用树形图求概率教学参考

合集下载

用树形图求概率-经典教学教辅文档

用树形图求概率-经典教学教辅文档

个回合能确定两人先上场的概率.
先生充分自探后,小组合探,然后教师出示展现评价分工表,进行展现评价,教师强调重难点。

四、质疑再探
你还有甚么疑问或新的见解,请大胆提出来,大家一同解决。

五、运用拓展
1、请你根据本节知识自编一题,小组内交流互解,并把好的引荐给全班同学。

合作小组的4位同学坐在课桌旁讨论成绩,先生A的坐位如图所示,先生B,C,D随机坐到其他三个坐位上,
求先生B坐在2号坐位的概率.
六、课堂小结
画树形图求概率的步骤:
①把第一个要素一切可能的结果列举出来.
②随着事情的发展,在第一个要素的每一种可能上都会发生第二个要素的一切的可能.
③随着事情的发展,在第二步列出的每一个可能上都。

用树形图求概率教学案

用树形图求概率教学案

25.2.3 用树形图求概率一、学习目标:1、会用树形图求出一次试验中涉及3个或更多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.2、正确鉴别一次试验中是否涉及3个因素或多个因素,能够从实际需要出发判断何时选用列表法,或画树形图求概率更方便.● 重点:正确鉴别一次试验中是否涉及3个因素或多个因素,能够运用树形图法计算简单事件发生的概率,并阐明理由.● 难点:用树形图求出一次试验所有可能的结果.二、复习引入:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.当一次试验中涉及3个因素或更多的因素时,怎么办?引入课题三、课前预习导学:学习P136-137内容,体会用“树形图”的方法求概率。

复习:(1)通过小明和小岗用两个转盘做游戏的练习复习列表法。

.四、研讨一:同时抛掷三枚硬币,求下列事件的概率:(1) 三枚硬币全部正面朝上;(2) 两枚硬币正面朝上而一枚硬币反面朝上;(3) 至少有两枚硬币正面朝上.学习小组交流,讨论并让学生板演解: 由树形图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等.(1)满足三枚硬币全部正面朝上(记为事件A)的结果只有1种∴ P(A)=81 (2)满足两枚硬币正面朝上而一枚硬币反面朝上(记为事件B)的结果有3种∴ P(B)= 83 (3)满足至少有两枚硬币正面朝上(记为事件C)的结果有4种∴ P(C)=84=21● 课内训练巩固:在小组交流探讨的基础上小结:用树状图和列表法求概率的前提是:各种结果出现的可能性必须相等。

● 巩固练习:小明的袜子问题五、研讨二:甲口袋中装有2个相同的小球,它们分别写有字母A 和B ; 乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I 。

从3个口袋中各随机地取出1个小球。

(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?本题中元音字母: A E I辅音字母: B C D H师生分析:第一、明确试验步骤:本题一次试验中有几个步骤?顺序是怎样的?第二、画出树形图:学生试画后,教师板书.解:根据题意,我们可以画出如下“树形图”:第三、计算概率:明确随机事件,正确数出n m ,的值,计算概率.师生共同讨论得出:本题中共有四个随机事件,要分别数出每个随机事件中n m ,的值.学生讨论后归纳出正确数出n m ,的方法:方法1:通过画出的树形图按由上至下,由左至右的方法把每一个可能的结果写出来,从中找出n m ,的值.方法2:直接看树形图的最后一步,就可以求出n 的值;再由最后一步向上逐个找出符合要求的可能结果,就可以求出m 的值了. 教师板书:由树形图可以得到,所有可能出现的结果有12个,这些结果出现的可能性相等.(1)只有一个元音字母的结果有5个,所以()125一个元音=P ; 有两个元音字母的结果有4个,所以()31124个元音两==P ; 全部为元音字母的结果有1个,所以()61122个元音三==P ; (2)全是辅音字母的结果有2个,所以()61122音辅三个==P . 第四、归纳方法:画树形图求概率的基本步骤:(1)明确一次试验的几个步骤及顺序;(2)画树形图列举一次试验的所有可能结果;(3)明确随机事件,数出n m ,;甲 乙 丙 A C HI D H I E H I B C HI D H I EH I(4)计算随机事件的概率()A mPn.想一想:(1) 列表法和树形图法的优点是什么?(2)什么时候使用“列表法”方便?什么时候使用“树形图法”方便?六、课内训练巩固:1. 小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种。

