x )=-x 2+2x +3,∴当-x 2+2x +3≤3时,即x 2-2x ≥0, 解得x ≥2或x ≤0,∴不等式的解集为(-∞,0]∪[2,+∞). (2)令t =sin x ,则g (t )=-t 2+2t +3=-(t -1)2+4,t ∈[-1,1], 当t =-1时,g (t )有最小值0, 当t =1时,g (t )有最大值4, 故g (t )∈[0,4]. 所以g (x )的值域为[0,4].10.(2022·烟台模拟)已知二次函数f (x )=ax 2+bx +c ,且满足f (0)=2,f (x +1)-f (x )=2x +1.(1)求函数f (x )的解析式;(2)当x ∈[t ,t +2](t ∈R )时,求函数f (x )的最小值g (t )(用t 表示).解 (1)因为二次函数f (x )=ax 2+bx +c 满足f (0)=2,f (x +1)-f (x )=2x +1,所以⎩⎪⎨⎪⎧c =2,a x +12+b x +1+c -ax 2+bx +c =2x +1,即⎩⎪⎨⎪⎧c =2,2ax +b +a =2x +1,所以⎩⎪⎨⎪⎧ c =2,2a =2,b +a =1,解得⎩⎪⎨⎪⎧c =2,a =1,b =0,因此f (x )=x 2+2.(2)因为f (x )=x 2+2是图象的对称轴为直线x =0,且开口向上的二次函数, 当t ≥0时,f (x )=x 2+2在x ∈[t ,t +2]上单调递增, 则f (x )min =f (t )=t 2+2; 当t +2≤0,即t ≤-2时,f (x )=x 2+2在x ∈[t ,t +2]上单调递减,则f (x )min =f (t +2)=(t +2)2+2=t 2+4t +6; 当t <0<t +2,即-2<t <0时,f (x )min =f (0)=2,综上g (t )=⎩⎪⎨⎪⎧t 2+2,t ≥0,2,-2<t <0,t 2+4t +6,t ≤-2.11.(2022·福州模拟)已知函数f (x )=2x 2-mx -3m ,则“m >2”是“f (x )<0对x ∈[1,3]恒成立”的( ) A .充分不必要条件 B .充要条件 C .必要不充分条件 D .既不充分也不必要条件 答案 C解析 若f (x )<0对x ∈[1,3]恒成立,则⎩⎪⎨⎪⎧f 1=2-4m <0,f3=18-6m <0,解得m >3,{m |m >3}是{m |m >2}的真子集,所以“m >2”是“f (x )<0对x ∈[1,3]恒成立”的必要不充分条件.12.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a,y =x b的图象三等分,即有BM =MN =NA ,那么a -1b等于( )A .0B .1C.12D .2答案 A解析 由BM =MN =NA ,点A (1,0),B (0,1),∴M ⎝ ⎛⎭⎪⎫13,23,N ⎝ ⎛⎭⎪⎫23,13, 将两点坐标分别代入y =x a,y =x b, 得a =132log 3,b =231log 3, ∴a -1b=132log 3-2311log 3=0.13.(多选)关于x 的方程(x 2-2x )2-2(2x -x 2)+k =0,下列命题正确的有( ) A .存在实数k ,使得方程无实根B .存在实数k ,使得方程恰有2个不同的实根C .存在实数k ,使得方程恰有3个不同的实根D .存在实数k ,使得方程恰有4个不同的实根 答案 AB解析 设t =x 2-2x ,方程化为关于t 的二次方程t 2+2t +k =0.(*)当k >1时,方程(*)无实根,故原方程无实根;当k =1时,可得t =-1,则x 2-2x =-1,原方程有两个相等的实根x =1; 当k <1时,方程(*)有两个实根t 1,t 2(t 1<t 2), 由t 1+t 2=-2可知,t 1<-1,t 2>-1. 因为t =x 2-2x =(x -1)2-1≥-1,所以x 2-2x =t 1无实根,x 2-2x =t 2有两个不同的实根. 综上可知,A ,B 项正确,C ,D 项错误.14.设关于x 的方程x 2-2mx +2-m =0()m ∈R 的两个实数根分别是α,β,则α2+β2+5的最小值为________. 答案 7解析 由题意有⎩⎪⎨⎪⎧α+β=2m ,αβ=2-m ,且Δ=4m 2-4(2-m )≥0, 解得m ≤-2或m ≥1,α2+β2+5=(α+β)2-2αβ+5=4m 2+2m +1,令f (m )=4m 2+2m +1,而f (m )图象的对称轴为m =-14,且m ≤-2或m ≥1, 所以f (m )min =f (1)=7.15.(2022·台州模拟)已知函数f (x )=(x 2-2x -3)(x 2+ax +b )是偶函数,则f (x )的值域是________. 答案 [-16,+∞)解析 因为f (x )=(x 2-2x -3)(x 2+ax +b ) =(x -3)(x +1)(x 2+ax +b )是偶函数, 所以有⎩⎪⎨⎪⎧f -3=f 3=0,f1=f -1=0,代入得⎩⎪⎨⎪⎧9-3a +b =0,1+a +b =0,解得⎩⎪⎨⎪⎧a =2,b =-3.所以f (x )=(x 2-2x -3)(x 2+2x -3)=(x 2-3)2-4x 2=x 4-10x 2+9 =(x 2-5)2-16≥-16.16.