【新】2019-2020重庆市第八中学校初升高自主招生数学【4套】模拟试卷【含解析】
重庆八中2019-2020学年中考数学模拟试卷

重庆八中2019-2020学年中考数学模拟试卷一、选择题1.2-的相反数是A .2B .2-C .12D .12-2.小明把一副45,30的直角三角板如图摆放,其中00090,45,30C F A D ∠=∠=∠=∠=,则αβ∠+∠等于 ( )A .0180B .0210C .0360D .02703.如图所示,点A 是双曲线y=1x(x >0)上的一动点,过A 作AC ⊥y 轴,垂足为点C ,作AC 的垂直平分线双曲线于点B ,交x 轴于点D .当点A 在双曲线上从左到右运动时,四边形ABCD 的面积( )A .不变B .逐渐变小C .由大变小再由小变大D .由小变大再由大变小 4.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3B .( x+1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x+16=( x ﹣4)2 5.在不透明的袋子中装有9个白球和1个红球,它们除颜色外其余都相同,现从袋子中随机摸出一个球,摸出的球是白球,则该事件是( )A .必然事件B .不可能事件C .随机事件D .以上都有可能6.某校九年级(1)班为了筹备演讲比赛,准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔l5元/支,在钱全部用完的条件下,购买的方案共有( )A .4种B .5种C .6种D .7种7.如图,在△ABC 中,CA=CB ,∠C=90°,点D 是BC 的中点,将△ABC 沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E ,交AC 于点F ,那么sin ∠BED 的值为( ).A .35B .53C .512D .128.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x=的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )A .34-B .1-C .32-D .2-9.如图,从一个直径为4的圆形铁皮中剪下一个圆心角为60°的扇形ABC ,将剪下来的扇形围成一个圆锥,则圆锥的底面半径为( )A .23B .3C .3D .2 10.如果三角形的两边长分别为方程x 2﹣8x+15=0的两根,则该三角形周长L 的取值范围是( )A .6<L <15B .6<L <16C .10<L <16D .11<L <1311.如图,平行四边形ABCD 中,BE ⊥CD ,BF ⊥AD ,垂足分别为E 、F ,CE =2,DF =1,∠EBF =60°,则这个平行四边形ABCD 的面积是( )A .B .C .D .12.在整数范围内,有被除数=除数×商+余数,即a =bq+r(a≥b,且b≠0,0≤r<b),若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:a =11,b =2,则11=2×5+1此时q =5,r =1.在实数范围中,也有a =bq+r(a≥b 且b≠0,商q 为整数,余数r 满足:0≤r<b),若被除数是,除数是2,则q 与r 的和( )A .﹣4B .﹣6C .-4D .-2 二、填空题13.写出一个解为1的分式方程:_____.14.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),过点C 作CN 垂直DM 交AB 于点N ,连结OM ,ON ,MN .下列五个结论:①CNB DMC ∆≅∆;②ON OM =;③ON OM ⊥;④若2AB =,则OMN S ∆的最小值是1;⑤222AN CM MN +=.其中正确结论是_________.(只填序号)15.如图,在中,,点为的中点,将绕点按顺时针方向旋转,当经过点时得到,若,,则的长为___.16.如图,在△ABC 中,∠B =45°,tanC =12,AB AC =_____.17.已知不等式x 2+mx+2m >0的解集是全体实数,则m 的取值范围是_____. 18.已知a+b =8,ab =12,则222a b ab +-=_____. 三、解答题19.计算或化简:(1(12)﹣1π)0. (2)(x ﹣2)2﹣x (x ﹣3).20.定义:在平面直角坐标系中,图形G 上点P x y (,)的纵坐标y 与其横坐标x 的差y x -称为P 点的“坐标差”,记作Zp ,而图形G 上所有点的“坐标差”中的最大值称为图形G 的“特征值”.(1)①点A (3,1)的“坐标差”为 ;②求抛物线25y x x =-+的“特征值”;(2)某二次函数2(0)y x bx c c =-++≠的“特征值”为1-,点B (m ,0)与点C 分别是此二次函数的图象与x 轴和y 轴的交点,且点B 与点C 的“坐标差”相等.①直接写出m = ;(用含c 的式子表示)②求此二次函数的表达式.21.某市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克? 22.化简:(1)a (a ﹣b )﹣(a+b )(a+2b );(2)2233222a a a a a a -⎛⎫÷-- ⎪++⎝⎭23.中国“蛟龙”号深潜器目前最大深潜极限为7062.68米。
重庆八中2019-2020学年中考数学模拟试卷

重庆八中2019-2020学年中考数学模拟试卷一、选择题1.2-的相反数是A .2B .2-C .12D .12-2.小明把一副45,30的直角三角板如图摆放,其中00090,45,30C F A D ∠=∠=∠=∠=,则αβ∠+∠等于 ( )A .0180B .0210C .0360D .02703.如图所示,点A 是双曲线y=1x(x >0)上的一动点,过A 作AC ⊥y 轴,垂足为点C ,作AC 的垂直平分线双曲线于点B ,交x 轴于点D .当点A 在双曲线上从左到右运动时,四边形ABCD 的面积( )A .不变B .逐渐变小C .由大变小再由小变大D .由小变大再由大变小 4.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3B .( x+1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x+16=( x ﹣4)2 5.在不透明的袋子中装有9个白球和1个红球,它们除颜色外其余都相同,现从袋子中随机摸出一个球,摸出的球是白球,则该事件是( )A .必然事件B .不可能事件C .随机事件D .以上都有可能6.某校九年级(1)班为了筹备演讲比赛,准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔l5元/支,在钱全部用完的条件下,购买的方案共有( )A .4种B .5种C .6种D .7种7.如图,在△ABC 中,CA=CB ,∠C=90°,点D 是BC 的中点,将△ABC 沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E ,交AC 于点F ,那么sin ∠BED 的值为( ).A .35B .53C .512D .128.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x=的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )A .34-B .1-C .32-D .2-9.如图,从一个直径为4的圆形铁皮中剪下一个圆心角为60°的扇形ABC ,将剪下来的扇形围成一个圆锥,则圆锥的底面半径为( )A .23B .3C .3D .2 10.如果三角形的两边长分别为方程x 2﹣8x+15=0的两根,则该三角形周长L 的取值范围是( )A .6<L <15B .6<L <16C .10<L <16D .11<L <1311.如图,平行四边形ABCD 中,BE ⊥CD ,BF ⊥AD ,垂足分别为E 、F ,CE =2,DF =1,∠EBF =60°,则这个平行四边形ABCD 的面积是( )A .B .C .D .12.在整数范围内,有被除数=除数×商+余数,即a =bq+r(a≥b,且b≠0,0≤r<b),若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:a =11,b =2,则11=2×5+1此时q =5,r =1.在实数范围中,也有a =bq+r(a≥b 且b≠0,商q 为整数,余数r 满足:0≤r<b),若被除数是,除数是2,则q 与r 的和( )A .﹣4B .﹣6C .-4D .-2 二、填空题13.写出一个解为1的分式方程:_____.14.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),过点C 作CN 垂直DM 交AB 于点N ,连结OM ,ON ,MN .下列五个结论:①CNB DMC ∆≅∆;②ON OM =;③ON OM ⊥;④若2AB =,则OMN S ∆的最小值是1;⑤222AN CM MN +=.其中正确结论是_________.(只填序号)15.如图,在中,,点为的中点,将绕点按顺时针方向旋转,当经过点时得到,若,,则的长为___.16.如图,在△ABC 中,∠B =45°,tanC =12,AB AC =_____.17.已知不等式x 2+mx+2m >0的解集是全体实数,则m 的取值范围是_____. 18.已知a+b =8,ab =12,则222a b ab +-=_____. 三、解答题19.计算或化简:(1(12)﹣1π)0. (2)(x ﹣2)2﹣x (x ﹣3).20.定义:在平面直角坐标系中,图形G 上点P x y (,)的纵坐标y 与其横坐标x 的差y x -称为P 点的“坐标差”,记作Zp ,而图形G 上所有点的“坐标差”中的最大值称为图形G 的“特征值”.(1)①点A (3,1)的“坐标差”为 ;②求抛物线25y x x =-+的“特征值”;(2)某二次函数2(0)y x bx c c =-++≠的“特征值”为1-,点B (m ,0)与点C 分别是此二次函数的图象与x 轴和y 轴的交点,且点B 与点C 的“坐标差”相等.①直接写出m = ;(用含c 的式子表示)②求此二次函数的表达式.21.某市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克? 22.化简:(1)a (a ﹣b )﹣(a+b )(a+2b );(2)2233222a a a a a a -⎛⎫÷-- ⎪++⎝⎭23.中国“蛟龙”号深潜器目前最大深潜极限为7062.68米。
2023年重庆市第八中学校自主招生数学试卷练习(一)

