用列举法求概率——树状图法
九年级数学上册 25.2.2 用列举法求概率(树状图)教案 新人教版(2021-2022学年)

知识与
技能
能通过树状图法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果.
过程与
方法
通过自主探究,合作交流的过ห้องสมุดไป่ตู้,感悟数形结合的思想,提高思维的条理性,提高分析问题和解决问题的能力。
通过画树状图求概率的过程提高学习兴趣,感受数学的简捷美,以及数学应用的广泛性。
ﻬ
情感态度与价值观
1。用列举法求概率的基本步骤是什么?
2。列举一次试验的所有可能结果时,学过哪些方法?
3。同时抛掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是多少?
4。随机掷一枚均匀的硬币两次,一枚硬币正面向上,一枚硬币反面向上的概率是多少?
抢答题:
小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形。游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。问:游戏者获胜的概率是多少?
四、巩固提高,完善新知
1。抛掷三枚质地均匀的硬币,三枚正面朝上的概率是多少?为什么?
2。将分别标有数字1,2,3的三张质地、规格和背面均相同的卡片洗匀后,背面朝上放在桌子上。随机地抽取一张作为十位数字,不放回,再抽取一张作为个位数字,试用树状图探究:组成的两位数恰好是偶数的概率为多少?
3.箱子中装有3个只有颜色不同的球,其中2个是白球、1个是红球,3个人依次从箱子中任意摸出1个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是多少?
25。2.2用列举法求概率
课标依据
能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果。
树状图法求概率

树状图法求概率
拓
展
当一次试验需要两步完成或者试验的结果需由两个 因素决定时,用树状图列举法可以吗?
(2013年)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到 古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一 个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择 古隆中为第一站的概率是多少? 解:李老师先选择,然后儿子选择,画出树状图如下:
课堂练习
1、(2012年)襄阳市教育局为提高教师业务素质,扎实开展了“课 内比教学”活动。在一次数学讲课比赛中,每个参赛选手都从两个分别 标有“A”、“B”内容的签中,随机抽取一个作为自己的讲课内容,某 校有三个选手参加这次讲课比赛,请你求出这三个选手中有两个抽中内 容“A”,一个抽中内容“B”的概率。 2、(2014年)从长度分别为2,4,6,7的四条线段中随机抽取三 条,能构成三角形的概率是多少?
树状图法求概率
复习回顾
解:列表如下:
乙 甲
剪刀
(剪刀,剪刀) (剪刀,锤子) (剪刀,布)
锤子
(锤子,剪刀) (锤子,锤子) (锤子,布)
布
(布,剪刀) (布,锤子) (布,布)
剪刀 锤子 布
由上表可知,甲和乙猜拳所有可能的结果有9种,其中甲获胜 (记为事件A)的结果有3 种,所以甲获胜的概率为:
本题中元音字母:
A 、E、I
辅音字母:
B 、C、D、H
在这个试验中,一个结果由几个因素决定 ?
当一次试验涉及3个因素或3个以上的因素时,列表法 能胜任吗?
树状图法求概率
解决问题
(1)取出的3个小球上,恰好有1个,2个和3个元音字母的概率分别是多少?
