七年级(下册)幂的运算
沪科版数学七年级下册8.1《幂的运算》教学设计

沪科版数学七年级下册8.1《幂的运算》教学设计一. 教材分析《幂的运算》是沪科版数学七年级下册第8.1节的内容,主要介绍了同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等运算规则。
这部分内容是初中学段数学的重要基础,也是后续学习代数式、函数等知识的前提。
教材通过具体的例子引导学生掌握幂的运算规律,培养学生的逻辑思维能力和运算能力。
二. 学情分析七年级的学生已经掌握了整数、分数和小数的四则运算,对于幂的概念和简单的幂运算可能还比较陌生。
因此,在教学过程中,需要通过生动的例子和生活中的实际问题,激发学生的学习兴趣,引导学生理解和掌握幂的运算规律。
同时,七年级学生的抽象思维能力正在发展,需要通过大量的练习和操作活动,来巩固和提高幂的运算能力。
三. 教学目标1.理解幂的运算概念,掌握同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等运算规则。
2.培养学生的逻辑思维能力和运算能力。
3.能够运用幂的运算知识解决生活中的实际问题。
四. 教学重难点1.重点:同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等幂的运算规则。
2.难点:理解幂的运算规律,能够灵活运用幂的运算知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过设置问题和情境,引导学生探究幂的运算规律。
2.运用直观教具和多媒体辅助教学,帮助学生形象地理解幂的运算概念。
3.采用分组讨论和合作学习的方式,培养学生的团队协作能力和沟通能力。
4.注重练习和操作活动,提高学生的运算能力和解决问题的能力。
六. 教学准备1.准备相关的教学材料和课件,如PPT、教案、练习题等。
2.准备一些实际问题,用于引导学生运用幂的运算知识解决实际问题。
3.准备一些直观教具,如幂的运算图表、幂的运算模型等。
七. 教学过程1.导入(5分钟)通过设置一个实际问题,如“一个正方形的边长是2,求这个正方形的面积”,引导学生思考如何计算面积。
然后引出幂的运算概念,告诉学生,面积可以表示为边长的平方,即2的平方。
七年级数学下册《第八章 幂的运算》复习教案 (新版)苏科版

第八章幂的运算课题:幂的运算的小结与思考教学目标:1、能说出幂的运算的性质;2、会运用幂的运算性质进行计算,并能说出每一步的依据;3、能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;4、通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。
教学重点:运用幂的运算性质进行计算教学难点:运用幂的运算性质进行证明规律教学方法:引导发现,合作交流,充分体现学生的主体地位一、系统梳理知识:幂的运算:1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数幂的除法:(1)零指数幂(2)负整数指数幂请你用字母表示以上运算法则。
你认为本章的学习中应该注意哪些问题?二、例题精讲:例1 判断下列等式是否成立:①(-x)2=-x2,②(-x3)=-(-x)3,③(x-y)2=(y-x)2,④(x-y)3=(y-x)3,⑤x-a-b=x-(a+b),⑥x+a-b=x-(b-a).解:③⑤⑥成立.例2 已知10m=4,10n=5,求103m+2n的值.解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25.所以103m+2n=103m×102n=64×25=1680例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.解:∵2m=x-1,∴y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<13×24>=2,则<210>=______.解210=(24)2·22=162·4,∴ <210>=<6×4>=4例5 1993+9319的个位数字是( )A.2 B.4C.6 D.8解1993+9319的个位数字等于993+319的个位数字.∵ 993=(92)46·9=8146·9.319=(34)4·33=814·27.∴993+319的个位数字等于9+7的个位数字.则 1993+9319的个位数字是6.三、随堂练习:1、已知a=355,b=444,c=533,则有()A.a<b<c B.c<b<aC.c<a<b D.a<c<b2、已知3x=a,3y =b,则32x-y等于 ( )3、试比较355,444,533的大小.4、已知a=-0.32,b=-3-2,c=(-1/3)-2d=(-1/3)0,比较a、b、c、d的大小并用“,〈”号连接起来。
北师大版七年级下册 第1讲 幂的运算 --基础班