2023年重庆八中自主招生数学试卷练习(一)一.填空题(共10小题)1.如果a:b=2:3,那么代数式的值是.2.如图,点M是线段AC的中点,点B在线段AC上,且AB=6cm,BC=2AB,则线段BM的长为.3.已知a、b、c、d互不相等的四个整数,且(a﹣3)(b﹣3)(c﹣3)(d﹣3)=25,则a+b+c+d=.4.某文具店有5元一支和4元一支的钢笔,王老师带48元去买钢笔,钱正好全部用完,共有种购买方案.5.如图,已知∠AOB=2∠BOC,OD平分∠AOC,且∠BOD=20°,则∠AOC的度数为°.6.小金在放假期间去参观科技馆.已知小金家距科技馆的路程为31km,小金需要先在家附近乘坐公交车再步行至科技馆,小金步行的速度为4km/h,公交的速度是步行速度的10倍.若小金乘坐公交和步行的时间共需要1h,那么小金步行的路程为km.7.已知一件标价为400元的上衣按八折销售,仍可获利50元,这件上衣的进价是元.8.有5位教师和一群学生一起去公园,教师的全票票价是每人7元,学生票收半价.如果买门票共花费206.5元,那么学生有多少人?设学生有x人,填写下表:人数/人票价/元总票价/元教师学生根据题意,得方程,所以学生有人.9.一项工程,甲、乙两人合作需要8天完成任务,若甲单独做需要12天完成任务.(1)若甲、乙两人一起做6天,剩下的由甲单独做,还需要天完成;(2)若甲、乙两人一起做4天,剩下的由乙单独做,还需要天完成.10.学校为美化春藤校园,计划购买梧桐树、香樟树、樱花树三种树苗,已知三种树苗单价之和为100元,计划购买三种树苗总量不超过148株;其中香樟树苗单价为30元,计划购进48株,樱花树苗至少购买25株,梧桐树苗数量不少于樱花树苗的2倍.小明在做预算时,误将梧桐树苗和樱花树苗的单价弄反了,结果实际购买三种树苗时的总价比预算多了112元,若三种树苗的单价均为整数,则学校实际购买这三种树苗最多需要花费元.二.解答题(共14小题)11.计算:+++…+.12.计算:(1)﹣3×2﹣(﹣8);(2)﹣9÷3×3﹣(﹣2)3.13.计算:(1)(2)14.计算:[(2x﹣y)2+(x﹣y)(x+y)﹣2x(x﹣2y)]÷3x.15.解方程:x﹣=+1.(要求步骤完整)16.元宵节前夕,某超市从厂家购进了甲、乙两种发光道具,甲种道具每件进价比乙种道具每件进价少2元.若购进甲种道具7件,乙种道具2件,需要76元.(1)求甲、乙两种道具的每件进价分别是多少元?(2)若该超市从厂家购进了甲乙两种道具共50件,在销售时,甲种道具的每件售价为10元,乙种道具的每件售价为15元,要使得这50件道具所获利润为160元,应购进乙道具多少件?17.某同学在A、B大型服装超市发现他看中的衣服单价相同,鞋子单价也相同,衣服和鞋子单价之和是486元,且衣服单价是鞋子单价的2倍多6元.(1)求该同学看中的衣服和鞋子单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八五折销售,超市B全场购物满100元返购物券30元销售(不足100元不返,购物券全场通用,但只能用于下一次消费时抵扣),他只带了400元钱,如果他只在一家超市购买看中的两样物品,你能说明他选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?18.研学旅行继承和发展了我国传统游学,“读万卷书,行万里路”的教育理念和人文精神,成为素质教育的新内容和新方式,提升了中小学生的自理能力,创新精神和实践能力.某校组织甲、乙两班学生分别乘坐两辆校车从学校出发,前往300km外的红色革命圣地﹣﹣延安,开展“传承红色基因争做时代新人”研学旅行,已知乙班比甲班晚出发1.5h,且乙班以80km/h的速度行驶了1h后,提高了速度,并以提高后的速度匀速行驶至终点.如图,线段OA表示甲班离学校的距离y甲(km)与行驶时间x(h)之间的函数关系;折线BCD表示乙班离学校的距离y乙(km)与甲班行驶时间x(h)之间的函数关系,请根据图象解答下列问题:(1)图中m=,n=;(2)求线段CD所在直线的函数表达式;(3)乙班出发多久后追上甲班?此时两班距离延安有多远?19.已知a+b+c=6,a2+b2+c2=36,a3+b3+c3=48.(1)求的值;(2)求a⋅b⋅c的值.20.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?21.一座大山的高度是320米,某公园里有一座大山的模型,它的高度与大山高度的比是1:10,这座模型高多少米?(用比例解)22.下表是某次篮球联赛积分的一部分球队比赛现场胜场负场积分前进1410424光明149523远大147721卫星1441018备注:总积分=胜场积分+负场积分(1)请问胜一场积多少分?负一场积多少分?(直接写出答案);(2)某队的胜场总积分能否等于负场总积分的3倍?为什么?(3)若某队的胜场总积分是负场总积分的n倍,n为正整数,试求n的值.23.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“超极数”.(1)请写出两个小于3000的“超极数”;;(2)猜想任意一个“超极数”是否是99的倍数,请说明理由;(3)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“超极数”,记D(m)=,求满足D(m)是完全平方数的所有m.24.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.阅读材料:在解决某些分式问题时,倒数法是常用的变形技巧之一.所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:,求代数式x2+的值.解:因为,所以=4即x+=4,所以x2+﹣2=16﹣2=14.根据材料回答问题(直接写出答案):(1),则x+=.(2)解分式方程组,解得方程组的解为.。
重庆市八中2020届数学中考模拟试卷

重庆市八中2020届数学中考模拟试卷一、选择题1.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).A.12B.7C.5D.132.如图,在Rt △ABC 中,∠C =30°,AB =4,D ,F 分别是AC ,BC 的中点,等腰直角三角形DEH 的边DE 经过点F ,EH 交BC 于点G ,且DF =2EF ,则CG 的长为( )A .B . 1C .52D 3.解分式方程13211x x-=--,去分母得( ) A.()1213x --=- B.1223x --=-C.()1213x --=D.1223x -+=4.岳池医药招商保持良好态势,先后签约成都百裕制药、济南爱思、重庆泰濠、四川源洪福科技、四川恒康科技、成都天瑞炳德、南充金方堂、药融园8个亿元以上医药项目和科伦药业、人福药业CS0两个医贸项目,协议投资额约51.5亿元。
将51.5亿元用科学计数法表示为( )元 A .95.1510⨯B .851.510⨯C .105.1510⨯D .751510⨯5.某社区青年志愿者小分队年龄情况如下表所示:A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁6.如果3y x =-+,且x y ≠,那么代数式22x y x y y x+--的值为( ) A .3B .3-C .13D .13-7.如图,线段AB 是两个端点在2(0)y x x=>图象上的一条动线段,且1AB =,若A B 、的横坐标分别为a b 、,则()()22214b a a b ⎡⎤⎣⎦--+的值是( )A .1B .2C .3D .48.如图,正方形ABCD 中,E 为CD 的中点,F 为BC 边上一点,且EF ⊥AE ,AF 的延长线与DC 的延长线交于点G ,连接BE ,与AF 交于点H ,则下列结论中不正确的是( )A.AF =CF+BCB.AE 平分∠DAFC.tan ∠CGF =34D.BE ⊥AG9.如图,60AOB ∠=,以点O 为圆心,以任意长为半径作弧交OA ,OB 于,C D 两点,分别以,C D 为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段6OM =,则M 点到OB 的距离为( )A.3C.6D.10.如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是( )A .AE >BEB .AD =BCC .∠D =12∠AEC D .△ADE ∽△CBE11.规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作,若,则该等腰三角形的顶角为( )A.B.C.D.12.如图,在△ABC 中,∠ACB =90°,D 为AB 中点,连接DC 并延长到点E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F .若AB =12,则BF 的长为( )A .7B .8C .10D .16二、填空题13.在平面直角坐标系中,△OAB 各顶点的坐标分别为:O (0,0),A (1,2),B (0,3),以O 为位似中心,△OA′B′与△OAB 位似,若B 点的对应点B′的坐标为(0,﹣6),则A 点的对应点A′坐标为_____.14.因式分解:1﹣4a 2=_____.15.如图,AD 是△ABC 的角平分线,AB :AC=3:2,△ABD 的面积为15,则△ACD 的面积为 .16.一个扇形的半径为3cm ,面积为 ,则此扇形的圆心角为 .17.计算1023-+=_____.18.若一次函数3y kx =+(k 为常数,0k ≠),y 随x 的增大而减小,则k 的值可以是_______(写出一个即可). 三、解答题 19.(问题背景)如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =60°,试探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是:延长FD 到点G ,使GD =BE ,连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 . (探索延伸)如图2,若在四边形ABCD 中,AB =AD ,∠B+∠D =180°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,上述结论是否仍然成立,并说明理由. (学以致用)如图3,在四边形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =6,E 是边AB 上一点,当∠DCE =45°,BE =2时,则DE 的长为 .20.如图,直线y 1=2x+1与双曲线y 2=kx相交于A (﹣2,a )和B 两点. (1)求k 的值;(2)在点B上方的直线y=m与直线AB相交于点M,与双曲线y2=kx相交于点N,若MN=32,求m的值;(3)在(2)前提下,请结合图象,求不等式2x<kx﹣1<m﹣1的解集.21.近年来一些搜题软件(作业帮,小猿搜题等)陆续进入学生视野,并受到学生的追捧;只需轻松一拍,答案立马浮现,但各界人士关于学生使用搜题软件的利弊的讨论从未停息,某校为了解本校学生使用搜题软件的情况(分为“总是、较多、较少、不用四种情况),就“是否会使用搜题软件辅助完成作业”随机在九年级抽取了部分学生进行调查,绘制成如下不完整的统计图请根据图中信息,回答下列问题:(1)本次接受调查的学生有名,图1中的a=,b=;(2)“较少”对应的圆心角的度数为.(3)请补全条形统计图;(4)若该校九年级共有1500名学生,请估计其中使用搜题软件辅助完成作业为“较多”的学生约有多少名?22.永康市某校在课改中,开设的选修课有:篮球,足球,排球,羽毛球,乒乓球,学生可根据自己的爱好选修一门,李老师对九(1)班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)该班共有学生人,并补全条形统计图;(2)求“篮球”所在扇形圆心角的度数;(3)九(1)班班委4人中,甲选修篮球,乙和丙选修足球,丁选修排球,从这4人中任选2人,请你用列表或画树状图的方法,求选出的2人中恰好为1人选修篮球,1人选修足球的概率. 23.如图,⊙O 是△ABC 的外接圆,直线l 与⊙O 相切于点E ,且l ∥BC . (1)求证:AE 平分∠BAC ;(2)作∠ABC 的平分线BF 交AE 于点F ,求证:BE =EF .24.为丰富学生的课余生活,陶冶学生的情趣和爱好,某小学开展了学生社团活动。