用树状图计算概率

用树状图计算概率

6.4用树状图计算概率(学案)教师寄语:现实是此岸,理想是彼岸,中间隔着湍急的河流,行动则是架在河上的桥梁知识目标: 1.能够熟练计算事件所发生的概率;2.能用树状图计算一些复杂的随机事件发生的概率.过程与方法:经历实际操作、统计等活动过程,在活动中进一步发展学生的合作交流的意识和能力,增强探究能力,养成良好的学习习惯,提高及时地回顾反思能力。

情感态度与价值观:通过实例体会到数学应用的广泛性,提高学习数学的兴趣,培养爱数学、学数学、用数学的好习惯。

重点:熟练、正确的计算事件所发生的概率;难点:通过列树状图的方式计算一些复杂的随机事件的概率。

(一)学习导入1、抛掷一枚硬币试验,落地后可能出现几种情况?2、抛掷两枚硬币,落地后可能出现几种情况?(二)探究新知抛掷A、B两枚硬币试验,可能出现的结果有:、、、四种。

为了既不重复、有不遗漏地列举出所有这些等可能的结果,可采用树状图或列表的方法列举所有结果。

1、用树状图列举简单事件发生的概率开始硬币A硬币B通过树状图,可以比较直观地列举出所有的等可能的四种结果,从而计算出每种结果发生的概率。

2.独立完成下面问题(1).应用树状图列举通常采取的步骤有哪些?(2)、列表分析结果,计算概率从表中可看出:两枚硬币朝上的面出现“一正一反”的结果有两种,共有四种等可能的结果,所以P (一正一反)=42=21 应用列表列举时,可能出现的结果与左侧表头、上表头之间的对应关系如何?(3)、试一试例1:在A 、B 两个盒子中都装入分别写有数字1,2的两张卡片,分别从每个盒子中任意取一张卡片,两张卡片上的数字之和为3的概率是多少?(三)巩固练习1、袋中装有一个红球和一个黄球,他们的质地、大小都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇动后,再随机摸出一球,两次都摸到红球的概率是多少?2、张明与王红只分得一张足球票,到底谁去呢?王红出主意用手中的三张扑克牌来决定谁去,规则如下:牌面分别为1、2、3的三张扑克牌,将牌洗匀后,随机摸出一张,记数放会混匀,再摸一张,将两次牌面数字求和。

25.2 画树状图求概率 课件

25.2 画树状图求概率 课件
27
当堂训练
1.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟
舟两名同学每人随机选择参加其中一个社团,那么征征和舟
舟选到同一社团的概率是( B )
2
1
1
1
A. 3 B. 3
C. 2 D. 4
2.有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次
取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,
① 弄清试验涉及试验因素个数或试 注意 验步骤分几步;
② 在摸球试验一定要弄清“放回” 还是“不放回”.
课后作业
基础题:1.课后习题P140T 4--6 。 提高题:2.请学有余力的同学做拓广探索T7、T8.
范例应用
例 甲口袋中有2个相同的小球,它们分别写有字母A和 B;乙口袋中装有3个相同的小球,它们分别写有字母C,D 和E;丙口袋中装有2个相同的小球,它们分别写有字母H 和I.从三个口袋中各随机取出1个小球. (1) 取出的3个小球上恰好有1个、2个和3个元音字母的概率分 别是多少?
(2) 取出的3个小球上全是辅音字母的概率是多少? 分析:当一次试验是从三个口袋中取球时,列表法就不方便了, 为不重不漏地列出所有可能的结果,通常采用画树状图法.
范例应用
解:根据题意,可以画出如下的树状图:
由树状图可以看出,所有可能出现的结果共有12种,即 ACH,ACI,ADH,ADI,AEH,AEI,BCH,BCI,BDH,BDI,BE H,BEI, 这些结果出现的可能性相等.
范例应用
范例应用
练一练
经过某十字路口的汽车,可能直行,也可能向左转或 向右转.如果这三种可能性大小相同,求三辆汽车经过 这个十字路口时,下列事件的概率:
数和方式,以及某一事件发生的可能的次数和方式,并求 出概率的方法. 适用条件:

九年级上册画树形图求概率教案

九年级上册画树形图求概率教案

课题:列举法求概率(3)—画树形图求概率教材:数学义务教育人教课标实验版九年级上册授课教师:北京师范大学附属实验中学苏海燕教学目标:1.使学生会画树形图计算简单事件的概率.2.通过画树形图求概率的过程培养学生思维的条理性,提高学生分析问题、解决问题的能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.教学重点:画树形图计算简单事件的概率.教学难点:通过学习画树形图计算概率,培养学生思维的条理性.教学方法:学生自主探究、合作交流与教师启发引导相结合.教学用具:计算机辅助教学.教学过程:师生活动设计意图一、复习提问巩固旧知问题1.用列举法求概率的基本步骤是什么?(1)列举出一次试验的所有可能结果;(2)数出nm,;(3)计算概率nmAP)(.问题2.列举一次试验的所有可能结果时,学过哪些方法?直接列举、列表法.本节课是用列举法求概率的第三节课,对前两节课所学方法的步骤进行归纳,温故以利知新.二、创设情境探究学习2006年6月5日是中国第一个“文化遗产日”,我校承办了“责任与使命——亲近文化遗产,传承文明火炬”的活动,其中有一项“抖空竹”的表演.已知有塑料、木质两种空竹,甲、乙、丙三名学生各自随机选用其中的一种空竹.求甲、乙、丙三名学生恰好选择同一种空竹的概率.以我国第一个“文化遗产日”为背景提出问题,激发学生学习兴趣和参与意识.塑料木质.83)(=恰有两枚正面向上P少?练习2、袋中放有北京08年奥运会吉祥物五福娃纪念币一套,依次取出(不放回)两枚纪念币,求取出的两枚纪念币中恰好有一枚是“欢欢”的概率是多少?解:两枚纪念币中恰好有一枚是“欢欢”记为事件A .解法1:直接列举求得52208)(==A P ; 解法2:列表法求得52208)(==A P ;解法3:画树形图求得52208)(==A P .发散思维训练:你能以此题为背景编一道计算等可能事件概率的题目吗?请学生小组讨论后派代表发言,教师点评.练习2是两步不放回地抽取,展示学生解题策略的多样性,也体现画树形图求概率应用的广泛性.培养学生发散思维和创新能力,此处灵活选择.六、归纳小结 布置作业师生小结:(1)总结画树形图求概率的方法,并和其它列举法求概率的方法进行比较.(2)画树形图求概率体现数形结合及分类的思想. (3)通过把实际问题抽象为数学问题,在有序的列举过程中培养学生的抽象能力及思维的条理性. 布置作业:(1)教材P154练习1,2;P155综合运用5,6 (2)以生活中等可能事件为背景,自拟计算概率的题目,并解答.培养学生归纳总结的能力.落实知识和技能,体会数学与生活的密切联系.教学设计说明一、教学背景列举法求概率是建立在等可能事件的前提下,在没有排列组合相关知识的基础上,通过列举所有等可能结果来求概率的一种方法.由于学生已经初步了解随机事件和概率的有关概念,并能用直接列举和列表法求简单事件的概率,在学生已有的基础上,本节课再寻求一种更一般的列举方法求概率——画树形图求概率.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.二、教学过程本节课由“探究学习——交流展示——剖析例题——巩固新知”有序地展开新课,并向学生提供充分从事数学活动的机会,使学生在活动中感受列举方法由无序到有序,呈现方式由无序到有序,解决问题由无序到有序,逻辑思维由无序到有序的过程.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,由于学生在小学或其它学科中接触过“树形图”,因此本节课在引入树形图这种新的列举方法时,以学生的生活实际为背景提出问题,在自主探究解决问题的过程中,自然地学习使用这种新的列举方法.使学习过程成为发现与创造的过程,合作交流的过程充分展示学生解题策略的多样性,挖掘每个学生的学习潜能,使学生人人有成就感,并享受学习带来的快乐.以现实生活为背景提出问题,激发学生的学习兴趣和主动参与意识.面对这些问题时,鼓励学生主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略,使学生感受数学和生活的密切联系,在问题解决的过程中培养兴趣、追求简捷、重视直观、学会抽象.。