已知a ,b 是常数且a ≠0,f (x )=ax 2+bx 且f (2)=0,且使方程f (x )=x 有等根. (1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使得f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]? 解 (1)由f (x )=ax 2+bx ,且f (2)=0, 则4a +2b =0,又方程f (x )=x ,即ax 2+(b -1)x =0有等根, 得b =1,从而a =-12,所以f (x )=-12x 2+x .(2)假定存在符合条件的m ,n ,由(1)知f (x )=-12x 2+x =-12(x -1)2+12≤12,则有2n ≤12,即n ≤14.又f (x )图象的对称轴为直线x =1, 则f (x )在[m ,n ]上单调递增,于是得⎩⎪⎨⎪⎧m <n ≤14,f m =2m ,f n =2n ,即⎩⎪⎨⎪⎧m <n ≤14,-12m 2+m =2m ,-12n 2+n =2n ,解方程组得m =-2,n =0,所以存在m =-2,n =0,使函数f (x )在[-2,0]上的值域为[-4,0].。
幂函数练习(含答案详解)

3.3 幂函数练习一、单选题1、已知幂函数f (x )=kx α(k ∈R ,α∈R)的图象过点⎝⎛⎭⎫12,2,则k +α=( A ) A .12 B .1 C .32D .22、下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( A ) A .y =x-2B .y =x-1C .y =x 2D .y =31x3、幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( C )4、幂函数()()2222m f x m m x -=--在()0,∞+上单调递减,则实数m 的值为( A ) A .1-B .3C .1-或3D .3-5、若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是( A )A .⎣⎡⎭⎫2,167B .(0,2]C .⎝⎛⎭⎫-∞,167 D .[2,+∞) 6、若幂函数f (x )=()12255a a a x---在(0,+∞)上单调递增,则a 等于( D )A .1B .6C .2D .-17、幂函数a b c d y x y x y x y x ====,,,在第一象限的图像如图所示,则a b c d ,,,的大小关系是 ( D )A .a b c d >>>B .d b c a >>>C .d c b a >>>D .b c d a >>>8、已知幂函数y =p qx (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( D )A .p ,q 均为奇数,且pq >0B .q 为偶数,p 为奇数,且pq <0C .q 为奇数,p 为偶数,且pq >0D .q 为奇数,p 为偶数,且pq <0二、多选题9.下列关于幂函数y x α=的性质说法正确的有( CD ) A .当1α=-时,函数在其定义域上递减 B .当0α=时,函数图象是一条直线 C .当2α=时,函数是偶函数D .当3α=时,函数的图象与x 轴交点的横坐标为0 10.已知函数()a f x x 的图象经过点1,33⎛⎫⎪⎝⎭则( CD )A .()f x 的图象经过点(3,9)B .()f x 的图象关于y 轴对称C .()f x 在(0,)+∞上单调递减D .()f x 在(0,)+∞内的值域为(0,)+∞11、已知幂函数f (x )=()2231mm m m x +---,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,都满足2121)()(x x x f x f -->0,若a ,b ∈R 且f (a )+f (b )<0,则下列结论可能成立的有( BC )A .a +b >0且ab <0B .a +b <0且ab <0C .a +b <0且ab >0D .以上都可能12.若函数()f x x α=的定义域为R 且为奇函数,则α可能的值为( BD )A .1-B .1C .2D .3三、填空题13.若幂函数()21my m m x =--为偶函数,则m = ___2_____ .14、已知幂函数f (x )=mx n +k 的图象过点⎝⎛⎭⎫116,14,则m -2n +3k =_____0__. 15、若()()21221112-+>+m m m ,则实数m 的取值范围是______⎣⎢⎡⎭⎪⎫5-12,2__________.16、给出下面四个条件:①f (m +n )=f (m )+f (n );②f (m +n )=f (m )·f (n );③f (mn )=f (m )·f (n );④f (mn )=f (m )+f (n ).如果m ,n 是幂函数y =f (x )定义域内的任意两个值,那么幂函数y =f (x )一定满足的条件的序号为__③______. 四、解答题17.已知幂函数()f x x α=的图象经过点3,19⎛⎫ ⎪⎝⎭,求函数的解析式,并作出该函数图象的草图,判断该函数的奇偶性和单调性.解:因为幂函数()f x x α=的图象经过点3,19⎛⎫ ⎪⎝⎭,故可得139α=,解得2α=-,故()2f x x -=,其定义域为{|0}x x ≠,关于原点对称;其函数图象如下所示:数形结合可知,因为()f x 的图象关于y 轴对称,故其为偶函数; 且()f x 在()0,+∞单调递减,在(),0-∞单调递增.18、已知幂函数f (x )=(m 2-5m +7)x -m -1(m ∈R)为偶函数.