【冲刺实验班】重庆市第八中学校2020中考提前自主招生数学模拟试卷(9套)附解析

重点高中提前招生模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题(本大题共12个小题,每小题3分,共36分.每小题给出的四个选项中,只有一个符合题目的要求)1.﹣4的相反数是()A.B.﹣C.4 D.﹣42.绵阳科技城是四川省第二大城市,2012年国民生产总值约为14000000万元,用科学记数法表示应为()万元.A.14×107B.1.4×107C.1.4×106D.0.14×1073.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A.平均数是91 B.极差是20 C.中位数是91 D.众数是984.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到黄球的概率为()A.B.C.D.15.已知x是实数,且(x﹣2)(x﹣3)=0,则x2+x+1的值为()A.13 B.7 C.3 D.13或7或36.如图,在四边形ABCD中,E,F分别是AB,AD的中点.若EF=2,BC=5,CD=3,则sinC等于()A.B.C.D.7.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(6,1)D.点(5,1)8.将抛物线y=3x2先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是()A.y=3(x+2)2+1 B.y=3(x+2)2﹣1 C.y=3(x﹣2)2+1 D.y=3(x﹣2)2﹣19.下列各图是在同一直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象,有且只有一个是正确的,正确的是()A.B.C.D.10.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.11.如图,在矩形ABCD中,AB=2,BC=4.将矩形ABCD绕点C沿顺时针方向旋转90°后,得到矩形FGCE (点A、B、D的对应点分别为点F、G、E).动点P从点B开始沿BC﹣CE运动到点E后停止,动点Q 从点E开始沿EF﹣FG运动到点G后停止,这两点的运动速度均为每秒1个单位.若点P和点Q同时开始运动,运动时间为x(秒),△APQ的面积为y,则能够正确反映y与x之间的函数关系的图象大致是()A.B.C.D.12.如图,在△ABC中,AB=AC=5,CB=8,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.B.25π﹣24 C.25π﹣12 D.二、填空题(本大题共6个小题,每小题4分,共24分.请将答案填入答题卡相应的横线上.)13.函数中自变量x的取值范围是.14.分解因式:a3﹣4a2+4a=.15.已知⊙O1与⊙O2的半径分别是方程x2﹣8x+15=0的两根,且两圆的圆心距O1O2=t+2,若这两个圆相交,则t的取值范围为.16.在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处.第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;…依此规律进行,点A7的坐标为;若点A n 的坐标为(2014,2013),则n=.17.如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为.18.在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD,连接DE交对角线AC于H,连接BH.下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③;④,其中结论正确的是.三、解答题(本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤)1)计算:+(﹣1)0﹣2sin60°+3﹣1.(2)先化简,后计算:(÷)•,其中a=﹣3.20.近年来,北京郊区依托丰富的自然和人文资源,大力开发建设以农业观光园为主体的多类型休闲旅游项目,京郊旅游业迅速崛起,农民的收入逐步提高.以下是根据北京市统计局2013年1月发布的“北京市主要经济社会发展指标”的相关数据绘制的统计图表的一部分.北京市2009﹣2012年农业观光园经营年收入增长率统计表年份年增长率(精确到1%)2009年12%2010年2011年22%2012年24%请根据以上信息解答下列问题:(1)北京市2010年农业观光园经营年收入的年增长率是;(结果精确到1%)(2)请补全条形统计图并在图中标明相应数据;(结果精确到0.1)(3)如果从2012年以后,北京市农业观光园经营年收入都按30%的年增长率增长,请你估算,若经营年收入要不低于2008年的4倍,至少要到年.(填写年份)21.如图,已知等腰直角△ABC中,∠BAC=90°,圆心O在△ABC内部,且⊙O经过B、C两点,若BC=8,AO=1,求⊙O的半径.22.某科技开发公司研制出一种新型产品,每件产品的成本为2300元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2500元.(1)商家一次购买这种产品多少件时,销售单价恰好为2500元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.23.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC 的延长线于点F.(1)求证:EF与⊙O相切;(2)若AE=6,sin∠CFD=,求EB的长.24.如图,AB为⊙O的直径,AB=4,P为AB上一点,过点P作⊙O的弦CD,设∠BCD=m∠ACD.(1)已知,求m的值,及∠BCD、∠ACD的度数各是多少?(2)在(1)的条件下,且,求弦CD的长;(3)当时,是否存在正实数m,使弦CD最短?如果存在,求出m的值,如果不存在,说明理由.25.如图1,在平面直角坐标系xOy中,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣),抛物线y=x2+bx+c经过点B,且与直线l的另一个交点为C(n,).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<n).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请求出点A1的横坐标.参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.每小题给出的四个选项中,只有一个符合题目的要求)1.﹣4的相反数是()A.B.﹣C.4 D.﹣4考点:相反数.专题:常规题型.分析:根据相反数的定义作答即可.解答:解:﹣4的相反数是4.故选C.点评:本题考查了相反数的知识,注意互为相反数的特点:互为相反数的两个数的和为0.2.绵阳科技城是四川省第二大城市,2012年国民生产总值约为14000000万元,用科学记数法表示应为()万元.A.14×107B.1.4×107C.1.4×106D.0.14×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将14000000万用科学记数法表示为1.4×107万元,故选B.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A.平均数是91 B.极差是20 C.中位数是91 D.众数是98考点:极差;算术平均数;中位数;众数.分析:根据平均数、中位数、众数和极差的定义求解.解答:解:根据定义可得,极差是20,众数是98,中位数是91,平均数是90.故A错误.故选A.点评:本题重点考查平均数,中位数,众数及极差的概念及求法.4.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到黄球的概率为()A.B.C.D.1考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数为6;②符合条件的情况数目为2;二者的比值就是其发生的概率.解答:解:∵黄球共有2个,球数共有3+2+1=6个,∴P(黄球)==,故选B.点评:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=.5.已知x是实数,且(x﹣2)(x﹣3)=0,则x2+x+1的值为()A.13 B.7 C.3 D.13或7或3考点:二次根式有意义的条件.分析:根据二次根式的性质求出x≤1,求出x的值,代入求出即可.解答:解:∵要使(x﹣2)(x﹣3)有意义,∴1﹣x≥0,∴x≤1,∵x是实数,且(x﹣2)(x﹣3)=0,∴x﹣2=0,x﹣3=0,=0,∴x=2或x=3或x=1,∴x=1,∴x2+x+1=12+1+1=3,故选C.点评:本题考查了二次根式的性质和求代数式的值的应用,关键是求出x的值.6.如图,在四边形ABCD中,E,F分别是AB,AD的中点.若EF=2,BC=5,CD=3,则sinC等于()A.B.C.D.考点:三角形中位线定理;勾股定理的逆定理.分析:如图,连接BD,由三角形中位线定理得到BD的长度,然后利用勾股定理的逆定理推知△BCD为直角三角形,最后由锐角三角函数的定义进行解答.解答:解:连接BD,∵E、F分别是AB、AD的中点,∴EF∥BD,EF=BD,∵EF=2,∴BD=4,又∵BC=5,CD=3,∴BD2+CD2=BC2,∴△BDC是直角三角形,∴sinC==,故选:C.点评:此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC是直角三角形是解题关键.7.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(6,1)D.点(5,1)考点:切线的判定;坐标与图形性质.专题:数形结合.