第1讲 幂的运算⎧⎪⎪⎨⎪⎪⎩同底数幂的乘法幂的乘方幂的运算积的乘方同底数幂的除法知识点1 同底数幂的乘法1.同底数幂的乘法(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=(m ,n 是正整数)(2)推广:m n p m n p a a a a ++⋅⋅=(m ,n ,p 都是正整数)在应用同底数幂的乘法法则时,应注意:①底数必须相同,如32与52,()322a b与()422a b ,()2x y -与()3x y -等;②a 可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.(3)概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.【典例】1.如果a 2n ﹣1•a n+2=a 7,则n 的值是____ 【答案】2【解析】解:∵a 2n ﹣1•a n+2=a 2n ﹣1+n+2=a 3n+1,a 2n ﹣1•a n+2=a 7, ∴ a 3n+1= a 7,∴3n+1=7,解得n=2.【方法总结】本题考查了同底数幂的乘法,熟记同底数幂相乘,底数不变指数相加是解题的关键.根据同底数幂的乘法的性质,底数不变,指数相加,确定积的次数,再列方程即可求得m的值.【随堂练习】1.如果等式x3•x m=x6成立,那么m=___【答案】3【解析】解:x3•x m=x3+m∵等式x3•x m=x6成立,x3•x m=x3+m∴x3+m=x6∴3+m=6,解得:m=3.【典例】1.已知a m=3,a n=6,a k=4,求a m+n+k的值.【答案】略.【解析】解:a m+n+k=a m•a n•a k∵a m=3,a n=6,a k=4,∴a m+n+k=a m•a n•a k=3×6×4=72.故a m+n+k的值为72.【方法总结】本题主要考查同底数幂的乘法法则逆用,熟练掌握性质并灵活运用是解题的关键,先根据同底数幂的乘法的运算法逆用,将a m+n+k变形为a m•a n•a k,然后将a m=3,a n=6,a k=4,代入a m•a n•a k,求解即可.【随堂练习】1. 若a m=6,a n=7,则a m+n的值是____【答案】42【解析】解:a m+n=a m•a n,∵a m=6,a n=7,∴a m+n=a m•a n=6×7=42,【典例】1.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013①,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014②将②减去①得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【答案】(1)略;(2)略.【解析】解:(1)设S=1+2+22+23+24+…+210①,将等式两边同时乘2得:2S=2+22+23+24+…+210+211②,将②减去①得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n①,两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②,②﹣①得:3S﹣S=3n+1﹣1,即S=(3n+1﹣1),则1+3+32+33+34+…+3n=(3n+1﹣1).【方法总结】此题考查了同底数幂的乘法,弄清题中的技巧是解本题的关键.解答此题常用的方法是“a 倍的错位相减”即可求解.如:求1+a+a2+a3+a4+…+a n(a不等于0)的和.解:设S=1+a+a2+a3+a4+…+a n①,两边同时乘a得:aS=a+a2+a3+a4+…+a n+a n+1②,②﹣①得:aS﹣S=a n+1﹣1,即S=(a n+1﹣1),则1+a+a2+a3+a4+…+a n=(a n+1﹣1).注意:将①式乘以a得到②式,然后运用②﹣①,就是运用“a倍的错位相减”法.【随堂练习】1.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A. B. C. D.a2014﹣1【答案】B.【解析】解:设S=1+a+a2+a3+a4+…+a2014,①则aS=a+a2+a3+a4+…+a2014+a2015,②,②﹣①得:(a﹣1)S=a2015﹣1,∴S=,即1+a+a2+a3+a4+…+a2014=,故选:B知识点2 幂的乘方1.幂的乘方(1)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.【典例】1.若81x=312,则x=__________.【答案】3.【解析】解:81x=34x,∵81x=312,∴34x=312,即34x=312,∴4x=12,x=3,故答案为:3.【方法总结】本题考查了幂的乘方的应用,关键是把原式化成底数相同的形式.先根据幂的乘方法则把81x化成34x,即可得出4x=12,解方程即可求解.【随堂练习】1.若(x3)m=x12,则m的值为()【答案】4【解析】解:∵(x3)m=x12,(x3)m=x3m,∴x3m= x12,∴3m=12,解得m=4.