用字母表示数.1 代数式 - 用字母表示数
2024秋七年级数学上册第三章整式的加减3.1列代数式1用字母表示数教案(新版)华东师大版

1. 教学重点
本节课的重点是让学生掌握用字母表示数的方法和技巧,以及如何正确地读写含有字母的算式。具体包括以下几个方面:
(1)理解字母表示数的概念,知道字母可以表示数、数量关系和运算结果。
(2)学会用字母表示数,包括数字、运算符号和括号的表示方法。
(3)掌握含有字母的算式的读写方法,能够正确地读写含有字母的算式。
互动讨论法:学生通过小组讨论、分享心得,互相启发,进一步理解字母表示数的内涵。
2. 教学活动设计
(1)导入新课:通过一个简单的例子,如用字母表示身高、年龄等,引出字母表示数的概念。
(2)讲解演示:教师通过PPT展示字母表示数的各种情况,如数字、运算符号和括号的表示方法,并进行讲解。
(3)练习巩固:学生独立完成一些练习题,如用字母表示数、读写含有字母的算式等,教师巡回指导。
(4)能够运用字母表示数的方法解决实际问题,提高解决数学问题的能力。
2. 教学难点
本节课的难点在于让学生理解和掌握字母表示数的方法和技巧,以及如何运用字母解决实际问题。具体包括以下几个方面:
(1)字母表示数的抽象概念:学生需要理解字母可以代表任何数,这需要一定的抽象思维能力。
(2)含有字母的算式读写:学生容易混淆字母和文字的读写,需要教师引导学生正确读写。
(3)运用字母表示数解决实际问题:学生需要将字母表示数的方法应用到实际问题中,这需要一定的数学建模能力。
(4)逻辑推理和数学思维:学生需要通过解决含有字母的算式,培养逻辑推理和数学思维。
教师在教学过程中,要针对上述重点和难点内容,采取有效的教学方法,如讲解、示范、练习、讨论等,帮助学生理解和掌握知识,突破难点。同时,要关注学生的学习情况,及时调整教学方法和节奏,确保学生能够真正掌握本节课的核心知识。
2.1.1用字母表示数(教案)-人教版七年级数学上册

在今天的教学中,我发现学生们对于用字母表示数的概念接受程度不一。有的学生能够迅速理解字母的抽象意义,而有的学生则对这个概念感到困惑。这让我意识到,在接下来的教学中,我需要更加注重对学生的个别辅导,尤其是对于那些理解上存在困难的学生。
在讲授过程中,我尝试通过生活实例引入字母表示数的概念,让学生们感受到数学与生活的紧密联系。这一点从学生的反馈来看,效果还是不错的。他们能够更直观地理解字母在数学中的运用,知道如何将实际问题转化为代数表达式。
在总结回顾环节,我发现学生们对本节课的知识点掌握得还算不错,但仍有一些疑问。这提醒我在课后要关注学生的反馈,及时解答他们的疑惑,确保他们能够真正理解并运用所学知识。
1.加强对学生的个别辅导,关注他们的学习困难,针对性地进行指导。
2.增加字母与数字结合运算的练习,让学生更熟练地掌握这个难点。
3.继续采用实践活动和小组讨论的方式,提高学生的合作能力和实践能力。
-掌握代数式的简写和字母与数字的结合表示方法;
-运用字母表示数进行简单的运算和问题解决。
三、教学难点与重点
1.教学重点
(1)理解字母表示数的意义:字母在数学中的抽象表示是本节课的核心内容。教师应强调字母可以表示未知数、已知数以及数与数之间的关系,如a+b表示a与b的和。
举例:讲解如何用字母表示购买苹果的例子,假设每千克苹果的价格为a元,购买了b千克,那么总共需要支付的金额可以表示为ab元。
(3)用字母表示数进行问题解决:将字母表示数应用于实际问题解决,对学生来说是一个挑战。
难点举例:解决实际问题,如“小明今年a岁,比小红大b岁,求小红今年的年龄。”,让学生学会如何列出代数式并进行求解。
在教学过程中,教师要针对这些难点进行详细的讲解和示范,设计丰富的教学活动,帮助学生克服难点,确保学生对核心知识的理解透彻。
人教版七年级上册数学 3.1代数式表示数量关系 第1课《用字母表示数》