九年级上册数学《用树状图或表格求概率》教案-北师版

九年级上册数学《用树状图或表格求概率》教案-北师版

3.1用树状图或列表求概率(第一课时)一、课标要求:(一)内容要求1.了解利用数据可以进行统计推断,发展建立数据分析观念;感受随机现象的特点。

2.能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。

(二)数学思想方法(核心概念):本节课是简单的两步实验,可以通过计算得到它的概率,所渗透的数学思想是:转化、类比、在树状图中体会几何直观。

本节课的核心概念为:模型思想、数据分析观念、应用意识。

二、教材与学情分析(一)教材分析:本节课是九年级上册第三章《概率的进一步认识》第一节第一课时,通过七年级下册“概率初步”的学习,学生已经通过试验、统计等活动感受随机事件发生频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”;体会到概率是描述随机现象的数学模型。

学生已经获得概率的计算有两种方式:理论计算和试验估算。

本章第一节通过游戏活动,让学生经历猜测、试验、收集数据、分析数据等活动过程,然后学习计算这类事件发生概率的两种方法---画树状图和列表法。

本节共三课时,第一课时通过一个试验活动引出求概率的树状图和列表法,第二课时和第三课时分别选择不同的情境,让学生经历利用画树状图和列表法求出概率并解决问题的过程。

(二)学情分析:1.学习条件和起点能力分析学生已经认识到现实生活中存在大量的随机事件,初步感受到数据的随机性,并研究了一些简单随机事件发生的概率,对一些现象做出了合理的解释,对游戏活动的公平性可借助概率作出评判;学生已经感受到了频率的稳定性,能理解在大量重复试验的基础上,可用试验频率估计事件发生的概率。

2.学生在七年级已经通过试验、统计等活动感受随机事件发生的频率的稳定性即“当试验次数很大时,事件发生的频率稳定在相应概率的附近”,初步体会概率是描述随机现象的数学模型,实验的过程就是渗透“概率模型思想”的过程,通过之前的学习学生大脑中初步建立起了“概率是刻画现实世界随机事件发生可能性大小的重要模型”,具备了将实际问题转化为相应的概率模型的意识、模型化思维和应用意识。

第3课时 用树状图求概率

第3课时 用树状图求概率
∴取出的3个小球上恰好只有一个偶数数
字的概率是152.
(2)取出的3个小球上全是奇数数字的概率. 解:画树状图如答案图所示.
∵共有12种等可能的结果,取出的3个小球上全
是奇数数字的有2种情况,
∴取出的3个小球上全是奇数数字的概率是122=16.
先从中任意摸出1个球(不放回),再从余下的3个球中
任意摸出1个球.
(1)用画树状图的方法表示两次摸球的情况;
解:(1)画树状图如答案图1.
(2)求乒乓球球面上的数之和是正数的概率. (2)画树状图如答案图2.
共有12种等可能的结果,其中两次摸出的乒 乓球球面上的数之和是正数的结果有8种,
∴两次摸出的乒乓球球面上的数之和是正
∴所选两人都是男生的概率为122=16.
题型二 用画树状图法求三步试验的概率
例2 有2部不同的电影A,B,甲、乙、丙3人分别从中 任意选择1部观看. (1)求甲选择电影A的概率; 解:(1)∵甲可选择电影A或B, ∴甲选择电影A的概率为12.
(2)求甲、乙、丙3人选择同一部电影的概率.(请用画
树状图的方法给出分析过程,并求出结果)
第3课时 用树状图求概率
知识导航
1.用树状图求概率
当一次试验要涉及三个或更多的因素时,列表就 不方便了,为了不重不漏地列出所有可能的结果,
通常采用画树状图法.
注意:画树状图求概率的步骤(如下图):
①把第一个因素所有可能的结果列举出来; ②随着事件的发展,在第一个因素的每一种可 能上都会发生第二个因素的所有的可能; ③随着事件的发展,在第二个因素的每一种可
能上都会发生第三个因素的所有的可能.
2.列表法和画树状图法的区别与联系:
(1)当试验包含两步时,列表法比较方便,当 然,此时也可以用画树状图法; (2)当试验在三步或三步以上时,用画树状