分析:先根据垂径定理的推论得到过格点A,B,C的圆的圆心P点坐标(2,0),连结PB,过点B作PB 的垂线,根据切线的判定定理得l为⊙P的切线,然后利用l经过的格点对四个选项进行判断.解答:解:作AB和BC的垂直平分线,它们相交于P点,如图,则过格点A,B,C的圆的圆心P点坐标为(2,0),连结PB,过点B作PB的垂线,则l为⊙P的切线,从图形可得点(1,3)和点(5,1)在直线l上,故选D.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了垂径定理和坐标与图形性质.8.将抛物线y=3x2先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是()A.y=3(x+2)2+1 B.y=3(x+2)2﹣1 C.y=3(x﹣2)2+1 D.y=3(x﹣2)2﹣1考点:二次函数图象与几何变换.专题:探究型.分析:根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.解答:解:由“左加右减”的原则可知,将抛物线y=3x2先向左平移2个单位可得到抛物线y=3(x+2)2;由“上加下减”的原则可知,将抛物线y=3(x+2)2先向下平移1个单位可得到抛物线y=3(x+2)2﹣1.故选B.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.9.下列各图是在同一直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象,有且只有一个是正确的,正确的是()A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:压轴题.分析:本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+(a+c)x+c的图象相比较看是否一致,用排除法即可解答.解答:解:A、一次函数y=ax+c的图象过一、三象限,a>0,与二次函数开口向下,即a<0相矛盾,错误;B、一次函数y=ax+c的图象过二、四象限,a<0,与二次函数开口向上,a>0相矛盾,错误;C、y=ax2+(a+c)x+c=(ax+c)(x+1),故此二次函数与x轴的两个交点为(﹣,0),(﹣1,0),一次函数y=ax+c与x轴的交点为(﹣,0),故两函数在x轴上有交点,错误;排除A、B、C,故选D.点评:本题考查二次函数与一次函数的图象性质,比较简单.10.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.考点:锐角三角函数的定义;圆周角定理;三角形的外接圆与外心.分析:求角的三角函数值,可以转化为求直角三角形边的比,连接DC.根据同弧所对的圆周角相等,就可以转化为:求直角三角形的锐角的三角函数值的问题.解答:解:连接DC.根据直径所对的圆周角是直角,得∠ACD=90°.根据同弧所对的圆周角相等,得∠B=∠D.∴sinB=sinD==.故选A.点评:综合运用了圆周角定理及其推论.注意求一个角的锐角三角函数时,能够根据条件把角转化到一个直角三角形中.11.如图,在矩形ABCD中,AB=2,BC=4.将矩形ABCD绕点C沿顺时针方向旋转90°后,得到矩形FGCE (点A、B、D的对应点分别为点F、G、E).动点P从点B开始沿BC﹣CE运动到点E后停止,动点Q 从点E开始沿EF﹣FG运动到点G后停止,这两点的运动速度均为每秒1个单位.若点P和点Q同时开始运动,运动时间为x(秒),△APQ的面积为y,则能够正确反映y与x之间的函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:先求出点P在BE上运动是时间为6秒,点Q在EF﹣FG上运动是时间为6秒,然后分:①当0≤x≤4时,根据△APQ的面积为y=S矩形MBEF﹣S△ABP﹣S△PEQ﹣S梯形FMAQ,列式整理即可得解;②当4<x≤6时,根据△APQ的面积为△APQ的面积为y=S梯形MBPQ﹣S△BPA﹣S△AMQ,列式整理即可得解,再根据函数解析式确定出函数图象即可.解答:解:①如图1,延长AD交EF于H,延长FG与BA的延长线交于点M.当0≤x≤4时,y=6×4﹣×2•x﹣(6﹣x)•x﹣×(4﹣x+2)×6=x2﹣x+6=(x﹣1)2+,此时的函数图象是开口向上的抛物线的一部分,且顶点坐标是(1,).故C、D选项错误;②点Q在GF上时,4<x≤6,BP=x,MQ=6+4﹣x=10﹣x,△APQ的面积为y=S梯形MBPQ﹣S△BPA﹣S△AMQ,=(x+10﹣x)×4﹣•2•x﹣(10﹣x)•2,=10,综上所述,y=,故选:A.点评:本题考查了动点问题的函数图象,根据点Q运动时间和位置,分点Q在CE﹣EF、GF上两种情况,利用割补法求得△APQ的面积,从而得到函数关系式是解题的关键,也是本题的难点.12.如图,在△ABC中,AB=AC=5,CB=8,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.B.25π﹣24 C.25π﹣12 D.考点:扇形面积的计算;等腰三角形的性质.分析:设以AB、AC为直径作半圆交BC于D点,连AD,根据直径所对的圆周角为直角得到AD⊥BC,再根据勾股定理计算出AD,然后利用阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积计算即可.解答:解:设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=4,∵AB=AC=5,∴AD=3,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积=π×()2﹣×8×3=π﹣12.故选:D.点评:本题考查了不规则图形面积的计算方法:把不规则的图形面积的计算转化为规则图形的面积和差来计算.也考查了圆周角定理的推论以及勾股定理.二、填空题(本大题共6个小题,每小题4分,共24分.请将答案填入答题卡相应的横线上.)13.函数中自变量x的取值范围是x≥2.考点:函数自变量的取值范围.分析:根据二次根式的性质,被开方数大于等于0,就可以求解.解答:解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.点评:本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.14.分解因式:a3﹣4a2+4a=a(a﹣2)2.考点:提公因式法与公式法的综合运用.专题:因式分解.分析:观察原式a3﹣4a2+4a,找到公因式a,提出公因式后发现a2﹣4a+4是完全平方公式,利用完全平方公式继续分解可得.解答:解:a3﹣4a2+4a,=a(a2﹣4a+4),=a(a﹣2)2.故答案为:a(a﹣2)2.点评:本题考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法(完全平方公式).要求灵活运用各种方法进行因式分解.15.已知⊙O1与⊙O2的半径分别是方程x2﹣8x+15=0的两根,且两圆的圆心距O1O2=t+2,若这两个圆相交,则t的取值范围为0<t<6.考点:圆与圆的位置关系;解一元二次方程-因式分解法.分析:首先求得方程的两根,然后根据相交两圆的圆心距的取值范围确定t的取值范围即可.解答:解:∵⊙O1与⊙O2的半径分别是方程x2﹣8x+15=0的两根,∴解方程得两圆的半径分别为3和5,∵相交两圆的圆心距O1O2=t+2,∴5﹣3<t+2<5+3解得:0<t<6,故答案为:0<t<6点评:本题考查了两圆半径、圆心距与两圆位置之间的关系,如果设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.16.在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处.第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;…依此规律进行,点A7的坐标为(5,4);若点A n 的坐标为(2014,2013),则n=4025.考点:规律型:点的坐标.分析:根据青蛙在点A(1,0)的变化情况,得出其中的规律,奇数次横纵坐标每次加一,偶数则每次减一,从而求出点A7的坐标,再根据点A n的坐标为(2014,2013)在第一象限,以第一次的结果为基础,设为m,求出m的值,即可得出答案.解答:解:∵青蛙在点A(1,0)处,∴第一次在点(2,1),第二次在点(0,﹣1),第三次在点(3,2),第四次在点(﹣1,﹣2),第五次在点(4,3),第六次在点(﹣2,﹣3),从上可以看出除去一二两次,奇数次横纵坐标每次加一,偶数则每次减一,∴A7(5,4),∵点A n的坐标为(2014,2013),在第一象限,若以第一次的结果为基础,设置为m,An(2+m÷2,1+m÷2),2+m÷2=2014,m=4024,n=m+1=4024+1=4025.故答案为:(5,4,),4025.点评:本题考查了点的坐标,用到的知识点是点的移动问题,解题的关键是通过观察,得出其中的规律奇数次横纵坐标每次加一,偶数则两个每次减一.17.如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为.考点:切线的性质.专题:压轴题.分析:连接OA,过A作AD垂直于C,由PA为圆O的切线,得到PA与AO垂直,在直角三角形AOP 中利用勾股定理求出OP的长,利用面积法求出AD的长,在直角三角形APD中,利用勾股定理求出PD 的长,由CP﹣PD求出DC的长,在直角三角形ADC中,利用勾股定理即可求出AC的长.解答:解:连接OA,过A作AD⊥CP,∵PA为圆O的切线,∴PA⊥OA,在Rt△AOP中,OA=3,PA=4,根据勾股定理得:OP=5,∵S△AOP=AP•AO=OP•AD,∴AD===,根据勾股定理得:PD==,∴CD=PC﹣PD=8﹣=,则根据勾股定理得:AC==.故答案为:点评:此题考查了切线的性质,勾股定理,以及三角形的面积,熟练掌握切线的性质是解本题的关键.18.在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD,连接DE交对角线AC于H,连接BH.下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③;④,其中结论正确的是①②④.考点:直角梯形;全等三角形的判定;等边三角形的判定.专题:压轴题.分析:△AED与△ABC是等腰直角三角形,根据这个条件就可求得:△ACD≌△ACE的条件,就可进行判断.解答:解:①∵∠ABC=90°,AB=BC,∴∠BAC=∠ACB=45°,又∵∠BAD=90°,∴∠BAC=∠DAC,又AD=AE,AC=AC,∴△ACD≌△ACE;故①正确;②同理∠AED=45°,∠BEC=90°﹣∠BCE=90°﹣15°=75°,∴∠DEC=180°﹣45°﹣75°=60°,∵ACD≌△ACE,∴CD=CE,∴△CDE为等边三角形.故②正确.