【典例】1.已知3x=a,3y=b,则32x+3y=_____【答案】a2b3【解析】解:∵32x+3y=32x•33y=(3x)2•(3y)3∴当3x=a,3y=b时,原式=(3x)2•(3y)3=a2b3,【方法总结】本题主要考查幂的乘方与积的乘方,要熟练掌握幂的乘方法则(底数不变,指数相乘)和积的乘方法则(把每一个因式分别乘方,再把所得的幂相乘).将32x+3y转化为(3x)2•(3y)3是解答本题的关键.【随堂练习】1.已知a m=2,a n=,a2m+3n的值为____【答案】【解析】解:∵a2m+3n= a2m×a3n=(a m)2×(a n)3∴a2m+3n =(a m)2×(a n)3∵a m=2,a n=,∴a2m+3n=(a m)2×(a n)3=22×()3=.【典例】1.比较3555,4444,5333的大小.【答案】略.【解析】解:∵3555=35×111=(35)111=243111,4444=44×111=(44)111=256111,5333=53×111=(53)111=125111,又∵256>243>125,∴256111>243111>125111,即4444>3555>5333.【方法总结】本题主要考查了幂的大小比较的方法.一般说来,比较几个幂的大小,可以把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.【随堂练习】1.比较(27)4与(34)3的大小,可得()A.(27)4=(34)3B.(27)4>(34)3C.(27)4<(34)3D.无法确定【答案】A.【解析】解:∵(27)4=(33)4=312,(34)3=312,∴(27)4=(34)3,故选:A知识点3 积的乘方1.积的乘方(1)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n•b n(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.【典例】1.用简便方法计算下列各题:(1)()2016×(﹣1.25)2017(2)(2)10×(﹣)10×()11.【解析】解:(1)()2016×(﹣1.25)2017=()2016×(﹣)2017=()2016×(﹣)2016×(﹣)=[×(﹣1.25)]2016×(﹣)=()2016×(﹣)=﹣;(2)(2)10×(﹣)10×()11=()10×(﹣)10×()11=()10×(﹣)10×()10×=[×(﹣)×]10×=.【方法总结】此题主要考查了积的乘方运算,利用底数转化法进行幂的运算是解题关键,如(1)中底数分别是和﹣,乘积正好是-1;如(2)中底数分别是、﹣、,乘积正是-1,-1的偶次幂是1,-1的奇次幂是-1,运算较为便捷.【随堂练习】1. 计算(﹣0.25)2013×42013的结果是_____【答案】-1【解析】解:原式=(﹣0.25×4)2013=(﹣1)2013=﹣1.【典例】1.(1)已知a n=3,b n=5,求(a2b)n的值;(2)若2n=3,3n=4,求36n.【解析】解:(1)∵(a2b)n=(a2)n• b n=a2×n•b n= (a n)2•b n;∴(a2b)n = (a n)2•b n∴(a2b)n = (a n)2•b n=32×5=45;(2)36n═(62)n=(6n)2=【(2×3)n】2=(2n×3n)2=(3×4)2=144.【方法总结】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方法则:底数不变,指数相乘和积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.如(1)中,需要将(a2b)n转变为(a n)2•b n,(2)中,需要将36n转变为(2n×3n)2.【随堂练习】1. 已知x n=2,y n=1;则(x2y)2n=()【答案】16【解析】解:∵(x2y)2n = x2×2n•y2n=x4n•y2n=(x n)4•(y n)2∴(x2y)2n =(x n)4•(y n)2∴当x n=2,y n=3时,(x2y)2n =(x n)4•(y n)2=24×12=16×1=16,知识点4 同底数幂的除法1.同底数幂的除法同底数幂的除法法则:底数不变,指数相减.a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.2.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00无意义.3.负整数指数幂负整数指数幂:a﹣p=(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.【典例】1.(a+b+c)n+3÷(a+b+c)n﹣1=()A.(a+b+c)2B.(a+b+c)4C.(a+b+c)2n+1D.a4+b4+c4【答案】B.