【教案】 用树形图求概率

【教案】  用树形图求概率

用树形图求概率学习目标:1、会用树形图求出一次试验中涉及3个或更多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.2、正确鉴别一次试验中是否涉及3个因素或多个因素,能够从实际需要出发判断何时选用列表法,或画树形图求概率更方便.重点:正确鉴别一次试验中是否涉及3个因素或多个因素,能够运用树形图法计算简单事件发生的概率,并阐明理由.难点:用树形图求出一次试验所有可能的结果.复习引入:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.当一次试验中涉及3个因素或更多的因素时,怎么办?引入课题课前预习导学:学习P137-138内容,体会用“树形图”的方法求概率。

自我检测:抛掷一枚质地均匀的骰子,计算下列事件的概率:(1)点数为6; (2)点数小于或等于3; (3)点数为7.研讨一:同时抛掷三枚硬币,求下列事件的概率:(1) 三枚硬币全部正面朝上;(2) 两枚硬币正面朝上而一枚硬币反面朝上;(3) 至少有两枚硬币正面朝上.学习小组交流,讨论并让学生板演解: 由树形图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等.(1)满足三枚硬币全部正面朝上(记为事件A)的结果只有1种∴ P(A)=81 (2)满足两枚硬币正面朝上而一枚硬币反面朝上(记为事件B)的结果有3种∴ P(B)= 83 (3)满足至少有两枚硬币正面朝上(记为事件C)的结果有4种∴ P(C)=84=21课内训练巩固:在小组交流探讨的基础上小结:用树状图和列表法求概率的前提是:各种结果出现的可能性必须相等研讨二:甲口袋中装有2个相同的小球,它们分别写有字母A 和B ; 乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I 。

从3个口袋中各随机地取出1个小球。

(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?本题中元音字母: A E I辅音字母: B C D H师生分析:第一、明确试验步骤:本题一次试验中有几个步骤?顺序是怎样的?第二、画出树形图:学生试画后,教师板书.解:根据题意,我们可以画出如下“树形图”:第三、计算概率:明确随机事件,正确数出n m ,的值,计算概率. 师生共同讨论得出:本题中共有四个随机事件,要分别数出每个随机事件中n m ,的值.学生讨论后归纳出正确数出n m ,的方法:方法1:通过画出的树形图按由上至下,由左至右的方法把每一个可能的结果写出来,甲 乙 丙 A C HI D H I E H I B C HI D H I EH I从中找出n m ,的值.方法2:直接看树形图的最后一步,就可以求出n 的值;再由最后一步向上逐个找出符合要求的可能结果,就可以求出m 的值了. 教师板书:由树形图可以得到,所有可能出现的结果有12个,这些结果出现的可能性相等.(1)只有一个元音字母的结果有5个,所以()125一个元音=P ; 有两个元音字母的结果有4个,所以()31124个元音两==P ; 全部为元音字母的结果有1个,所以()61122个元音三==P ; (2)全是辅音字母的结果有2个,所以()61122音辅三个==P . 第四、归纳方法:画树形图求概率的基本步骤:(1)明确一次试验的几个步骤及顺序;(2)画树形图列举一次试验的所有可能结果;(3)明确随机事件,数出n m ,;(4)计算随机事件的概率()A m P n=. 想一想:(1) 列表法和树形图法的优点是什么?(2)什么时候使用“列表法”方便?什么时候使用“树形图法”方便?课内训练巩固:1. 小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小数除法
教材简介:
本单元的主要内容有:小数除以整数、一个数除以小数、商的近似值、循环小数、用计算器探索规律、解决问题。