③∵∠EAC=∠DAC,AD=AE,AH=AH,∴△AEH≌△ADH,∴∠CHE=90°,∵△CHE为直角三角形,且∠HEC=60°∴EC=2EH∵∠ECB=15°,∴EC≠4EB,∴=2不成立;④作EC的中垂线交BC于点F,连接EF,则EF=FC,∴∠FEC=∠BCE=15°,∴∠BFE=30°,设BE=a,则EF=FC=2a,在直角△BEF中,BF=a,∴BC=a+2a=(2+)a,∴S△BEC=BE•BC=a2;在直角△BEC中,EC==2a,∵△CDE为等边三角形,∴S△ECD==(2+)=(3+2)a2,EH=a,HC=EC=a,又∵△AED是等腰直角三角形,AH是高,∴AH=EH=a,∴S△EHC=a2,∴====.故④正确;故答案为:①②④.点评:认识到题目中的等腰直角三角形是解决本题的关键.三、解答题(本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤)1)计算:+(﹣1)0﹣2sin60°+3﹣1.(2)先化简,后计算:(÷)•,其中a=﹣3.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:(1)利用零指数幂,负整数指数幂的法则及特殊角的三角函数值求解即可,(2)先化简,再把a=﹣3代入求值即可.解答:解:(1)计算:+(﹣1)0﹣2sin60°+3﹣1=2+1﹣2×+,=+.(2)(÷)•=××,=,当a=﹣3时,原式==.点评:本题主要考查了分式的化简求值,解题的关键是熟记零指数幂,负整数指数幂的法则及特殊角的三角函数值.20.近年来,北京郊区依托丰富的自然和人文资源,大力开发建设以农业观光园为主体的多类型休闲旅游项目,京郊旅游业迅速崛起,农民的收入逐步提高.以下是根据北京市统计局2013年1月发布的“北京市主要经济社会发展指标”的相关数据绘制的统计图表的一部分.北京市2009﹣2012年农业观光园经营年收入增长率统计表年份年增长率(精确到1%)2009年12%2010年2011年22%2012年24%请根据以上信息解答下列问题:(1)北京市2010年农业观光园经营年收入的年增长率是17%;(结果精确到1%)(2)请补全条形统计图并在图中标明相应数据;(结果精确到0.1)(3)如果从2012年以后,北京市农业观光园经营年收入都按30%的年增长率增长,请你估算,若经营年收入要不低于2008年的4倍,至少要到2015年.(填写年份)考点:条形统计图;统计表.分析:(1)先用2010年的年收入减去2009年的年收入,得到2010年比2009年增加的年收入,再除以2009年的年收入即可;(2)设2011年的年收入为x亿元,根据表格中2011年的年增长率是22%,列出方程,解方程即可;(3)设从2012年以后,再过y年,能够使经营年收入不低于2008年的4倍,列出不等式26.9(1+30%)y≥13.6×4,解不等式即可.解答:解:(1)∵2010年的年收入为17.8亿元,2009年的年收入为15.2亿元,∴2010年比2009年增加的年收入为:17.8﹣15.2=2.6亿元,∴2010年农业观光园经营年收入的年增长率是:×100%≈17%.故答案为17%;(2)设2011年的年收入为x亿元,由题意,得=22%,解得x≈21.7.补全统计图如下:(3)设从2012年以后,再过y年,能够使经营年收入不低于2008年的4倍,由题意,得26.9(1+30%)y≥13.6×4,解得y≈3,2012+3=2015.即若经营年收入要不低于2008年的4倍,至少要到2015年.故答案为2015.点评:本题考查的是条形统计图与统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决本题的关键.21.如图,已知等腰直角△ABC中,∠BAC=90°,圆心O在△ABC内部,且⊙O经过B、C两点,若BC=8,AO=1,求⊙O的半径.考点:垂径定理;勾股定理.分析:连结BO、CO,延长AO交BC于点D,由于△ABC是等腰直角三角形,故∠BAC=90°,AB=AC,再根据OB=OC,可知直线OA是线段BC的垂直平分线,故AD⊥BC,且D是BC的中点,在Rt△ABC中根据AD=BD=BC,可得出BD=AD,再根据AO=1可求出OD的长,再根据勾股定理可得出OB的长.解答:解:连结BO、CO,延长AO交BC于D.∵△ABC是等腰直角三角形,∠BAC=90°,∴AB=AC∵O是圆心,∴OB=OC,∴直线OA是线段BC的垂直平分线,∴AD⊥BC,且D是BC的中点,在Rt△ABC中,AD=BD=BC,∵BC=8,∴BD=AD=4,∵AO=1,∴OD=BD﹣AO=3,∵AD⊥BC,∴∠BDO=90°,∴OB===5.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.22.某科技开发公司研制出一种新型产品,每件产品的成本为2300元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2500元.(1)商家一次购买这种产品多少件时,销售单价恰好为2500元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.考点:二次函数的应用.分析:(1)设件数为x,则销售单价为3000﹣10(x﹣10)元,根据销售单价恰好为2500元,列方程求解;(2)由利润y=(销售单价﹣成本单价)×件数,及销售单价均不低于2600元,按0≤x≤10,10<x≤60,x>60三种情况列出函数关系式.解答:解:(1)设商家一次购买该种产品x件时,销售单价恰好为2500元,依题意得3000﹣10(x﹣10)=2500,解得x=60.答:商家一次购买该种产品60件时,销售单价恰好为2500元;(2)当0≤x≤10时,y=(3000﹣2300)x=700x;当10<x≤60时,y=x[3000﹣10(x﹣10)﹣2300]=﹣10x2+700x;当x>60时,y=(2500﹣2300)x=200x;所以y=.点评:本题考查了二次函数的运用.关键是明确销售单价与销售件数之间的函数关系式,会表达单件的利润及总利润.23.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC 的延长线于点F.(1)求证:EF与⊙O相切;(2)若AE=6,sin∠CFD=,求EB的长.考点:切线的判定;相似三角形的判定与性质.分析:(1)如图,欲证明EF与⊙O相切,只需证得OD⊥EF.(2)通过解直角△AEF可以求得AF=10.设⊙O的半径为r,由平行线分线段成比例得到=,即=,则易求AB=AC=2r=,所以EB=AB﹣AE=﹣6=.解答:(1)证明:如图,连接OD.∵OC=OD,∴∠OCD=∠ODC.∵AB=AC,∴∠ACB=∠B∴∠ODC=∠B∴OD∥AB∴∠ODF=∠AEF∵EF⊥AB∴∠ODF=∠AEF=90°∴OD⊥EF∵OD是⊙O的半径,∴EF与⊙O相切;(2)解:由(1)知,OD∥AB,OD⊥EF.在Rt△AEF中,sin∠CFD==,AE=6,则AF=10.∵OD∥AB,∴=.设⊙O的半径为r,∴=,解得,r=.∴AB=AC=2r=,∴EB=AB﹣AE=﹣6=.点评:本题考查了切线的判定与性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.如图,AB为⊙O的直径,AB=4,P为AB上一点,过点P作⊙O的弦CD,设∠BCD=m∠ACD.(1)已知,求m的值,及∠BCD、∠ACD的度数各是多少?(2)在(1)的条件下,且,求弦CD的长;(3)当时,是否存在正实数m,使弦CD最短?如果存在,求出m的值,如果不存在,说明理由.考点:圆的综合题.分析:(1)首先求出m的值,进而由∠BCD=2∠ACD,∠ACB=∠BCD+∠ACD求出即可;(2)根据已知得出AD,BD的长,再利用△APC∽△DPB得出AC•DP=AP•DB=×2=①,PC•DP=AP•BP=×=②,同理△CPB∽△APD,得出BC•DP=BP•AD=×2=③,进而得出AC,BC 与DP的关系,进而利用勾股定理得出DP的长,即可得出PC,DC的长;(3)由,AB=4,则,得出,要使CD最短,则CD⊥AB于P于是,即可得出∠POD的度数,进而得出∠BCD,∠ACD的度数,即可得出m的值.解答:解:(1)如图1,由,得m=2,。
重庆市第八中学2024-2025学年九年级上学期数学第一阶段月考模拟试卷

重庆市第八中学2024-2025学年九年级上学期数学第一阶段月考模拟试卷一、单选题1.15-的相反数是( ) A .5 B .5- C .15 D .15- 2.下列音符中,是中心对称图形的是( )A .B .C .D . 3.已知反比例函数k y x =的图象经过点(2,-2),则k 的值为 A .4 B .12- C .-4 D .-24.4月23日为世界读书日,为了解八年级1000学生的阅读时间,从中抽取100名学生进行调查,下列说法正确的是( )A .样本容量是100名B .每个学生是个体C .100名学生是总体的一个样本D .1000名学生的阅读时间是总体 5.如图,ABC V 和A B C '''V 是以点O 为位似中心的位似图形,点A 在线段OA '上.若:1:2OA AA '=,则ABC V 和A B C '''V 的周长之比为( )A .1:2B .1:4C .4:9D .1:36.下列图形都是用同样大小的梅花图案按一定规律组成,其中第①个图形中有4朵梅花,第②个图形中有8朵梅花,第③个图形中有14朵梅花,第④个图形中有22朵梅花.按此规律摆放下去,则第⑦个图形中梅花朵数为( )A .44B .58C .74D .927.二次函数y =2x 2﹣1的图象的顶点坐标是( )A .(﹣1,0)B .(1,0)C .(0,1)D .(0,﹣1) 8.设m m 的值应在( )A .7-和6-之间B .6-和5-之间C .5-和4-之间D .4-和3-之间 9.如图,已知四边形ABCD 为正方形,E 为对角线AC 上一点,连接BE , 过 点E 作EF BE ⊥,交DA 的延长线于点F,AE =2AF =, 则BE 的长为( )A.B.C .6 D.10.给定一列数,我们把这列数中第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,以此类推,第n 个数记为n a (n 为正整数).已知1,)0(1a x x x =≠≠,并规定:11n n n a a a +-=,123n n T a a a a =⋅⋅K ,123n n S a a a a =++++L ,下列说法:①215a a =;②123202421T T T T x +++⋯+=+;③对于任意正整数k ,都有()31332323132k k k k k k T S S T T T ++-++-=⋅-成立.其中正确的个数是( )A .0个B .1个C .2个D .3个二、填空题11.计算:01cos60()2+o =. 12.正八边形的一个内角的度数是 度.13.在Rt ABC △中,90C ∠=︒,5tan 12A =,则cos A 的值是. 14.某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是.15.如图,在Rt ABC △中, 90ACB ∠=︒,点D 为AB 的中点,连接CD ,过点B 作BE CD ⊥于点E ,点F 为AC 上一点,CDF CBA ∠=∠,若1BC =,2AB =,则EF 的长为 .16.