新听课记录2024秋季九年级人教版数学上册第二十五章概率初步《用列举法求概率:画树状图求概率》

听课记录:2024秋季九年级人教版数学上册第二十五章概率初步《用列举法求概率:画树状图求概率》教学目标(核心素养)1.知识与技能:学生能够理解并掌握通过画树状图来列举所有可能结果,进而求解某一事件概率的方法。
2.过程与方法:通过案例分析、动手实践,培养学生分析问题、构建数学模型的能力,以及运用树状图进行概率计算的技能。
3.情感态度价值观:激发学生对概率学习的兴趣,培养严谨的数学思维习惯和解决问题的能力。
导入教师行为:•展示一个涉及两步或多步随机事件的实例,如“抛掷一枚质地均匀的硬币两次,求两次都正面朝上的概率”。
•引导学生思考如何有效地列举出所有可能的结果,并提问:“有没有一种直观的方法可以帮助我们更清晰地看到所有可能的情况?”•引出画树状图的概念,解释其在列举复杂随机事件所有可能结果中的优势。
学生活动:•思考教师提出的问题,尝试在脑海中构想如何列举所有可能的结果。
•对教师提出的画树状图的方法表示好奇,准备学习这一新的解题工具。
过程点评:导入环节通过实际问题的引入,自然激发了学生的学习兴趣和探究欲望,同时巧妙地引出了本节课的主题——画树状图求概率,为后续学习做好了铺垫。
教学过程教师行为:•详细讲解画树状图的步骤:首先明确随机试验的每一步骤及其所有可能的结果,然后按照顺序将这些结果以树状图的形式画出来,最后根据树状图列举出所有可能的结果组合。
•示范如何为上述硬币抛掷问题画树状图,并引导学生观察树状图,理解其结构。
•提供多个类似的例题,如“从两个不同袋子中各抽取一个球,求抽到特定颜色组合的概率”,让学生分组尝试画树状图并求解概率。
•在学生解题过程中,教师巡回指导,关注学生是否正确理解了树状图的构建方法,并适时给予帮助和纠正。
学生活动:•认真听讲,理解画树状图的步骤和原理。
•积极参与例题的分析和解答,动手尝试画树状图,并计算相应事件的概率。
•在小组内分享自己的解题思路和树状图,讨论并解决遇到的问题。
过程点评:教学过程注重学生的动手实践和合作交流,通过教师示范、学生操作、小组讨论等多种方式,使学生充分理解了画树状图求概率的方法。
知识卡片-列表法与树状图法

列表法与树状图法能量储备在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性的大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.注意:(1)用列举法求概率时,各种情况出现的可能性必须相同;(2)全面列举出所有可能的结果,各种情况不能重复,也不能遗漏;(3)所求概率是一个准确数,一般用分数表示.通关宝典★基础方法点方法点1:利用概率公式计算某个事件发生的概率时,可利用列表法或画树状图法找全所有可能出现的情况,并将可能出现的全部的结果数作为分母.例1袋中有大小相同、标号不同的白球2个,黑球2个.(1)从袋中连取2个球后不放回,取出的2个球中有1个白球,1个黑球的概率是多少?(2)从袋中有放回地取出2个球的顺序为黑、白的概率是多少?解:(1)根据题意列表如下:共有12种等可能情况,符合题意的有8种,故有1个白球,1个黑球的概率P =812=23. (2)画树状图如图所示.共有16种等可能情况,符合条件的有4种,故取球顺序为黑、白的概率P =416=14. ★ ★ 易混易误点易混易误点1:研究所有等可能结果时重复或遗漏例2 从装有两个红球、两个黄球(每个球除颜色外其他均相同)的袋中任意取出两个球,取出一个红球和一个黄球的概率是( )A.13B.23C.14D.12解析:我们不妨把四个球分别记为红1,红2,黄1,黄2,从中摸出两个球的所有可能结果为(红1,红2),(红1,黄1),(红1,黄2),(红2,黄1),(红2,黄2),(黄1,黄2),共6种,其中一红一黄共有4种,故其概率P =46=23.故选B . 答案:B分析:本题易错误地认为任意取出两个球,共可能出现“两红”“两黄”“一红一黄”三种可能的结果,所以任意取出两个球,取得一个红球和一个黄球的概率为13. 易混易误点2:不能准确区分放回抽样与不放回抽样对事件发生概率的影响例2 有完全相同的4个小球,上面分别标有数字1,-1,2,-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后不放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m ,n ,以m ,n 分别作为一个点的横坐标与纵坐标,求点(m ,n)不在第二象限的概率.解:用列表法.可以看出,共有12种等可能的情况,其中点(m,n)不在第二象限的有8种情况,所以点(m,n)不在第二象限的概率P=812=23.,注意:对于某一关注的结果,放回抽样与不放回抽样是完全不同的,本题易忽视“不放回”这一条件而错误地列出如下表格求错概率.蓄势待发考前攻略考查用列表法或画树状图法求事件的概率是中考的必考内容,命题形式有填空题、选择题、解答题,难度适中.试题常用的背景有摸球、抽取卡片、转转盘、掷骰子等富有生活气息及与社会生活息息相关的内容,是中考的命题趋势,要引起重视.完胜关卡。
北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习

第01讲_概率的进一步认识知识图谱概率的计算知识精讲一.用列表法和树状图法求事件的概率1.列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2.树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的树丫形式,最末端的树丫个数就是总的可能的结果.二.用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.三点剖析一.考点:概率的计算二.重难点:用列表法和树状图法求事件概率三.易错点:(1)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值;(2)复杂事件求概率的方法运用频率估算概率。
判断是否公平的方法运用概率是否相等,关注频率与概率的整合。