教学目标
1、使学生掌握小数除法的计算方法。

2、使学生会用“四舍五入”法,结合实际情况用“进一”法和“去尾”法取商的近似数,初步认识循环小数、有限小数和无限小数。

3、使学生能借助计算器探索计算规律,能应用探索出的规律进行小数乘除法的计算。

4、使学生体会解决有关小数除法的简单实际问题,体会小数除法的应用价值。

教学建议:
1.抓住新旧知识的连接点,为小数除法的学习架设认知桥梁。

2.联系数的含义进行算理指导,帮助学生掌握小数除法的计算方法。

课时安排:
本单元可安排11课时进行教学。

第一课时小数除以整数(一)
—商大于1
教学内容:P16例1、做一做,P19练习三第1、2题。

教学目的:
1、掌握比较容易的除数是整数的小数除法的计算方法,会用这种方法计算相应的小数除法。

2、培养学生的类推能力、发散思维能力、分析能力和抽象概括能力。

3、体验所学知识与现实生活的联系,能应用所学知识解决生活中的简单问题,从中获得价值体验。

教学重点:理解并掌握小数除以整数的计算方法。

教学难点:理解商的小数点要与被除数的小数点对齐的道理。

教学过程:
一、复习准备:
计算下面各题并说一说整数除法的计算方法.
224÷4=416÷32=1380÷15 =
二、导入新课:
情景图引入新课:同学们你们喜欢锻炼吗?经常锻炼对我们的身体有益,请看王鹏就坚
持每天晨跑,请你根据图上信息提出一个数学问题?
出示例1:王鹏坚持晨练。

他计划4周跑步22. 4千米,平均每周应跑多少千米?教师:求平均每周应跑多少千米,怎样列式?(22.4÷4)
观察这道算式和前面学习的除法相比有什么不同?
板书课题:“小数除以整数”。

三.教学新课:
教师:想一想,被除数是小数该怎么除呢?小组讨论。

分组交流讨论情况:
(1)生:22. 4 千米=22400 米22400÷4=5600 米5600 米=5. 6 千米
(2)还可以列竖式计算。

教师:请同学们试着用竖式计算。

计算完后,交流自己计算的方法。

教师:请学生将自己计算的竖式在视频展示台上展示出来,具体说说你是怎样算的?
追问:24表示什么?
商的小数点位置与被除数小数点的位置有什么关系?
引导学生理解后回答“因为在除法算式里,除到被除数的哪一位,商就写在哪一位上面, 也就是说,被除数和商的相同数位是对齐了的,只有把小数点对齐了,相同数位才对齐了,所以商的小数点要对着被除数的小数点对齐”.
问:和前面准备题中的224除以4相比,224除以4和它有哪些相同的地方?有哪些不同的地方?
怎样计算小数除以整数?(按整数除法的方法除,计算时商的小数点要和被除数的小数点对齐)
教师:同学们赞同这种说法吗?(赞同)老师也赞同他的分析.
教师:大家会用这种方法计算吗?(会)请同学们用这种方法算一算.
四、巩固练习
完成“做一做”:25.2÷634.5÷15
五、课堂作业:练习三的第1、2题
课后反思:
学生们在前一天的预习后共提出四个问题:
1,被除数是小数的除法怎样计算?(熊佳豪)
2,为什么在计算时先要扩大,最后又要将结果缩小?(郑扬)
3,小数除以整数怎样确定小数点的位置?(梅家顺)
4,为什么小数点要打在被除数小数点的上面?
特别是第4个问题很有深度,有研究的价值. 在这四个问题的带动下,学
生们一直精神饱满地投入到学习的全过程,教学效果相当好.
第二课时小数除以整数(二)
——商小于1
教学内容:P17例2、例3、做一做,P18例4、做一做,P19—20练习三第3一11题。