若关于x 的不等式组341227x x a x +⎧-≥⎪⎨⎪->⎩无解,且关于y 的分式方程3122y a y y y +=---的解为非负整数,则符合条件的所有整数a 的和为.17.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,将矩形ABCD 沿对角线BD 折叠,点C 的对应点为点E ,BE 分别交AD ,AC 于点P ,Q .若4AB =,BE AC ⊥,则PQ 的长为 .18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足2a b c d ++=,那么称这个四位数为“和方数”.例如:四位数2613,因为22613++=,所以2613是“和方数”;四位数2514,因为22514++≠,所以2514不是“和方数”.若354a 是“和方数”,则这个数是;若四位数M 是“和方数”,将“和方数”M的千位数字与百位数字对调,十位数字与个位数字对调,得到新数N ,若M N +能被33整除,则满足条件的M 的最大值是.三、解答题19.化简:(1)()()()2223x y y x x y -+--; (2)2542111--⎛⎫++÷ ⎪--⎝⎭x x x x x x . 20.重庆实验外国语学校举行了“书香文化节”知识竞赛,从中随机抽取男生、女生各20名同学的竞赛成绩(满分50分)进行整理和分析,得分用x 表示.共分成四组: A :4244x <≤;B :4446x <<;C :4648x <≤;D :4850x <≤;下面给出了部分信息:男生在C 组的数据个数为5个,20名女生的竞赛成绩为: 50,50,48,44,46,50,46,49,50,48,45,50,50,50,49,48,50,46,50,50.根据以上信息,解答下列问题:(1)填空:a =,b =,m =;(2)根据以上数据,你认为该校女生与男生的竞赛成绩谁更好?请说明理由;(3)若该校有3000名男生和3200名女生,估计该校竞赛成绩为满分的人数.21.在ABC V 中 ,AB AC =,AD BC ⊥ 于点D ,点 E 为线段AD 上一点,连接BE ,CE .用直尺和圆规,在BC 的下方作CBF ∠,使得B CBF E C =∠∠,交AD 的延长线于点F ,连接CF .小明想要研究两底角顶点B 、,C 底边高线上的点E ,及该点关于底边的对称点F 所形成的四边形BFCE 的形状,请根据他的思路完成以下填空:证明:AB AC =Q ,AD BC ⊥,BD ∴= ,又CBF BCE ∠=∠Q ,BDF CDE =∠∠,BDF CDE ∴V ≌,BF ∴= ,CBF BCE ∠=∠Q ,∴,∴四边形BFCE 是平行四边形.又EF BC ⊥Q ,∴四边形BFCE 是菱形.小明进一步研究发现,任意等腰三角形均有此特征.请你依照题意完成下面命题:在等腰三角形中, .22.中秋节,又称祭月节、月光诞、月夕、秋节、团圆节等,是中国民间传统节日.中秋节这天人们都要吃月饼以示“团圆”.商家购甲,乙两种月饼礼盒,已知每盒乙月饼礼盒进价比甲月饼礼盒进价多40元,用8000元购进甲月饼礼盒和用10000元购进乙月饼礼盒的数量相同.(1)求甲、乙月饼礼盒的进价各为多少元?(2)甲月饼礼盒每盒售价为210元,每天可卖出30盒;乙月饼礼盒每盒售价为260元,每天可卖出15盒.在销售过程中为了增大甲月饼礼盒的销量,商家决定对甲月饼礼盒进行降价销售,在现有售价的基础上,每降价1元,可多售出2盒.为更大程度让利顾客,每盒甲月饼礼盒售价多少元时,商家日盈利可达到3000元?23.如图,在ABC V 中,6AB =,8BC =,点P 为AB 上一点,AP x =,过点P 作PQ BC ∥交AC 于点Q .点P ,Q 的距离为1y ,ABC V 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2) 24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈ 2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.25.如图,在平面直角坐标系中,抛物线22y ax bx =+-与x 轴交于点()40A ,和点()10B -,,与y 轴交于点C ,连接AC BC 、.(1)求抛物线的表达式;(2)如图1,点P 是直线AC 下方抛物线上的一动点,过点P 作直线PD AC ∥交x 轴于点D ,过点P 作PE AC ⊥于点E ,求出PE AD +的最大值及此时点P 的坐标;(3)如图2,在(2)的条件下,连接OP 交AC 于点Q ,将原抛物线沿射线CA单位得到新抛物线1y ,在新抛物线1y 上存在一点M ,使OQC MAC BCO ∠-∠=∠,请直接写出所有符合条件的点M 的横坐标.26.如图,在ABC V 中,45BAC ∠=︒,CD AB ⊥于点D ,E 为AD 上一点,连接CE .(1)如图1,若CE 平分ACD ∠,3CD =,求线段AE 的长;(2)如图2,过点E 作FE CE ⊥交CB 的延长线于点F ,连接AF ,G 为AF 的中点,连接GE ,若EF EC =,猜想线段GE ,AE ,AC 之间的数量关系,并证明你的猜想;(3)如图3,过点D 作AC 的垂线交AC 于点H ,点P 是直线DH 上一动点,连接AP ,将AP 绕A 点顺时针旋转60︒得'AP ,连接DP ',CP ',CP '与直线AP 交于点Q ,当AQ 最小时,请直接写出ADP PAHS S '△△的值.。
重庆市第八中学校2024-2025学年八年级上学期开学考试模拟卷数学试题

重庆市第八中学校2024-2025学年八年级上学期开学考试模拟卷数学试题一、单选题1.第24届冬奥会将于2022年2月在北京和张家口举办,下列四个图分别是第24届冬奥会图标中的一部分,其中是轴对称图形的是( )A .B .C .D .2.16的平方根是( )A .4B .4-C .16D .4±3.下列运算正确的是( )A .23a a a ⋅=B .32a a a -=C .()325a a =D .623a a a ÷= 4.下列词语所描述的事件是随机事件的是( )A .守株待兔B .拔苗助长C .旭日东升D .竹篮打水5.a 为正整数,且1a a <+,则a 的值为( )A .2B .3C .4D .86.已知三角形两边的长分别是3和7,则第三边的长可能是( )A .3B .6C .11D .127.《九章算术》中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊,若每人出5钱,则还差45钱;若每人出7钱,则仍然差3钱.求买羊的人数和这头羊的价格.设买羊的人数为x 人,根据题意,可列方程为( )A .54573x x -=+B .54573x x +=-C .54573x x -=-D .54573x x +=+8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .在4至8秒内甲的速度都大于乙的速度D .两车到第3秒时行驶的路程相等 9.如图,1AP 为ABC V 的中线,2AP 为1APC V 的中线,3AP 为2V APC 的中线,…,按此规律,1n AP +为V n AP C 的中线,若1△ABP 的面积为1,则V n AP C 的面积为( )A .2nB .2n -C .12n -D .12n -二、多选题10.如图,4cm 3cm AB AC BD CAB DBA ===∠=∠,,,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当ACP △与BPQ V 全等时,点Q 的运动速度为( )A .1cm/s 3B .1cm/sC .1.5cm/sD .2cm/s三、填空题11.华为60Mate Pro 于2023年8月29日开售,该款手机搭载的是华为自主研发的麒麟9000s 芯片,该款芯片达到了7纳米工艺水平,1纳米0.000000001=米,7纳米用科学计数法表示为:米.12.一个不透明的盒子中装有3个黑棋和若干个白棋,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑棋的概率是14,则盒子中棋子的总个数是.13a 的取值范围是.14.若7a b -=,3ab =,则22a b +的值为.四、解答题15.计算:(1))01;(2)(222+. (3)()3242822a a a a a ⋅+-+÷;(4)()()()3422y y x y x y --+-.16.先化简,再求值.()()()()22m m n m n m n m n -++-+-,其中()2140m n ++-=. 17.如图,在ABC V 中,AB AC =,90BAC ∠=︒,过点C 作CE AB ∥,连接AE .(1)基本尺规作图:作ABF EAC ∠=∠,交线段AC 于点F (保留作图疯迹);(2)求证:BF AE =.解:∵CE AB ∥,∴________∵90BAC ∠=︒∴18090ACE BAC BAF ∠=︒-∠=︒=∠在BAF △和ACE △中__________BA ACBAF ACE ⎧⎪=⎨⎪∠=∠⎩∴()ASA BAF ACE V V ≌,∴BF AE =(_______)18.某校组织全体学生参加安全知识测试,从中抽取了部分学生成绩(成绩为整数)进行统计,并按照成绩从低到高分成A ,B ,C ,D ,E 五个小组,绘制统计图如图所示(不完整),解答下列问题:(1)样本容量为______,频数分布直方图中a =____;(2)补全频数分布直方图;(3)E 小组所对应的扇形圆心角的度数为__________;(4)若成绩在80分以上(不含80分)为优秀,全校共有3000名学生,请计算成绩优秀的学生大约有多少名?19.如图,在ABC V 中,90BAC ∠=︒,AC AB =,BE AD ⊥于点E ,CD AD ⊥于点D ,连接BD .(1)求证:ACD BAE V V ≌;(2)若4CD =,6DE =,求ABD △的面积.五、单选题20.若2416y my -+可以配成一个完全平方公式,则m 的值为( )A .8-B .8±C .16D .16±六、多选题21.若有前后依次排列的两个整式21A x =-,2B x x =+,用后一个整式B 与前一个整式A 作差后得到新的整式记为1C ,用整式1C 与前一个整式B 作差后得到新的整式2C ,用整式2C 与前一个整式1C 作差后得到新的整式3C ,…,依次进行作差,然后化简得到新的整式.则下列说法正确的是( )A .26C x x =+B .1014C C = C .2941C C x -=-+D .20242021202320290C C C C +=七、填空题22.如图,ABC V 中,90BAC ∠=︒,3AB =,4AC =,BD 平分ABC ∠,且AD BD ⊥,则ABD △与ADC △的面积和是.23.如图,AD 为等腰ABC V 的高,其中ACB α∠=,AC BC =,BAD ∠=(用含α的代数式表示);E ,F 分别为线段AD ,AC 上的动点,且AE CF =,当50α=︒且BF CE +取最小值时,AFB ∠的度数为.24.