求简单事件的概率例题1、在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.1 3B.23C.16D.34【答案】B【解析】分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.北师大版本九年级上册第三章概率的进一步认识例题2、围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是2 3.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()A.4颗B.6颗C.8颗D.12颗【答案】C【解析】由题意得14223xx yxx y⎧=⎪++⎪⎨⎪=⎪+⎩;解得48yx=⎧⎨=⎩,由此可得,原来盒子中有白色棋子8颗例题3、某厂为新型号电视机上市举办促销活动,顾客购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,摸到都是黄球的顾客获得大奖,摸到不全是黄球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你讲转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:转盘上用文字注明颜色和扇形的圆心角的度数,结合转盘简述获奖方式,不需要说明理由).【答案】见解析【解析】(1)符合,一共出现20种可能性,并且每种可能性都相同,所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(两黄球)212010==,即顾客获得大奖的概率为10%,获得小奖的概率为90%;(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36︒的扇形区域涂上黄色,其余的区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.随练1、如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C. D.【答案】C【解析】列表如下:共有6种情况,必须闭合开关S 3灯泡才亮,即能让灯泡发光的概率是=.故选C .随练2、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,它们除颜色外全部相同,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗【答案】B【解析】解:由题意得:25134x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩,解得23x y =⎧⎨=⎩故选:B .随练3、有一盒子中装有3个白色乒乓球,2个黄色乒乓球,1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是______颜色;(2)请你计算摸到每种颜色球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?【答案】(1)白(2)16(3)公平【解析】(1)因为白色的乒乓球数量最多,所以最有可能是白色(2)摸出一球总共有6种可能,它们的可能性相等,摸到白球有3种、黄球有2种、红球有1种.所以P (摸到白球)=3162=,P (摸到黄球)=2163=,P (摸到红球)=16;(3)答:公平.因为P (摸到白球)=12,P (摸到其他球)=21162+=,所以公平.列表法和树状图法求概率例题1、如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是__________.【答案】715【解析】列表得(1,8)(1,7)(1,6)(1,5)(1,4);(2,8)(2,7)(2,6)(2,5)(2,4);(3,8)(3,7)(3,6)(3,5)(3,4);其中为偶数的有7种,故数字和为偶数的概率是715例题2、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,1-,2-,3-四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为__________.【答案】38【解析】画树状图,得因为共有16种可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况所以两次摸出的小球上两个数字乘积是负数的概率63168==.例题3、有十张正面分别标有数字3-,2-,1-,0,1,2,3,4,5,6的不透明卡片,他们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b .则数字a ,b 使得关于x 的方程210ax bx +-=有解的概率为___________.【答案】710【解析】列表得:一共有(3,2)--、(2,1)--、(1,0)-、(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7);数字a ,b 使得关于x 的方程210ax bx +-=有解的情况有:(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7)七种,则710P =.例题4、在平面直角坐标系中给定以下五个点A (2-,0)、B (1,0)、C (4,0)、D (2-,92)、E (0,6-),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩桌球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是()A.12B.35C.710D.45【答案】B【解析】所有的摸球情况有:ABC 、ABD 、ABE 、ACD 、ACD 、ACE 、ADE 、BCD 、BCE 、BCE 、BDE 、CDE 共有10种情况;其中,ABC 时,三点都在x 轴上,共线,不能确定一条抛物线;而ABD 、ACD 、ADE 时,A 、D 的横坐标都是2-,不复合函数的定义;所以能确定一条抛物线的情况有:10136--=,所以35P =.随练1、把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x ,把第二次转动停止后指针指向的数字的2倍记作y ,以长度分别为x 、y 、5的三条线段能构成三角形的概率为__________.【答案】49【解析】列表可得因此,点(),A x y 的个数共有9个;则x 、y 、5的三条线段能构成三角形的有4组,可得49P =.随练2、在不透明的口袋中,有五个形状、大小、质地完全相同的小球,五个小球分别标有数字2-、1-、0、2、3,现从口袋中任取一个小球,并将该小球上的数字作为点C 的横坐标,然后放回摇匀,再从口袋中人去一个小球,并将该小球上的数字作为点C 的纵坐标,则点C 恰好与点A (2-,2)、B (3,2)构成直角三角形的概率是_________.【答案】25【解析】画树状图如下:共有25种情况,当点C的坐标为(2-,2-)、(2-,1-)、(2-,0)、(2-,3)、(1-,0)、(2,0)、(3,2-)、(3,1-)、(3,0)、(3,3)共10种情况时,构成直角三角形,P(直角三角形)102 255 ==.