【解析】解:(a+b+c)n+3÷(a+b+c)n﹣1=(a+b+c)n+3﹣n+1=(a+b+c)4.故选:B【方法总结】此题主要考查了同底数幂的乘除运算:底数不变,指数相减.【随堂练习】1. (x﹣y)n+3÷(x﹣y)n﹣1【答案】(x﹣y)4【解析】解:(x﹣y)n+3÷(x﹣y)n﹣1=(x﹣y)n+3﹣n+1=(x﹣y)4.【典例】1.若2018m=5,2018n=4,则20183m﹣2n等于____【答案】【解析】解:∵20183m﹣2n=20183m÷20182n=(2018m)3÷(2018n)2∴20183m﹣2n=(2018m)3÷(2018n)2∵2018m=5,2018n=4,∴20183m﹣2n=(2018m)3÷(2018n)2,=53÷42,=.【方法总结】本题考查同底数幂的除法、幂的乘方的性质,解答本题的关键是将20183m﹣2n转化成同底数幂的除法,即转化成20183m÷20182n的形式,再利用幂的乘方法则,将20183m,20182n 分别用(2018m)3、(2018n)2代换,即20183m÷20182n转化成为(2018m)3÷(2018n)2,然后将2018m=5,2018n=4代入(2018m)3÷(2018n)2即可求解.【随堂练习】1.若2x=20,2y=5,则2x﹣y的值为____【答案】4【解析】解:因为2x=20,2y=5,所以2x﹣y=2x÷2y=20÷5=.综合运用1.已知m a+b•m a﹣b=m12,则a的值为_________.【答案】6.【解析】解:∵m a+b•m a﹣b=m12,∴m a+b+a-b=m12,∴a+b+a-b=12即2a=12.解得:a=6.2.若102•10n﹣1=106,则n的值为_________.【答案】5.【解析】解:∵102•10n﹣1=106,∴102+n﹣1=106,∴2+n﹣1=6,解得n=5,故答案为:5.3.已知2a=5,2b=3,求2a+b+3的值.【答案】略.【解析】解:2a+b+3=2a×2b×23∵2a=5,2b=3,∴2a+b+3=2a×2b×23=5×3×8=120.4.已知2x+3y﹣2=0,求9x•27y的值.【答案】略.【解析】解:∵9x•27y=(32)x•(33)y=32x•33y=32x+3y∴9x•27y=32x+3y∵2x+3y﹣2=0,∴2x+3y=2,∴9x•27y=32x+3y=32=9.5.根据已知求值:(1)已知a m=2,a n=5,求a3m+2n的值;(2)已知3×9m×27m=321,求m的值.【答案】略.【解析】解:(1)∵a3m+2n=a3m•a2n=(a m)3•(a n)2 ∴a3m+2n =(a m)3•(a n)2;∵a m=2,a n=5,∴a3m+2n =(a m)3•(a n)2=23×52=200;(2)∵3×9m×27m=31×(32)m×(33)m=31×32m×33m=31+5m,∴3×9m×27m=31+5m,∵3×9m×27m=321,∴31+5m=321,∴1+5m=21,解得m=4.6.用简便方法计算下列各题(1)()2015×(﹣1.25)2016.(2)(3)12×()11×(﹣2)3.【答案】略.【解析】解:(1)===[]2015×(﹣)=﹣1×(﹣)=;(2)原式=×()11×()11×(﹣8)=(﹣)×()11×()11=﹣25×=﹣25.7.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;【解析】解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4 =(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b2n×3•b3×4n÷b5×(n+1)=b6n•b12n÷b5n+5=b6n+12n÷b5n+5=b6n+12n﹣(5n+5)=b6n+12n﹣5n-5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2 =a2×3﹣a3+3+22•(a3)2=a2×3﹣a3+3+22•a3×2=a6﹣a6+4a6=4a6;。
七年级下册数学《幂的运算》知识点整理

七年级下册数学《幂的运算》知识点整理幂的运算
一、本节学习指导
本节知识是数学中的基础部分,在以后的学习中经常会和其他知识结合起来,单独命题频率也相当高,但基本都很容易,一般是选择题、填空题,同学们要牢牢掌握本节涉及的公式。
本节有学习视频。
二、知识要点
nn 1、幂(power):指乘方运算的结果。
a指将a自乘n次(n个a相乘)。
把a
看作乘方的结果,叫做a的n次幂。
2、对于任意底数a,b,当,,,为正整数时,有:
不等于0 的数的-n次幂等于这个数的n次幂的倒数
n 3、科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10的形式(其中1?|a|,10),这种记数法叫做科学记数法.
注:在科学计数法法中如果a的绝对值一定要小于10并且大于1.