一个三位数m ,每个数位上的数字均不为0,且满足百位<十位<个位,称为“步步高升数”,将“步步高升数”m 个位与百位交换得到m ',记()99m m G m '-=.例如:128满足128<<,则称128为“步步高升数”,将“步步高升数”128个位与百位交换得到821,记()821128128799G -==. 若p 是一个“步步高升数”,则()G p 的最大值为,一个“步步高升数”p 是3的倍数,且满足()G p 是一个完全平方数,则所有满足条件的p 的平均值为.八、解答题25.综合与实践 素材1 如图是一款单肩包,背带由双层部分、单层部分和调节扣构成.使用时可以通过调节扣加长或缩短单层部分的长度,使背带的总长度加长或缩短(总长度为单层部分与双层部分的长度和,其中调节扣的长度忽略不计)根据上述的素材,解决以下问题:(1)根据上表中数据的规律,表格中空白处的数据为(2)请写出双层部分的长度()cm y 与单层部分长度()cm x 之间的关系式;(3)根据成成同学的身高和习惯,背带的总长度为110cm 时,背起来最舒适,请求出此时单层部分的长度.26.【提出问题】利用“图形”能够证明“等式”,如“完全平方公式”、“平方差公式”都可以用图形进行证明,那么“图形”能否证明“不等式”呢?请完成以下探究性学习内容.【自主探究】用直角边分别为a 和b 的两个等腰直角三角形进行拼图,由图①得到图②.(1)请你仔细观察图形变化,解决下列问题.(ⅰ)图①中两个三角形的面积分别为___________和___________,图②中长方形ABCD 的面积为___________.(用含a ,b 的字母表示)(ⅱ)当a b ≠时,比较大小:222a b +__________ab .(填“>”或“<”) (ⅲ)当a 和b 满足什么条件时,222a b +与ab 相等?甲同学说:我可以通过计算进行说明.乙同学说:我可以通过画图进行说明.请你选择其中一人的方法,进行说明.【知识应用】(2)已知0m >,1n >,且(1)9m n -=,利用(1)发现的结论求2221m n n +-+的最小值. 27.已知点D 在ABC V 外,90BAC ∠=︒,AB AC =,射线BD 与ABC V 的边AC 交于点H ,AE BD ⊥,垂足为E ,ABD ACD ∠=∠.(1)如图1,若25ABE ∠=︒,求EAC ∠的度数;(2)如图1,求证:2DE DC BD +=;(3)如图2,在(1)的条件下,4BE =,点F 在线段BC ,且BE BF =,点M ,N 分别是射线BC 、BD 上的动点,在点M ,N 运动的过程中,请判断式子EM MN NF ++的值是否存在最小值,若存在,请直接写出这个最小值:若不存在,写出你的理由.。
重庆市第八中学2023-2024学年下期九年级开学模拟考试数学试题

重庆市第八中学2023-2024学年下期九年级开学模拟考试数学试题一、单选题1.以下各数是有理数的是( )A .1 2B .2πC .D .2.下列图形属于中心对称图形的是( )A .B .C .D .3.整数a a <a 的值为( ) A .6B .5C .4D .34.下列调查中,宜采用抽样调查的是( ) A .了解全班学生的期末考试数学成绩情况 B .调查“福建号”航母的机器零件情况C .了解一沓钞票中假钞情况D .调查长江流域水质情况5.两个相似多边形的面积之比为1:4,则它们的对应边之比为( )A .B .1:2C .1:4D .1:86.某品牌新能源汽车2021年的销售量为10万辆,随着消费人群的不断增多,该品牌新能源汽车的销售量逐年递增,2023年的销售量比2021年增加了21.2万辆.如果设从2021年到2023年该品牌新能源汽车销售量的平均年增长率为x ,那么可列出方程是( ) A .()101221.2x += B .()10121021.2x +-= C .210(1)21.2x +=D .210(1)1021.2x +-=7.用同样大小的黑、白色正方形按如图的方式搭建图形,图①中有2个黑色正方形,图②中有3个黑色正方形,图③中有5个黑色正方形,图④中有6个黑色正方形,…,按照这个规律,则图⑨中的黑色正方形个数为( )A .13B .14C .15D .168.如图,四边形ABCD 内接于O e ,M 为边CB 延长线上一点.若98AOC ∠=︒,则ABM ∠的度数是( )A .42︒B .49︒C .51︒D .59︒9.如图,在正方形ABCD 中,2AB a =,点E 是边AB 上的一点,13BE AE =,连接DE ,AM DE ⊥于点M ,CN DE ⊥于点N ,连接CM ,则CM 的长为( )A B C D 10.数学课上李老师把54张扑克牌按照1、2、3、⋯、54的顺序进行编号后(所有扑克牌除编号外其余均相同),背面朝上摆成一排,如图.班里恰有54名学生,同样把这54名学生按照1、2、3、⋯、54的顺序进行编号.然后学生按编号由小到大依次进行操作,第1次:1号学生把扑克牌中编号为1的倍数的所有牌翻一次;第2次:2号学生把扑克牌中编号为2的倍数的所有牌再翻一次;第3次:3号学生把扑克牌中编号为3的倍数的所有牌也翻一次⋯第54次:54号学生把54号牌翻一次,所有操作结束.(其中所有倍数均为整数),下列结论:①2号学生操作结束后,共有27张牌正面朝上; ②4号学生操作结束后,共有32张牌正面朝上;③54号学生操作结束后,共有6张牌正面朝上,且这6张牌对应编号之和为91. 其中正确的个数是( )A .0B .1C .2D .3二、填空题 11.若分式11x +有意义,则x 的取值范围是. 12.分解因式:25a a -=.13.已知直线3y x a =+与直线2y x b =-+交于点P ,若点P 的横坐标为5-,则关于x 的不等式32x a x b +<-+的解集为.14.一个不透明的袋子中装有4个标号分别为1,2,3,4的小球,它们除标号外其余均相同,从中随机摸出一个小球并将其标号作为十位上的数字(不放回),然后再摸出一个小球并将其标号作为个位上的数字,则所组成的两位数恰是3的倍数的概率是.15.如图,在矩形ABCD 中,2AB =,4BC =,以点C 为圆心,BC 长为半径画弧,交AD 于点M ,交CD 的延长线于点N ,则图中阴影部分的面积为.16.如图,在菱形ABCD 中,点E 在边CD 上,连接AE ,将ADE V 沿AE 折叠,使点D 落在同一平面内的点M 处,且AM BC ⊥,垂足为N .若152AN =,1MN =,则DE 的长为.17.若整数a 使关于x 的分式方程4122ax x x+=--的解为整数,且使关于y 的不等式组2062y a y y ->⎧⎨->⎩有解且最多有1个整数解,则符合条件的所有整数a 的和为. 18.若一个各数位均不为0的四位自然数M 满足千位与十位相同,百位与个位相同,我们称这个数为“如意数”.将“如意数”M 的千位与百位交换位置,十位与个位交换位置后得到一个新的“如意数”M ',记()101M M F M '-=,则(96)F =;若P 、Q 都是“如意数”,其中P xyxy =,(19Q zxzx y x =≤<≤,19z x ≤<≤且x ,y ,z 均为整数),若P 能被5整除,且()()27F P F Q -=,则P Q -的最大值为.三、解答题 19.计算:(1)(21)(21)4(1)a a a a +---;(2)22341n m n m n m n -⎛⎫-÷⎪++⎝⎭. 20.人造月亮、飞马踏冰、冻梨变刺身、豆腐脑放糖、吃地瓜配勺、热气球在松花江起飞…隆冬伊始,各大社交媒体平台上与哈尔滨相关的热词频出.甲、乙两名记者为了进一步了解游客对“冰雪大世界”的喜爱程度,各自随机调查了20名游客的游玩时长(单位:小时),分别记为甲组、乙组,并对收集的数据进行了整理、描述和分析(游玩时长用x 表示,共分为四个等级:其中02A x ≤<:,24B x ≤<:,46C x ≤<:,6D x ≥:),下面给出部分信息: 甲组游客的游玩时长在C 等级中的全部数据为:4,4,4,5,5,5,5,5,5;乙组游客的游玩时长中,B ,D 两等级的数据个数相同;A ,C 两等级的全部数据为:4,4,4,4,4,4,4,5,5,5; 甲、乙两组游客游玩时长统计表:根据以上信息,回答下列问题:(1)填空:a =;b =;甲组扇形统计图中C 所在扇形的圆心角的度数为;(2)根据以上数据分析,从甲、乙两组游客的游玩时长来看,哪个组更喜欢玩“冰雪大世界”?请说明理由(写出一条理由即可);(3)甲,乙记者调查当天入园游客约30000人,请你估计当天共有多少名游客的游玩时长低于4小时?21.如图,在ABC V 中,AB AC =,60ABC ∠<︒,点D 是边BC 上一点,作射线DA ,且满足60ADC ∠=︒.(1)用尺规完成以下基本作图:在射线DA 上截取DE ,使得DE DC =,连接CE ,在AC 上方作FAC B ∠=∠,AF 交CE 于点P (保留作图痕迹,不写作法); (2)在(1)所作的图形中,证明:AE BD =. 证明:AB AC =Q , ∴① .又FAC B ∠=∠Q ,FAC ACB ∴∠=∠.∴② .60EAP ADC ∴∠=∠=︒. 60ADC ∠=︒Q ,DE DC =,∴V DEC 是等边三角形.60DEC ∴∠=︒,DE CE =.AEP ∴V 是等边三角形. 60APE \??,AE PE AP ==.DE AE CE PE ∴-=-.即③ .又60BAD ADC B B ∠=∠-∠=︒-∠Q ,60ACP APE PAC PAC ∠=∠-∠=︒-∠,BAD ACP ∴∠=∠.在BAD V 和ACP △中,AB AC BAD ACP AD CP =⎧⎪∠=∠⎨⎪=⎩, ()SAS BAD ACP ∴V V ≌,∴④ , BD AE ∴=.22.某工厂生产某种罐头食品的外包装铁质罐头盒.(1)一个罐头盒是由一个盒身和两个盒底构成,用1张铁皮可做35个盒身或60个盒底,现有260张铁皮,用多少张做盒身,多少张做盒底才能使盒身与盒底恰好配套?(2)甲、乙两个车间接到任务生产一批罐头盒,若甲车间单独完成,则需要比规定工期多用3天;若乙车间单独完成,则需要比规定工期少用2天;若甲、乙两车间合作5天,剩下的由甲车间单独完成,则比规定工期提前3天完成.问甲车间单独生产完这批罐头盒的时间为多少天?23.如图在ABC V 中,1012AB AC BC ===,,过点A 作AD BC ⊥于点D .动点E , F 同时从点B 出发,点E 以每秒53个单位的速度沿折线B -A -C 运动.点F 以每秒1个单位的速度沿线段BC 运动.当点E 到达点C 时,E 、F 两点同时停止运动.设点E 的运动时间为x 秒,线段EF 和线段DF 的长度和记为1y .(1)请直接写出1y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y 的图象,并写出该函数的一条性质;(3)在运动过程中记线段DF 的长度为2y ,结合函数图象,请直接写出1223y y =时x 的值.(保留1位小数,误差不超过0.2)24.拓展小组研制的智能操作机器人,如图1,水平操作台为l ,底座AB 固定,AB l ⊥,且50cm AB =,连杆BC 长度为70cm ,机械臂CD 长度为60cm .点B ,C 是转动点,且,AB BC与CD 始终在同一平面内.