m
B.
m
C.( + 1)m
D.( - 1)m
随堂检测
3.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚
线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然
后按图(2)那样拼成一个正方形,则中间空的部分的面积是( C )
A.2mn
B.(m+n)2
C.(m-n)2
5.
2
4
8
16
32
猜数字游戏中,小明写出如下一组数: , , , , … … ,
5
7
11
19
35
64
小亮猜出第六个数是 ,根据此规律,第n个数是
67
2ⁿ
2ⁿ + 3
.
课程小结
列式时应注意:
(1)表示数的字母相乘时,可用“·”代替乘号或省略不写.如a×b通常写作
a ·b或ab.
(2)两字母相乘、数字与字母相乘、字母与括号相乘以及括号与括号相乘时,
3只青蛙3张嘴,6只眼睛12条腿,扑通3声跳下水;
4只青蛙4张嘴,8只眼睛16条腿,扑通4声跳下水;
a只青蛙 a 张嘴, 2a 只眼睛 4a 条腿,扑通 a 声跳下水.
新知探究
实质上就是用代数式表示数和
数量关系
在小学,我们学过用字母表示数,
知道可以用字母或含有字母的式子表
示数和数量关系,这样的式子在数学
① 抓住问题中的关键词,明确它们的意义以及它们之间的关系,如和、差、
积、商及大、小、多、少、倍、分、倒数、相反数等;
②明确运算及运算顺序,如“和的积”是“先和后积”,也就是“先加法
代数式用字母表示数

在工程技术领域,代数式可以用于解决实际问 题和优化设计方案,提高工程质量和效率。
3
计算机科学中的应用
代数式在计算机科学中也有广泛的应用,例如 算法分析、数据结构设计和密码学等。
代数式在数学教育中的重要性和意义
培养逻辑思维
01
学习代数式有助于培养逻辑思维能力,理解抽象概念和推理过
程。
增强解决问题的能力
代数式的简化方法
合并同类项
提取公因式
将代数式中的同类项合并成一项。
将代数式中的公因式提取出来,以便于进行 下一步的化简。
展开平方差公式
利用对数性质பைடு நூலகம்
利用平方差公式将代数式中的某些项展开成 其他项的和或差。
将对数的性质应用于代数式中,以便于简化 计算。
05
代数式的应用实例
用代数式解决实际问题
计算问题
意义
每个代数式都有特定的数学意义,表示数量之间的关系或运算。例如,2x+3表示 两倍的x与3的和。
02
字母表示数的历史发展
古代数学中的代数式
古埃及数学
使用符号表示未知数和方程的 解。
古希腊数学
使用文字描述数学问题,但未涉 及字母表示数。
中世纪阿拉伯数学
使用字母表示数,发展了代数概念 和算法。
字母表示数的起源
复杂代数式
包含基本运算、括号、乘方、乘除等复杂结构的式子。
简单代数式和复杂代数式
简单代数式
通常可以看作是只包含基本运算和括号的式子,例如:$2x+3$。
复杂代数式
通常包含基本运算、括号、乘方、乘除等复杂结构的式子,例如:$(x+1)^2-2(x-3)$。
多项式和分式的表示方法
七年级数学上册第3章代数式3.1字母表示数1用字母表示数授课课件2

感悟新知
知2-练
(3) 三角尺的面积等于三角形的面积减去圆的面积.根据
图中的数据,得三角形的面积是 1 ab cm2,圆的面
积是πr2
cm2.因此三角尺的面积
2
(单位:cm2)是
1 ab 2
-πr2 .
(4) 住宅的建筑面积等于四个长方形面积的和.根据图中
标出的尺寸,可得这所住宅的建筑面积(单位:m2)
写成“·”;
(2)字母与数相乘时,数通常写在字母的前面;
(3)带分数与字母相乘时,通常化带分数为假分数;
(4)字母与字母相除时,要写成分数的形式.
感悟新知
特别提醒
知1-讲
1.同一问题中,相同的字母必须表示相同的量,不
同的量必须用不同的字母表示.
2.用字母可以表示任意数或式子.用字母表示数后,
同一个式子可以表示不同的含义.
分析:(1)船在河流中行驶时,船的速度需要分两种 知2-练 情况讨论:顺水行驶时,船的速度=船在静水中的
速度+水流速度;逆水行驶时,船的速度=船在静水中的 速度-水流速度.
解:(1)船在这条河中顺水行驶的速度是( v+2. 5) km/h, 逆水行驶的速度是 (v-2. 5) km/h.
(2)买3个篮球、5个排球、2个足球共需要 ( 3x+5y+2z)元.
2 D. - 3 a
2
感悟新知
知识点 2 用含字母的式子表示数量关系
知2-讲
1. 意义:用表示数的字母表示问题中的数或数量. 关系:用字母表示数能简明表达数量关系.
感悟新知
知2-练
例2 (1) 一条河的水流速度是2. 5 km/h,船在静水中的 速度是v km/h, 用式子表示船在这条河中顺水 行驶和逆水行驶时的速度;
初一数学代数式、用字母表示数