例:用科学计数法法表示:25000000;40000000;
76 分析:第一个数字表示为:2.5×10,注意,这里我们没有表示为25×10,后面这种
7表示方法是错误的。
第二个数字很简单,科学计数法表示为:4×10。
三、经验之谈:
同底数幂的乘法、幂的乘方、积的乘方这三个运算法则是整式乘法的基础,也是整式乘法的主要依据(所以要求每个学生都要掌握三个运算法则的数学表达
式(“m、n都为正整数)”和语言表述“同底数幂相乘,底数不变,指数相加,幂的乘方,底数不变,指数相乘,积的乘方,等于把积的每一个因式分别乘方”。
在运用时要灵活一些。
第1讲 幂的运算-七年级下册数学同步精品讲义

第1讲 幂的运算1. 掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.知识点01同底数幂的乘法+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m nm n a a a +=⋅(,m n 都是正整数).【知识拓展1】计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【即学即练1】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);知识精讲目标导航(3)232(2)(2)n⨯-⋅-(n 为正整数).【即学即练2】计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【知识拓展2】已知2220x +=,求2x 的值.知识点02幂的乘方()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a (0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n a aa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识拓展1】计算:(1)2()m a ; (2)34[()]m -; (3)32()m a-.【即学即练1】计算:(1)23[()]a b --; (2)32235()()2y y y y +-;(3)22412()()m m x x -+⋅; (4)3234()()x x ⋅.【知识拓展2】已知25mx =,求6155m x -的值.【即学即练1】已知2a x =,3b x =.求32a bx +的值.【即学即练2】已知84=m ,85=n ,求328+m n的值.【即学即练3】已知435,25ab m n ==,请用含m 、n 的代数式表示43625a b +.【即学即练4】已知2139324n n ++=,求n 的值;【即学即练5】已知322,3m m a b ==,则()()()36322mm m ma b a b b +-⋅= .知识点03积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识拓展1】指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【即学即练1】计算:(1)24(2)xy - (2)24333[()]a a b -⋅-【即学即练2】下列等式正确的个数是( ). ①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个【知识拓展2】计算:1718191(3)(2)6⎛⎫-⨯-⨯- ⎪⎝⎭.知识点04 同底数幂的除法同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【知识拓展1】计算:(1)83x x ÷; (2)3()a a -÷; (3)52(2)(2)xy xy ÷; (4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【即学即练1】计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【知识拓展2】已知32m =,34n =,求129m n+-的值.【即学即练1】已知2552m m⨯=⨯,求m 的值.1.已知(-x )a +2⋅ x 2a ⋅ (-x )3= x 32 , a 是正整数,求a 的值.2.已知n 为正整数,化简: (-x 2 )n+ (-x n )2.3.已知: 3x +1 ⋅ 2x - 3x ⋅ 2x +1 = 216 ,试求 x 的值.能力拓展4.已知35m =,45381m n -=,求201620151n n ⎛⎫-⋅ ⎪⎝⎭的值.5.如果整数x y z 、、满足151627168910xy z⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求2x y z y +-的值.6.已知()231x x +-=,求整数x .题组A 基础过关练一、单选题1.(2022·全国·七年级)化简1x y +-()的结果是( )A .11x y --+B .1xy C .11x y+D .1x y+ 2.(2022·全国·七年级)计算52x x ÷结果正确的是( ). A .3B .3xC .10xD .25x3.(2021·甘肃白银·七年级期末)花粉的质量很小,一粒某种植物花粉的质量约为0.000036mg ,那么0.000036mg 用科学记数法表示为( ) A .53.610mg -⨯ B .63.610mg -⨯C .73.610mg -⨯D .83.610mg -⨯二、填空题4.(2022·黑龙江杜尔伯特·七年级期末)若am =10,an =6,则am +n =_____.分层提分5.(2022·全国·七年级)计算34x x x ⋅+的结果等于________. 6.(2022·黑龙江杜尔伯特·七年级期末)22013•(12)2012=_____. 7.(2021·上海虹口·七年级期末)计算:23(3)a =_______.8.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 9.