用频率估计概率例题1、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【答案】D【解析】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.例题2、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:40075015003500700090003696621335320363358073根据表中数据,估计这种幼树移植活率的概率为__________(精确到0.1).【答案】0.9【解析】(0.9230.8830.8900.9150.9050.8970.902)70.9x=++++++÷≈例题3、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n)100150200500摸到白球次数(m)5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当n很大时,摸到白球的概率将会接近0.6.(2)由(1)可得,摸到白球的概率是35,摸到黑球的概率是25;(3)由(2)可得,口袋中白球的个数320125=⨯=个;黑球的个数22085=⨯=个.随练1、如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).【答案】0.5【解析】由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5.随练2、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:的次数n 100150200500800”的次数m 68111136345564的频率m(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1)【答案】(1)见解析;(2)0.7;(3)0.7;(4)252 【解析】(1)的次数n 100150200500800”的次数68111136345564的频(2)当n 很大时,频率将会接近681111363455647010.71001502005008001000+++++=+++++(3)获得铅笔的概率约是0.7(4)扇形的圆心角约是0.7360252⨯=拓展1、一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.4 9B.13C.16D.19【答案】D【解析】列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为1 9.2、在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?【答案】(1)嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4;(2)列表法:由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=612=12,∵P1=34,P2=12,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.3、从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率____.【答案】13【解析】由关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4,可求得a 的值,由关于x 的方程x 2+4x+a=0有解,可求得a 的取值范围,继而求得答案.∵一次函数y=2x+a 与x 轴、y 轴的交点分别为:(﹣2a,0),(0,a ),∴|﹣2a|×|a|×12=4,解得:a=±4,∵当△=16﹣4a ≥0,即a ≤4时,关于x 的方程x 2+4x+a=0有解,∴使关于x 的方程x 2+4x+a=0有解,且使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4的概率为:13.故答案为:134、王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是__________.【答案】王红【解析】共9种情况,和为7的情况数有3种,王红获胜的概率为39;和为8的情况数有2种,刘芳获胜的概率为29; 王红获胜的可能性较大.5、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n )100150200500摸到白球次数(m )5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n 很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当\(n\)很大时,摸到白球的概率将会接近\(0.6\).(2)由(1)可得,摸到白球的概率是\(\frac{3}{5}\),摸到黑球的概率是\(\frac{2}{5}\);(3)由(2)可得,口袋中白球的个数\(=20\times \frac{3}{5}=12\)个;黑球的个数\(=20\times \frac{2}{5}=8\)个.6、在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.【答案】(1)见解析;(2);(3).【解析】(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.。
优秀课件九年级数学上册:25.2 用树状图法求概率 树状图 课件 (共17张PPT)

作业
习题25.2 第4,5题
六、拓展延伸
1.小明是个小马虎,晚上睡觉时将两双不同 的袜子放在床头,早上起床没看清随便穿了 两只就去上学,问小明正好穿的是相同的一 双袜子的概率是多少?
解:设两双袜子分别为A1、A2、B1、B2,则
开始
A1
A2 B1 B2 A2 B1 B2 A1 A2 B1
A1 B1 B2
12
有两个元音字母(记为事件B)的结果有4个,所以 1 4 P(B)= =
12
3
有三个元音字母(记为事件C)的结果有1个,所以 1 P(C)= 12 (2)全是辅音字母(记为事件D)的结果有2个,所以 P(D)= 2 = 1
12 6
.
画树状图求概率的基本步骤: (1)明确一次试验的几个步骤及顺序; (2)画树形图列举一次试验的所有可能结果; (3)试验的所有可能结果数n,数出随机事件A 包含的结果数m; (4)计算随机事件的概率
25.2. 用列举法求概率
(画树状图法求概率)
一.复习提问,巩固旧知
.
问题1.列举一次试验的所有可能结果时,学过哪些方法? 直接列举法. 列表法. 问题2.用列举法求概率的基本步骤是什么?