1、用字母表示加法交换律,错误的是( )A .a +b =b +aB .m +n =n +mC .p ·q =q ·pD .x +y =y +x2、如果m 表示奇数,n 表示偶数,则m +n 表示( )A .奇数B .偶数C .合数D .质数3、如图1两同心圆,大圆半径为R ,小圆半径为r ,则阴影部分的面积为( )A .πR 2B .πr 2C .π(R 2+r 2)D .π(R 2-r 2)4、数轴上点A 位于原点的右侧,所对应的实数为a (a <3),则位于原点左侧,与A 点距离为3的点B 所对应的实数为( )A .3-aB .a -3C .a +3D .-35、下列数值一定为正数的是( )A .|a |+|b |B .a 2+b 2C .|a |-|b |D .|a |+21 6、比较a +b 与a -b 的大小,叙述正确的是( )A .a +b ≥a -bB .a +b >a -bC .由a 的大小确定D .由b 的大小确定代数式一、专题精讲例1、在下列各式:①﹣3;②ab =ba ;③x ;④2m ﹣1>0;⑤1x ;⑥8(x 2+y 2)中,代数式的个数是( ) A .1个B .2个C .3个D .4个例2、小明比小亮大3岁,小亮今年a 岁,小明今年__________岁。
例3、某种蔬菜今天的价格比昨天上涨了20%,如果昨天的价格为每千克a 元,那么这种蔬菜今天的价格为每千 克 元,当a =1.2时,今天蔬菜的价格为 元。
例4、已知22a ab +=-10,22b ab +=16,则224a ab b ++=_______,22a b -=______。
例5、填空(1)零乘任何数得零,用字母表示为 。
(2)某汽车公司对所有车辆进行消毒处理,今将m 千克水中,加入n 千克消毒制剂,则消毒液的重量为__________。
(3)大量事实证明,治理垃圾污染刻不容缓。
据统计,全球每分钟约有850万吨污水排入江河湖水,则t 分钟排污量为 万吨。
用字母表示数,代数式教案

一、新课讲解1、用字母表示数:(1)用字母表示数的意义:①表达数学规律②表达数学公式③表示数的方法:数字与字母(字母与字母)相乘时,乘号可以用“×”表示,也可以省略(省略时,数字必须写在字母的前面)。
④表达问题中的数量关系⑤表示方程中的未知数(2)注意事项:①同一问题中的不同的数或者数量要用不同的字母表示②不同问题中不同的数或数量可以用相同字母表示,但相同字母表示的含义不同。
③用字母表示的数,往往不止一个,而是若干个或者无数个。
④任意性⑤多个字母表示一种数量关系时,字母的取值相互制约。
2、代数式(1)代数式的定义:用运算符号把数和表示数的字母连接而成的式子,叫做代数式,单独的一个数或一个字母,也是代数式。
注:代数式中除含有数,字母和运算符号外,还可以有括号,但不能含“ =”、“≠”、“>”、“<”、“≥”、“≤”符号。
代数式中的字母所代表的数必须使这个代数式有意义。
(2)代数式的读法:①按运算顺序来读;②按运算的结果来读;③按实际背景和几何意义来读注:①对于有括号的代数式,应把括号里面的代数式看成一个整体,按运算结果来读。
②对于以分数形式出现的代数式,按分数形式或除法形式读,都应分别把分子与分母看成一个整体来读。
(3)代数式书写格式的要求:①在代数式中出现的乘号,通常简写成“●”或者省略不写②数字与字母相乘时,数字应写在字母前。
③带分数与字母时,应先把带分数化成假分数后再与字母相乘。
④在代数式中出现除法作运算时,一般按照分数的写法来写。
⑤在实际问题中,表示某一数量的代数式往往是有单位名称:如代数式是乘或者商的形式,就将单位名称写在代数式的后面即可;如代数式是和或差的形式,则必须把代数式括起来,再将单位名称写在代数式的后面。
(4)列代数式:定义:在解决实际问题时,把实际问题中的数量关系用代数式表示出来,就是列代数式。
注:列代数式时,首先要认真审题,弄清问题中各数量之间的关系和运算顺序,然后按代数式书写格式的规定规范地书写出来。
3.1 列代数式表示数量关系(第1课时 用字母表示数)(课件)七年级数学上册(人教版2024)