(1)求f ⎝⎛⎭⎫12的值;(2)若f (2a +1)=f (a ),求实数a 的值. 解:(1)由m 2-5m +7=1,得m =2或3. 当m =2时,f (x )=x-3是奇函数,∴不满足题意,∴m =2舍去;当m =3时,f (x )=x -4,满足题意, ∴f (x )=x -4,∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12-4=16.(2)由f (x )=x-4为偶函数和f (2a +1)=f (a )可得|2a +1|=|a |,即2a +1=a 或2a +1=-a ,∴a =-1或a =-13.19、已知幂函数f (x )=21()mm x-+(m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若函数f (x )的图象经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解:(1)因为m 2+m =m (m +1)(m ∈N *),而m 与m +1中必有一个为偶数,所以m 2+m 为偶数, 所以函数f (x )=21()m m x-+(m ∈N *)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.(2)因为函数f (x )的图象经过点(2,2), 所以2=2(m 2+m )-12()12m m +-,即122=2()12mm +-,所以m 2+m =2,解得m =1或m =-2. 又因为m ∈N *,所以m =1,f (x )=12x , 又因为f (2-a )>f (a -1), 所以⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32,故函数f (x )的图象经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为[1,32).20、19.已知函数()()()2151Z m f x m m x m +=-+∈为幂函数,且为奇函数.(1)求m 的值,并确定()f x 的解析式; (2)令()()21g x f x x =++yg x 在1,12x ⎡⎤∈-⎢⎥⎣⎦的值域.解:(1)因为函数()()()2151Z m f x m m x m +=-+∈为幂函数,所以2511m m -+=,解得0m =或5m =, 当0m =时,函数()f x x =是奇函数,符合题意,当5m =时,函数()6f x x =是偶函数,不符合题意,综上所述,m 的值为0,函数()f x 的解析式为()f x x =. (2)由(1)知,()f x x =,所以()()2121g x f x x x x =+=++ 令21t x =+212t x -=,11,0123,032x x t -≤≤∴≤+≤∴≤≤ 所以2211()222t t g t t t -=+=+-,3t ⎡∈⎣, 根据二次函数的性质知,()g t 的对称轴为11122t =-=-⨯,开口向上,所以()g t 在3⎡⎣上单调递增;所以2min011()(0)0222g t g ==+-=-,(2max 31()(3)33122g t g === 所以函数()g x 在1,12⎡⎤-⎢⎥⎣⎦的值域为1312⎡⎤-⎢⎥⎣⎦.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数、二次函数及函数图像类型题
一、幂函数的图像及性质
首先我们要了解幂函数的概念,幂函数解析式a x
y 的特点以及几种常见的幂函数图
像,幂函数前的系数必须是,否则就不是幂函数。
特别是幂函数=,=,=,=
1
2
x,=的图
像,我们经常会遇到利用幂函数的图像及性质通过数形结合的方法来解决实际问题。
例题函数,,的图象如图所示,则,,的大小关系是。
解析:在区间(,)上,幂函数的指数越大,图象越靠近轴;在区间(,∞)上,幂函数的指数越大,图象越远离轴.在第一象限作出作直线(<<),可得直线与个函数图象交点纵坐标的大小关系,数形结合即能求出结果.
结合题目给出的幂函数图象,我们可以将其转化成指数问题解决,作直线(<<),可得直线与个函数图象交点纵坐标的大小关系是<<,根据指数函数(<<)是单调减函数可得>>.故答案为:>>.
二、二次函数的图像及性质
.二次函数的开口与2x前的系数有关,系数是正的则开口向上,系数是负的则开口向下。
.二次函数的单调区间与对称轴有关,在对称轴的两侧,一侧递增,一侧递减。
.二次函数与轴的交点也可以看做是方程的根,我们可以利用韦达定理来研究两根的关系。
例题已知函数()(<<),若<,,则()
.()<().()()
.()>().()与()的大小不能确定
解析:函数()(<<)为二次函数,开口向上,对称轴为,
∴()<(),
故选.
三、幂函数与二次函数的解析式的判定
有时题目会考查我们幂函数和二次函数的解析式的形式问题,我们首先要掌握幂函数和二次函数的定义,注意他们的定义域、值域等再来解决此类问题。
例题 已知函数()(2m )• ,求为何值时,()是()二次函数;()幂函数.
()若()是幂函数,
则2m , ∴21±-=m 。