教学目的:
1、使学生学会除数是整数的小数除法的计算方法,进一步理解除数是整数的小数除法的意义。

2、使学生知道被除数比除数小时,不够商1,要先在商的个位上写0占位;理解被除数末位有余数时,可以在余数后面添0继续除。

3、理解除数是整数的小数除法的计算法则跟整数除法之间的关系,促进学习的迁移。

教学重点:能正确计算除数是整数的小数除法。

教学难点:正确掌握小数除以整数商小于1时,计算中比较特殊的两种情况。

教学过程:
一、复习:
教师出示复习题:
1))22.4÷4(2)21.45÷15
教师先提问:“除数是整数的小数除法,计算时应注意什么?”然后让学生独立完成。

二、新课
1、教学例2:
上节课我们知道王鹏平均每周跑5. 6千米,那他每天跑多少千米呢?这道题该如何列
式?
问:你为什么要除以7, 题目里并没有出现〃7〃?
原来'7’这个条件隐藏在题目中,我们要仔细读题才能发现.
尝试用例1的方法进行计算,在计算的过程中遇到了什么问题?(被除数的整数部
分比除数小)
问:“被除数的整数部分比除数小,不够商1,那商几呢?为什么要商0?(在被除数个位的上面,也就是商的个位上写“0”,用0来占位。


强调:点上小数点后接着算.
请同学们试着做一做。

2)4/3 7. 2/9
学生做完后,教师问:在什么情况下,小数除法中商的最高位是0?
2、教学例3:
先让学生根据题意列出算式,再让学生用竖式计算。

当学生计算到12除6时,教师提问:接下来怎么除?请同学们想一想。

引导学生说出:12除6可以根据小数末尾添上O以后小数大小不变的性质,在6的右面添上O看成60个十分之一再除。

请同学们自己动笔试试。

在计算中遇到被除数的末尾仍有余数时该怎么办?
在余数后面添0继续除的依据是什么?
3、做教科书第17页的做一做。

4、教学例4:想一想,前面几例小数除以整数是怎样计算的?在计算过程中应注意什么?整数部分不够商1怎么办?如果有余数怎么办?
引导学生总结小数除以整数的计算方法。

(1)小数除以整数按照整数除法的方法去除,
(2)商的小数点要和被除数的小数点对齐,(3)整数部分不够除,商0,点上小数点再除;(4)如果有余数,要添0再除。

师:怎样验算上面的小数除法呢?(用乘法验算)自己试一试。

5、P18 做一做。

三、课堂小结:
1、说说除数是整数的小数除法的计算法则。

2、被除数比除数小时,计算要注意什么?
四、课堂作业:P19第4题,P20第8、11题。

五、作业:P19第3、5、6题,P20第7、9、10题。

课后小记:
本课新增知识点多,难度较大,特别是例3应引导学生去思考其计算依据。

课堂中张子钊同学问到“为什么以往除法有余数时都是写商几余几,可今天却要在小数点后面添0继续除呢?”这反映出新知与学生原有知识产生了认知冲突,在此应帮助学生了解到知识的学习是分阶段的,逐步深入的。

以往无法解决的问题在经过若干年后就可以通过新的方法、手段、途径来解决,从而引导其构建正确的知识体系。

学生归纳综合能力的培养在高年段显得尤为重要。

虽然教材中并没有规范的计算法则,但作为教师有必要让学生经历将计算方法归纳概括并通过语言表述出来的过程,所以引导学生小结小数除法的计算法则,然后再由教师总结出规范简洁的法则是必不可少的教学环节。

作业应注意以下几方面错误:
1、整数除以整数,商是小数的计算题,学生容易遗忘商的小数点。

2、商中间有零的除法掌握情况不太好,需要及时弥补。

对于极个别计算确有困难的同学建议用低段带方格的作业本打草稿,这样便于他们检查是否除到哪一位就将商写在那一位的上面。

相关文档
最新文档