(1)转动连杆BC ,机械臂CD ,使150ABC ∠=︒,CD l ∥,如图2,求机械臂端点D 离操作台l 的高度DE 的长(精确到0.1cm 1.73≈).(2)物品在操作台l 上,距离底座A 端125cm 的点M 处,转动连杆BC ,机械臂CD , 机械臂端点D 能否碰到点M ?请说明理由.25.如图1,在平面直角坐标系中,抛物线24y ax bx =+-过点()2,4-且交x 轴于点A ()4,0,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图2,点D是线段OC的中点,连接AD,点P是直线AD下方抛物线上的一动点,连接AP,BP,且BP交AD于点M,求PMBM的最大值及此时点P的坐标;(3)如图3,点F为y轴正半轴上一点,且满足OF AB=,将该抛物线沿射线AD方向平移后的新抛物线过点()0,1,点E为新抛物线对称轴在x轴上方的一点,作射线EO,射线EF,是否存在点E,使得射线EO,EF中一条射线平分另一条射线与新抛物线对称轴组成的角,请写出所有符合条件的点E的坐标,并写出求解点E的坐标的其中一种情况的过程.26.在Rt90ABC AB BC ABC=∠=︒,,V,点D是边BC一点,连接AD ABD∠,的角平分线交AD于点E.(1)如图1所示,30BAD ∠=︒,若2CD =,求边DE 的长;(2)如图2所示,点F 为AC 上一点,过点F 作FO AD ⊥于点O ,若点O 恰好平分线段AD ,求证:CF BE =; (3)如图3所示,点P 为边AC 上一点,且满足AP BE =,过点P 作PQ AD ⊥于点Q ,连接BQ ,当BQ 最短时,请直接写出ABQ BEDS S △△的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一套:满分120分2020-2021年重庆市第八中学校初升高自主招生数学模拟卷一.选择题(共6小题,满分42分)1. (7分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D.2. (7分)在平面直角坐标系中,任意两点规定运算:①;②;③当x 1= x 2且y 1=y 2时,A =B.有下列四个命题:(1)若A (1,2),B (2,–1),则,; (2)若,则A =C ; (3)若,则A =C ;()()1122,,,A x y B x y ()1212,⊕=++A B x x y y 1212=⊗+A B x x y y (),31⊕= A B 0=⊗A B ⊕=⊕A B B C =⊗⊗A B B C(4)对任意点A 、B 、C ,均有成立. 其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个 3.(7分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④2CD 2=CE •AB .正确结论序号是( )A .①②B .③④C .①③D .①④ 4. (7分)如图,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①;②当点E 与点B 重合时,;③;④MG •MH =,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④ 5.(7分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 6. (7分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D()()⊕⊕=⊕⊕A B C A B C 2AB =12MH =AF BE EF +=12作⊙O 的切线交BC 于点M ,则DM 的长为( )A.B. C. D.二.填空题(每小题6分,满分30分)7.(6分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8.(6分)如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线33y x =相切.设三个半圆的半径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .9.(6分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB=60°,点A 在第一象限,过点A 的双曲线为k y x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是 ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 .1339241332510.(6分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反 比例函数2(0)y x x=>的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数2(0)y x x=>的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .11.(6分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,则BN= .三.解答题(每小题12分,满分48分)12.(12分)先化简,再求值:, 其中.13.(12分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象上.(1)求m ,k 的值;32221052422x x x x x x x x --÷++--+-2022(tan 45cos30)21x =-+︒-︒-xky =xO yAB (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. (3)将线段AB 沿直线进行对折得到线段,且点始终在直线OA 上,当线段与轴有交点时,则b 的取值范围为 (直接写出答案)14.(12分)如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 于点D ,DE 是⊙O 的切线,连接DE .(1)连接OC 交DE 于点F ,若OF=CF ,证明:四边形OECD 是平行四边形; (2)若=n ,求tan ∠ACO 的值b kx y +=11B A 1A 11B A x OFCF15.(12分)如图1,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0)。
(1)求抛物线的解析式;(2)如图2,过点A 的直线与抛物线交于点E ,交y 轴于点F ,其中点E 的横坐标为2,若直线PQ 为抛物线的对称轴,点G 为直线PQ 上的一动点,则x 轴上师范存在一点H ,使D 、G 、H 、F 四点所围成的四边形周长最小。
若存在,求出这个最小值及点G 、H 的坐标;若不存在,请说明理由。
(3)如图3,在抛物线上是否存在一点T ,过点T 作x 轴的垂线,垂足为点M ,过点M 作MN ∥BD ,交线段AD 于点N ,连接MD ,使△DNM ∽△BMD 。
若存在,求出点T 的坐标;若不存在,请说明理由。
图1ABxyO DC图2 ABx yODCPQEF 图3ABxyO DC2020-2021年重庆市第八中学校初升高自主招生数学模拟卷答案解析第一套一、选择题1.【考点】函数的图象.【分析】由题得:出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选C.2.【考点】新定义和阅读理解型问题;点的坐标;命题与定理;反证法的应用.【分析】根据新定义,对各选项逐一分析作出判断:(1)若A(1,2),B(2,–1),则. 命题正确. (2)设C,若,即,∴. ∴A=C. 命题正确.(2)用反证法,设A(1,2),B(2,–1),由(1)知,取C,,即有,但A C. 命题错误.(4)设C,对任意点A、B、C,均有成立. 命题正确.综上所述,正确命题为(1),(2)(4),共3个.故选C. 3.解:∵AB 是半圆直径, ∴AO=OD , ∴∠OAD=∠ADO ,∵AD 平分∠CAB 交弧BC 于点D , ∴∠CAD=∠DAO=21∠CAB , ∴∠CAD=∠ADO , ∴AC ∥OD ,故①正确. 由题意得,OD=R ,AC=2R , ∵OE :CE=OD :AC=22, ∴OE ≠CE ,故②错误;∵∠OED=∠AOE+∠OAE=90°+22.5°=112.5°,∠AOD=90°+45°=135°,∴∠OED ≠∠AOD ,∴△ODE 与△ADO 不相似,故③错误; ∵AD 平分∠CAB 交弧BC 于点D ,∴∠CAD=21×45°=22.5°,∴∠COD=45°, ∵AB 是半圆直径,∴OC=OD ,∴∠OCD=∠ODC=67.5° ∵∠CAD=∠ADO=22.5°(已证),∴∠CDE=∠ODC ﹣∠ADO=67.5°﹣22.5°=45°, ∴△CED ∽△CDO ,∴CO CD =CDCE,1AB•CE,∴CD2=CO•CE=2∴2CD2=CE•AB,故④正确.综上可得①④正确.故选:D.4.【考点】双动点问题;等腰直角三角形的判定和性质;矩形的性质;三角形中位线定理;全等、相似判定和性质;勾股定理;旋转的应用. 【分析】①∵在△ABC中,∠ACB=90º,AC=BC=1,∴.故结论①正确.②如答图1,当点E与点B重合时,点F与点M重合,∴MH是△ABC的中位线.∴.故结论②正确.③如答图2,将△ACF顺时针旋转90°至△BCN,连接EN,则.∵∠ECF=45°,∴.∴.∴.∵△ABC是等腰直角三角形,∴△AGF和△BHE都是等腰直角三角形.∴.∴根据勾股定理,得,即.∴.故结论③错误.④∵由题意知,四边形CHNG是矩形,∴MG∥BC,MH∥CG.∴,即.∴.又∵,,∴.∴.∴∵.故结论④正确.综上所述,正确结论为①②④.故选C.5.【考点】阅读理解型问题;分类思想的应用.【分析】将各选项分别代入程序进行验证即可得出结论:A. ∵,∴4,2,1是该循环的数;B. ∵,∴2,1,4是该循环的数;C. ∵,∴1,4,2是该循环的数;D. ∵,∴2,4,1不是该循环的数.故选D.6. 【答案】A.【考点】矩形的性质;切线的性质;正方形的判定和性质;切线长定理;勾股定理;方程思想的应用.【分析】如答图,连接,则根据矩形和切线的性质知,四边形都是正方形.∵AB =4,∴.∵AD =5,∴.设GM=NM=x ,则.在中,由勾股定理得:,即,解得,.∴.故选A. 二、填空题 7.【答案】210。
【考点】分类归纳(图形的变化类)。
【分析】由图可知:第一个阴影部分的面积=22-12,第二个阴影部分的面积=42-32,第三个图形的面积=62-52由此类推,第十个阴影部分的面积=202—192,因此,图中阴影部分的面积为:(22-1)+(42-32)+…+(202-192)=(2+1)(2-1)+(4+3)(4-3)+…+(20+19)(20-19)=1+2+3+4+…+19+20=210。
8.【答案】9。
【考点】一次函数的图象,直线与圆相切的性质,直角三角形的性质,相似三角形的判定和性质。