(1)列举出一次试验的所有可能结果; (2)数出事件A包含的结果数m,试验的所有可能结果数n; m P ( A ) (3)计算概率 n
m P ( A) n
四、巩固练习
经过某十字路口的汽车,它可能继续 直行,也可能向左转或向右转,如果这三种 可能性大小相同,当有三辆汽车经过这个 十字路口时,求下列事件的概率 (1)三辆车全部继续直行;
(2)两辆车向右转,一辆车向左转;
(3)至少有两辆车向左转
解:根据题意,可以画以下树状图:
用列举法求概率---画树状图法(2步或3步及以上概率)

25.2(3)用列举法求概率---画树状图法(2步或3步及以上概率)一.【知识要点】1.画树状图法(2步或3步及以上概率)二.【经典例题】1.一个不透明的口袋里装有分别标有汉字“美”、“丽”“四”、“川”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任选一个球,球上的汉字刚好是“四”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 1.(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 2,指出P 1,P 2的大小关系(请直接写出结论,不必证明).2. 有四个一模一样的小球,上面分别标有-2,0,2,3四个数字.从中任意模一个小球,将上面的数字记为a(不放回),再摸一个小球,将上面的数字记为b,这样的数字a,b 能使关于x 的一元二次方程()0112=++-bx x a 有实数根的概率为_______。
3. 有甲、乙、丙3个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm 、5cm 、7cm ;乙盒子中装有2张卡片,卡片上分别写着2cm 、5cm ;丙盒子中装有2张卡片,卡片上分别写着5cm 、7cm 。
所有卡片的形状、大小都完全相同。
现随机从甲、乙、丙三个盒子中各取出一张卡片放在一起,用卡片上标明的数量分别作为一条线段的长度。
(1)请用树状图的方法求这三条线段能组成三角形的概率。
(2)求这三条线段能组成直角三角形的概率。
4.(绵阳2019年第20题11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D 对应的圆心角度数;(2)成绩在D 区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.5.甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球出颜色外无其他差别,分别从每个口袋中随机摸出1个球.(1)摸出的2个球都是白球的概率为__________.(2)下列事件中,概率最大的是( )A.摸出的两个球的颜色都相同.B.摸出的两个球的颜色不相同.C.摸出的两个球中至少有1个红球.D.摸出的两个球中至少有1个白球.6.(2020年绵阳期末第20题)(本题满分12分)同时抛掷两枚质地均匀的正四面体骰子,骰子各个面的点数分别是1至4的整数,把这两枚骰子向下的面的点数记为(a ,b ),其中第一枚骰子的点数记为a ,第二枚骰子的点数记为b .(1)用列举法或树状图法求(a ,b )的结果有多少种?(2)求方程02=++a bx x 有实数解的概率.三.【题库】【A 】【B 】1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4,随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A. 14B. 12C. 34D. 562.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率为__________.3. 如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作把作为点的横、纵坐标.(1)请你通过列表法或画树状图求点的个数;(2)求点在函数的图象上的概率.【C 】1.田忌赛马的故事为我们所熟知,小亮与小齐学习概率初步知识后设计如下游戏:小亮手中有方块10,8,6三张扑克牌,小齐手中有方块9,7,5三张扑克牌,每人从各自手中取一张牌进行比较,数据大的为本“局”获胜,每次取的牌不能放回,若本局采用三局两胜制,即胜2局或3局者为本次比赛获胜者,当小亮的三张牌出牌顺序为先出6,再出8,最后出10时,小齐随机出牌应对,则小齐本次比赛获胜的概率是 ( )A.16B.12C.19D.13 2.某校甲乙丙丁四名同学在运动会上参加4x100米接力比赛,其中甲跑第一棒,乙跑第二棒的概率是____________.3.(11分)每年3月12日,是中国的植树节。
25.2用列举 法求概率——树状图法

白菜 芹菜 油菜
米饭 馒头 米饭 馒头 米饭馒头
第一种搭配 鸡肉 鸡肉 鸡肉 鸡肉 鸡肉 鸡肉 白菜 白菜 芹菜 芹菜 油菜 油菜 米饭 馒头 米饭 馒头 米饭 馒头Leabharlann 米饭馒头 米饭馒头 米饭 馒头
牛肉 牛肉 牛肉 牛肉 牛肉 牛肉 白菜 白菜 芹菜 芹菜 油菜 油菜 米饭 馒头 米饭 馒头 米饭 馒头
(2)由图中可以看出,有3种情况是丙比乙先出场的,所以, P(丙比乙先出场) 3 1 。
62
1.求概率常用的方法有哪些吗?各有哪些优点?
(1)直接列举法 当一个事件涉及因素较少可以通过直接 列举法, (2)列表法 当一个事件要涉及两个因素并且可能出现的 结果数目较多时,通常采用列表法, (3)画树状图法 当一次试验要涉及三个或更多的因素( 或步骤)时,可采用“树状图法”。
有几步; 2.把每一步 可能产生的 结果列为一 层,画出树
状图; 3.沿着树杈 列出所有可 能的结果; 4.确定总的 结果,以及 符合条件的
结果数; 5.计算概率.