(2022·全国·七年级)计算:0113()22-⨯+-=______.三、解答题10.(2022·全国·七年级)计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .11.(2018·全国·七年级课时练习)1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量,据估计地壳里含1×1010千克镭,试问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量?12.(2020·浙江杭州·模拟预测)计算题(结果用幂的形式表示):(1)2322⨯ (2)()32x (3)()()322533-⋅13.(2021·上海普陀·七年级期末)计算:2110213(2020)34π---⎛⎫⎛⎫⨯+-÷ ⎪ ⎪⎝⎭⎝⎭.题组B 能力提升练1.(2022·全国·七年级)计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.2.(2021·上海市民办新竹园中学七年级期中)计算:121432413()()()922x z y z y x------÷-⋅-3.(2022·全国·七年级)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”,一般地,把n aa a a a÷÷÷÷个(a ≠0)记作an ,读作“a 的n 次商”.【初步探究】(1)直接写出计算结果:23= ,(﹣3)4= ; (2)关于除方,下列说法错误的是 ;A .任何非零数的2次商都等于1;B .对于任何正整数n ,(﹣1)n =﹣1;C .34=43;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭.(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式.(﹣3)4= ;517⎛⎫⎪⎝⎭= .(4)想一想:将一个非零有理数a 的n 次方商an 写成幂的形式等于 . (5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .4.(2021·江苏·苏州市工业园区第一中学七年级阶段练习)已知10×102=1000=103, 102×102=10000=104, 102×103=100000=105.(1)猜想106×104= ,10m ×10n = .(m ,n 均为正整数) (2)运用上述猜想计算下列式子:①(1.5×104)×(1.2×105); ②(﹣6.4×103)×(2×106).5.(2022·全国·七年级)阅读,学习和解题. (1)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题: 比较34040,43030,52020的大小. (2)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题:已知am =2,an =3,求a 2m +3n 的值.(3)计算:(-16)505×(-0.5)2021.题组C 培优拔尖练一、单选题1.(2021·江苏·宜兴市实验中学七年级期中)计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( ) A .25033333⋅⋅⋅个 B .26033333⋅⋅⋅个 C .27033333⋅⋅⋅个 D .28033333⋅⋅⋅个2.(2022·全国·七年级)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( ) A .2S 2﹣SB .2S 2+SC .2S 2﹣2SD .2S 2﹣2S ﹣2二、填空题3.(2019·浙江·温州市第二十三中学七年级期中)已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.4.(2021·北京八十中七年级期中)已知一列数:-2,4,-8,16,-32,64,-128,……,将这列数按如右图所示的规律排成一个数阵,其中,4在第一个拐弯处,-8在第二个拐弯处,-32在第三个拐弯处,-128在第四个拐弯处,……,则第六个拐弯处的数是________,第一百个拐弯处的数是___________.三、解答题5.(2019·甘肃·甘州中学七年级阶段练习)已知(﹣13xyz )2M =13x 2n+2y n+3z 4÷5x 2n ﹣1y n+1z ,自然数x ,z 满足123x z -⋅=72,且x =z ,求M 的值.6.(2021·全国·七年级专题练习)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Napier ,1550年-1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler ,1707年-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(0,1)x a N a a =≠>,则x 叫做以a 为底N 的对数,记作log a x N =.比如指数式4216=可以转化为24log 16=,对数式52log 25=可以转化为2525=.我们根据对数的定义可得到对数的一个性质:a log(?)log M N M =+log (0,a 1,0,N 0)a N a M ≠>>>.理由如下:设a log M m =,a log N n =,所以m M a =,n N a =,所以m n m n MN a a a +==,由对数的定义得a log ()m n M N +=+,又因为a log log a m n M N +=+,所以log ()log log a a a MN M N =+.解决以下问题: (1)将指数35125=转化为对数式: .(2)仿照上面的材料,试证明:log log -log (0,1,0,0)a a a M M N a a M N N=≠>>> (3)拓展运用:计算333log 2log 18-log 4+= .7.