数字
写在 字母
“·
”
或者 省略不写 ,并且把
的前面,但数字与数字相乘时,仍要用“×”号;(2)字母
决实际问题中有着广泛的应用,例如:
某品牌苹果采摘机器人可以1s完成5m²范围内苹果的识别,并自动对
成熟的苹果进行采摘,它的一个机械手8s可以采摘一个苹果.根据这
些数据回答下列问题:
(1)该机器人10s能识别多大范围内的苹果?60 s 呢?ts呢?
(2)该机器人识别nm²范围内的苹果需要多少秒?
(3)若该机器人搭载了10个机械手,它与采摘工人同时工作1 h,假设
的体积占水池容积的三分之一,用代数式表示池内水的体积.
解: (4)由长方体的体积=长×宽×高,得这个长方体水
1
池的容积是a·
a·
hm³,即a²hm³,故池内水的体积为 a²hm³.
3
思考探究
用字母表示数后,同一个代数式可以表示不同实际问题中的数量
或数量关系.
例如,在例1第(1)(2)题中,0.9p既可以表示苹果的售价,
(3)a的11倍再加上2;
(4)x,y两个数和的平方;
(5)甲数为a,比甲数的平方大3的数.
解:(1)2x - y.
(3)11a+2.
(2)3(m - 5).
(4)(x+y)2.
(5)a2+3.
随堂练
4.以下各式不是代数式的是
( C)
A.5
B.3x2 - 2x+5
C.a+b=b+a
2
D.
解析:判断是不是代数式,关键是了解代数式的概念,注意代数式与等式、
5×10=50 ( m²) ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用字母表示图形的面积公式
a
a a b
S = a2
S = ah÷2
h a
S = ab
h a + b)h÷2
蚌埠二十六中学
主讲:张金宝 主讲:张金宝
小结:说一说通过这节课你的最大收获是什么?
如何用字母表示数。举例说明 作业:
蚌埠二十六中学
主讲:张金宝 主讲:张金宝
如图,月历中用长方形 a 框任意框出的3个数 b c
之间的关系是 (请 用一个等式表示这个关系 )
蚌埠二十六中学
主讲:张金宝 主讲:张金宝
用字母可以表示:
数、数量关系、规律、未知数等。
用字母表示数的意义是:
使得规律具有普遍意义,
为问题的研究带来方便。
蚌埠二十六中学
主讲:张金宝 主讲:张金宝
用字母表示数的运算律 运算定律 加法交换律 加法结合律 乘法交换律 乘法结合律 乘法分配律 字母表示
a+b=b+a (a + b ) +c= a +(b + c) ab = ba (ab)c = a(bc) (a + b) c = ac+bc
蚌埠二十六中学
主讲:张金宝 主讲:张金宝
蚌埠二十六中学
主讲:张金宝 主讲:张金宝
(1)(15×24×60)÷240=90(分) 解: (2)90×n=90n(分) 答:该飞船绕地球飞行一周需90分,飞船绕地 球飞行n周,需90n分钟。
蚌埠二十六中学
主讲:张金宝 主讲:张金宝
像0,±2,±4,±6,…能被2整除的数叫做偶数; 像±1, ±3,±5,…不能被2整除的数叫做奇数。 假设k表示一个整数,那么偶数表示为 2k , 奇数表示为 2k+1或 . 2k-1 分析: 整数 … -3 -2 -1 0 1 2 3 … k … 偶数 … -6 -4 -2 0 2 4 6 … __ … 奇数 … -7 -5 -3 -1 1 3 5 … __ …
蚌埠二十六中学
主讲:张金宝 主讲:张金宝
教育部审定(2012年)义务教育教科书 数学 七年级 上册
§2.1
代数式
(1)用字母表示数
新时代数学编写组 编著
上海科技出版社
蚌埠二十六中学
主讲:张金宝 主讲:张金宝
2013年6月11日我国成功发射了“神州十号”载人飞船, 飞船在轨飞行15天在椭圆轨道上环绕地球飞过240周。 (1)该飞船绕地球飞行一周需多少分? (2)若绕地球飞行n周,需多少分?