甲 乙
丙
A
B
C D E C DE
H I HI H I H I HI H I
(1)只有一个元音字母的结果有5个,即ACH,
ADH,BCI,BDI,BEH。所以 P(一个元音)=
全部为元音字母的的结果(蓝色)只有1中, 即AEI,所以
P(三个元音)=
用树状图列出 的结果看起来 一目了然,当 事件要经过多 次步骤(三步 以上)完成时, 用这种树形图 的方法求事件 的概率很有效.
(2)全是辅音字母的结果共有2个:BCH,BDH,
所以
P(三个辅音)=
用树形图求概率的基本步骤
1.明确试验的几个步骤及顺序; 2.画树形图列举试验的所有等可能的结果; 3计算得出m,n的值; 4.计算随机事件的概率.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《用列举法求概率(2)》教学设计
本课是初中人教版九年级上册第25章《概率初步》第二节《用列举法求概率》的第二课时内容。
一、内容和内容分析
1、内容:用列举法(树状图)求简单随机事件的概率
2、内容解析
在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法求出随机事件发生的概率。
这是初中学生求概率最主要的方法之一。
当每次试验涉及两个因素时,用列表法能更清晰,不重不漏地列举出试验的所有结果,当每次试验涉及三个及更多因素时,用树状图能更清晰,不重不漏地列举出试验的所有结果。
相对于直接列举,表格和树状图列举体现了分步分析对思考较复杂问题时所起到的作用。
相对于列表,用树状图解决任意多步完成的试验,具有更广泛的适应性。
画树状图只要将试验涉及的“步”写成竖列,再分步把每一步的所有结果写在对应的横行中,就能不重不漏地列举试验的所有结果。
这种分步分析问题的方法将在高中乘法计数原理的学习中进一步应用。
另外,通过求概率,学生将进一步体会概率的意义,逐步培养随机观念。
通过分步分析的应用,学生将体会“分步”策略对解决复杂问题所起到的重要作用。
体会用数学模型解决实际问题的过程。
二、教学问题诊断分析
学生已经理解了列举法求概率的含义,会用列表法处理涉及两个步骤的试
验。
但对较复杂的问题学生可能不会从中提取数学模型,无法做到“分步”分析。
对涉及三个及以上步骤的试验,学生没有更好的列举方法,无法做到清晰明了,不重不漏。
因此在教学中需要教师的引导。
对“规律”“方法”的教学,教师都应当精心设计“导学”的问题或环节,引导学生思考,逐层推进,体现学生学习的主体性。
在教学中学生容易出现的问题是没有真正理解树状图的用法,无法区分“分几步”与“每步可能的结果”,虽然能够通过模仿解决一些简单问题,但无法灵活使用树状图解决具有较复杂背景的题目。
三、教学目标的设计
1、课程目标
①知识技能:
Ⅰ.会用树状图法列举试验的所有结果并正确计算概率;
Ⅱ.正确认识在什么条件下选择那种常用方法(直接列举,列表,树状图)。
②数学思考与问题解决:
经历用树状图法求概率的学习过程,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决较复杂问题的能力。
③情感目标:
通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系。
体会数学在现实中的应用价值,培养缜密的思维习惯和良好的学习习惯。
2、教学的重点和难点
①教学重点:用树状图法列举各种可能的结果。
②教学难点:区分实际问题涉及到的“步”及“结果”。
四、教学过程的设计
1、教学方法:教师启发引导,学生观察、类比、合作、探究
教学用具:多媒体课件,学案
2
、假定从鸡蛋孵出母鸡和公鸡的可能性相同。
那么
是母鸡的概率
4、板书设计
课题:用列举法求概率(2)——树状图法 反馈练习 解:
五、教学反思
教学评价的方法,教师主要采用观察法和反馈法。
1、通过观察学生上课的反应、小组讨论的参与程度,学生在思考时面部表情,和自主分析的完成情况。
2、通过课堂练习的完成情况可以反馈得到关于这堂课教学效果的信息,具体而言就是学生在“综合运用已有知识解决问题” 这一能力的水平。
3、学生通过本课的学习,对照老师叙写的学习目标,反思自己完成学习目标的情况,可分为三个等级“完全掌握”,“明白但也不会应用”,“不明白”。
教师根据反馈的情况,可以大体的了解不同层次的学生在课堂学习的不同阶段的认知,及时调整教学方法。