(2019·江苏·汇文实验初中七年级阶段练习)(1)填空:21﹣20=______=2(_____)22﹣21=_____=2(______)23﹣22=______=2(______)…(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+ (22019)8.(2021·全国·七年级专题练习)观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______; (3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.9.(2021·全国·七年级课时练习)探究:22﹣21=2×21﹣1×21=2( )23﹣22= =2( ),24﹣23= =2( ),……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.10.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)。
七年级下册数学幂的乘方与积的乘方

一、概述乘方是数学中常见的运算方式,而在七年级下册数学课程中,乘方的概念和运算更是重要的一部分。
其中,幂的乘方和积的乘方是学习乘方的重要内容,通过对这两个概念的深入理解和掌握,可以帮助学生更好地应用乘方运算解决实际问题,提高数学能力。
二、幂的乘方1. 幂的概念幂指的是将一个数自身相乘若干次,比如2的3次幂即为2乘以2乘以2,记作2^3。
2. 幂的运算规则a. 同底幂相乘:若a^n × a^m,即底数相同,指数相加,底数不变。
b. 同底幂相除:若a^n ÷ a^m,即底数相同,指数相减,底数不变。
c. 幂的乘方:(a^n)^m = a^(n×m),即一个数的幂再乘以一个数的幂等于这个数的幂的乘积。
3. 举例说明若有2^3 × 2^2,则根据同底幂相乘的规则,底数2不变,指数相加得到2^(3+2)=2^5,因此2^3 × 2^2=2^5。
三、积的乘方1. 积的概念积的乘方指的是将一个数的积自身相乘若干次,比如(2×3)的4次幂即为2×3乘以2×3乘以2×3乘以2×3,记作(2×3)^4。
2. 积的乘方运算规则a. 积的乘方展开:(a×b)^n = a^n × b^n,即括号中的积的乘方等于括号里的各项的乘方相乘。
b. 积的乘方合并:a^n × a^n = (a^n)^2 = a^(2n),即同底数的乘方相乘等于底数不变,指数相加。
3. 举例说明若有(2×3)^4,则根据积的乘方展开的规则,括号中的积的乘方等于2的4次幂乘以3的4次幂,即(2^4) × (3^4)。
四、应用举例1. 计算器计算通过计算器进行幂的乘方和积的乘方的计算。
2. 实际问题通过应用题来帮助学生更好地理解幂的乘方和积的乘方在解决实际问题中的应用。
五、总结通过对幂的乘方和积的乘方的理解和掌握,学生可以更好地进行乘方运算、解决实际问题。
七年级下册数学幂的运算

七年级下册数学幂的运算一、幂的运算知识点。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n = a^m + n(a≠0,m、n为整数)。
- 例如:2^3×2^4 = 2^3 + 4=2^7 = 128。
- 推导:a^m表示m个a相乘,a^n表示n个a相乘,那么a^m· a^n就是(m + n)个a相乘,所以结果为a^m + n。
2. 幂的乘方。
- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(a≠0,m、n为整数)。
- 例如:(3^2)^3 = 3^2×3=3^6 = 729。
- 推导:(a^m)^n表示n个a^m相乘,a^m中有m个a相乘,那么n个a^m相乘就有mn个a相乘,所以结果为a^mn。
3. 积的乘方。
- 法则:积的乘方等于乘方的积。
即(ab)^n=a^n b^n(a≠0,b≠0,n为整数)。
- 例如:(2×3)^2 = 2^2×3^2=4×9 = 36。
- 推导:(ab)^n=⏟(ab)×(ab)×·s×(ab)_n个(ab)=⏟(a× a×·s× a)_n个a×⏟(b× b×·s×b)_n个b=a^n b^n。
4. 同底数幂的除法。
- 法则:同底数幂相除,底数不变,指数相减。
即a^m÷ a^n = a^m - n(a≠0,m、n为整数且m>n)。
- 例如:5^5÷5^3 = 5^5 - 3=5^2 = 25。
- 特殊情况:当m = n时,a^m÷ a^n=a^m - n=a^0,规定a^0 = 1(a≠0);当m < n时,a^m÷ a^n=(1)/(a^n - m)。
二、典型例题。
第八章 幂的运算(小结思考)(课件)七年级数学下册(苏科版)

①③④ (填序号).
11.若a=1.01×10-6,b=1.01×10-5,c=9.99×10-4,则a,b,c按从
解:∵a=1.01×10-6=0.00000101,
a<b<c
小到大的顺序排列为________________.
12.如果等式(2a-1)a+2=1,则a的值为
-2或1或0
____________.
A. x2m
B. x2m+1
C. x2m+2
D. xm+2
3.等式− = (−) ( ≠ )成立的条件是( A )
A. n是奇数 B. n是偶数
C.n是正整数
D. n是整数
课堂检测
4.生物学家发现一种病毒,用1015个这样的病毒首尾连接起来,
可以绕长约为4万km的赤道1周,一个这样的病毒的长度为( B )
加、减法
合并同类项(见七上第三章)
n个 am
乘
法
同底数幂的乘法运算性质:
am·an=am+n (m、n是正整数)
除
法
同底数幂的除法运算性质:
am÷an=am-n (m、n是整数,a≠0)
乘
方
am … am= amn
(am)n = am·
幂的乘方运算性质:
(am)n=amn (m、n是正整数)
积的乘方运算性质:
课堂检测
(2) 1+3+32+33+34+…+3n-1+3n(其中n为正整数).
解:(2) 设S=1+3+32+33+34+…+3n-1+3n①.
将等式两边同时乘3,
得3S=3+32+33+34+35+…+3n+3n+1②.
②-①,得3S-S=3n+1-1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)要注意分清底数和指数,注意同底数幂的乘法与合并同类项的区别
同底数幂相乘,底数不变,指数相加。
合并同类项,系数相加,字母和字母的指数不变。
二、幂的乘方
1. 表达式: (m,n都是正整数)
2. 文字语言叙述:幂的乘方,底数不变,指数相乘
3. 注意:(1) (m,n,p都是正整数)仍成立。
(2)幂的乘法中的底数“a” 可以是数,也可以是代数式
(3)要注意区分幂的乘法运算法则和同底数幂的乘法法则。
幂的乘法运算,是转化为指数相乘加的运算(底数不变)
同底数幂相乘,是转化为指数相加的运算(底数不变)。
三、积得乘方
1. 表达式: (n都是正整数)
2. 文字语言叙述:同底数幂相除,底数不变,指数相减
3. 注意:(1)公式中的底数可以是具体的数,也可以是代数式,但由于除式不能为0,所以a≠0。
(2)公式推广: (a≠0,m、n、p都是正整数,且m>n+p)
(3)对比同底数幂的乘法法则
(4)当指数相等的同底数幂相除的商为1,所以规定 = ,即任意不为0的数的零次幂都是等于1;
6. 7计算
(2)逆用幂的乘方法则
根据幂的乘方法则,可以得到 (m,n都是正整数)。
(3)逆用积的乘方法则
根据积的乘方法则,可以得到 ,特点是:将指数相同的两个幂的积转化为两个底数的积的幂。
8. 9.计算:
10.已知 ,求m的值。
11.把下列化成 (k为系数的形式)
12.先化简,在求值:
13.设n是正整数,且
(9) (10)已知
(11) (12)已知
23.已知
原式=
24.学习了整数幂的运算后,小明给小华出了这样一道题目:试比较 的大小,小华怎么也做不出来,聪明的同学你能帮小华解答吗?
25.计算 ,其中n为自然数。
当n为偶数是,原式= ;当n为奇数时候,原式=
26.若x<-1,则
取特殊值,如当x=-2时,
同样对于一个小于1的正数也可以用科学计数法表示
一般的,一个小于1的正数可以表示 的形式(其中 <10,其中n为负整数=
方法:将一个小于1的正数写成 的形式n为负整数, 等于第一个非零数字前面所有泠的个数(包括小数点前面的零)
题型一:比较幂的大小
方法一:化幂的底数为相同后,通过比较指数的大小来确定幂的大小
七年级下册数学讲义
课 题
幂的运算
教学目的
1.同底数幂的乘法
2.幂的乘方
3.积得乘方
4.同底数幂的除法(零指数幂贺峰负整数指数幂)
教学容
知识梳理
一、同底数幂的乘法
1.表达式: (m,n都是正整数)
2.文字语言叙述:同底数幂相乘,底数不变,指数相加。
3.注意:(1)对于三个(或三个以上)同底数幂相乘,也具有底数不变,指数相加的性质。
同底数幂相除,若被除式的指数小于除式的指数,则出现负指数,因此规定 (其中a≠0,p为正整数。
(5)在进行幂的运算时,一般的运算顺序是:先算幂的乘方或积的乘方,然后才是同底数幂相乘或相除。
五、用科学记数法表示小于1的正数
在七年级上册学习到的科学计数法是讲一个绝对值较大的数写成 的形式(其中 <10,n为正整数)
14.已知 15.计算:
(4)逆用同底数幂的除法法则
A.变负整数指数为正整数指数 B.逆用同底数幂除法的法则
16.计算: 17.
18.
19 若
20.已知 ( )
A、 B、 C、 为任意数 D、
21.计算:(1) (2)
22.化简并计算
(1) (2)
(3) (4)
(5) (6)
(7)已知 (8)比较 与 的大小
2. 文字语1)三个(或三个以上)的积的乘方,也具有这一特性,即 (n都是正整数)。
(2)这里的“a”,“b” 可以是数,也可以是代数式
(3)应抓住“每一个因数乘方”这一要点。
四、同底数幂的除法
1. 表达式: (a≠0,m,n都是正整数,且m>n)
1.
方法二:化幂的知识为相同后,通过比较底数大大小来确定幂的大小
2.
方法三:将幂乘方后,通过比较乘方所得数的大小来确定幂的大小
3.
方法四:利用中间量传递来确定幂的大小
4.
5.计算
题型二、法则的逆用
(1)逆用同底数幂的乘法法则
根据同底数幂的乘法法则,可以得到 (m,n都是正整数)。其中,等式右边的两个幂的底数与等式左边幂的底数相同,右边幂的指数和等于左边幂的指数