用EL34制作的合并式电子管功放调整
胆圣TS-EL34合并式推挽电子管放大器

,
通 过机顶 上的指示表头
,
及 调 节 电位 器
可 以完成此 项 工
作
,
似 乎 胆 圣 胆 机 大 多配 有 调 整
。
装置
此 电子 管 放 大 器 还 配 备 了
,
遥控功能
音
与 机 箱 同 类 工 艺 制作
,
的 铝 合 金 外 壳 的遥 控 器
、
只 有静
,
音量 调 整 +
一
、
,
三 个按 键
,
想 想 如此 功 能 已 足 够
维普资讯
凯蕈 薹 黼
了 独 立 的 电子 管 前 级 及 后 级 产 品
,
,
背板 的连接端子很 丰富
致 于将后 背板几 乎排满 号输入
一
,
以
而 且 是单端
,
推挽输 出的机种 齐
则 是 最近 开 发 的
。
一
。
三组信
,
备
TS E L 3 4
—
款
,
组 超 低音专用输 出 这
员 响 应 : 2 4 Hz 4 0 k Hz 率
-
供 电没 有 采用 电子 管整 流 及 扼 流
但仍细 腻
KT 8 8
甜美可
圈滤 波 的传统 方 式
±
,
取而 代之 的
,
力度逊色于
,
推 挽 输 出的
l dB
是 整 流桥 波 的 方 式
强势
但 又 不 至 于只 适 于聆听人
大
位等要 处理 好 供
4 Q
、
。
音 箱连 接端 子 提
,
8 mm
EL34高功率推挽功放制作

。
V 而接 近 于 o V
进
两 管 偏 压 大 小 达 到平 衡 两 管 特性 差 异
。
些 篇 幅 重 点说 明 胆机 的 直 流调 试 交 流 调试 方法 及 本 功 放 的 功率 升 级 方 案
1
.
Z
使 万 用 表读 数 尽 可 能 准
或 用 以 平 衡 整 机 上 下 两臂 放大 特 性 里 两 管 共 用 阴 极 电 阻用 得 比 较大
挽 功 制 推 放 作 率
蘸
,
{ 蕾 冀 霆 露 骂默 嘿 翼孽
,
两端 所 接 的 电 容 器 系 作 高 频 补 偿 之 用
以 稳 定整 机 工 作 性 能
。
,
.
脸 兰全棍
。
于 阻值 中 心 位置
7
.
R
V
,
3
的 动 臂 则 应投 于
级 采 用 差 分 放 大 作倒 相 的 推 挽 功 放 它
的 额 定 输 出 功率 为 3 o
。
栅 极 电 压 比 阴 极 电压 低 S V 左 右 量 V l 阴 极对地电
再测
态 特性 不 一 致 产 生 的屏 流 差 异 一 般 称
为 IX
二(
出级 固定栅偏压电 源 用
压约 V
l
I
。
直流 ) 平衡微调 电位器
。
R
V3 则
30
本 机 主 要 实 测 性能 为 输 出 功 率
从
r ,
:
上 述情况 基本 正 常 后 可 进行 直流
。
是 用 来 获 得 两 管 正 常 工作 所 需 的 静 态 屏流
,
。
灵敏度0
自制EL34推挽后级放大器的原理及测试过程

自制EL34推挽后级放大器的原理及测试过程前年初买了一对“曙光”5K 50W的输出牛,而家中又存放有10多对EL34、大量的6SN7和6SJ7,为了物尽其用,于是在众多的线路中,选用了“马兰士”8B为基础,并经过多次的修改,最后决定采用今次介绍的线路。
线路“马兰士”8B因采用6BH6五极管为放大级,故它的音色娇美明快而清晰,和Marantz 9气吞牛斗,雄霸天下,截然不同。
它可接超线性和三极输出。
接超线性时有35W输出,而三极接法也有17. 5W功率、故除了对一些效率特别低的音箱外,功率不足的问题并不严重。
本机采用6SJ 7并接三极作为第一级电压放大,直接交连至第二级的6SN7以长尾倒相后,再用0. lμF电容交连至第三级的EL34作功率放大。
整个线路简单直接,除负偏压外,并没有需要调校的地方。
6SJ7是一只五极锐截管,它可算是EF86的始祖,而其特性和EF86也十分相似。
它有铁壳和玻璃管身两个品种。
大致来说,铁壳管的音色较为甜美,而玻璃管却会比较通透。
以RCA编号5693红身铁壳管最为着名。
如使用铁壳管,第一脚是需要接机壳的,而不是接地,不然的话,会引起噪音。
6SN7是一支非常流行的双三极管,它和6FQ7的特性也十分相近。
欧、美各大电子管厂都有出产,其中以GEC B65和RCA 5692为极品。
ECC32因灯丝电流和特性与6SN 7都不相同,所以不能直接替代6fSN7使用。
EL34不用多说了,它是一支五极强放管Mullard 双圈、旧装“德律风根”和“吹喇叭”等牌子最为发烧友喜爱,而它们身价不菲,全新配对的NOS也非常难求。
制作经过半年多时间的搜集零件和修改线路后,最痛苦的I序终于开始了。
我把一条50英寸长、2英寸×半英寸的铝槽屈摺成为机架,再用螺丝把两块12英寸×12英寸的铝板安装在机架上,这样一个成本低廉和快捷妥当的机箱便完成了。
把零件如电源变压器1只、扼流圈1只、输出变压器l对、选择掣3个、可调电位器4只和8只八脚管座等安装在一块只有12英寸×12英寸的铝板上,而又要使其互相干扰减至最少,这是十分困难的,零件分布如果排位失当而引起噪音,只有拆卸和重新编排所有零件的位置,才可彻底解决问题。
电子管功放的调整

电子管功放的调整电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。
胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。
只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。
工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。
一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。
发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。
没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。
胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。
如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。
调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。
三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。
自制电子管并联调整推挽

自制电子管并联调整推挽(SRPP)电路SRPP(Shunt Regulated Pust-Pull)电路,即并联调整推挽电路是一款线性接近理想,而失真度、动态以及输出阻抗都比一般甲类放大电路更加好的优秀电路。
该电路最早使用在视频领域,所以频率响应非常宽,现在用于音频领域,确有杀鸡用牛刀的感觉。
笔者早在1992年春看到贵体翔先生在《实用电子文摘》上介绍日本的须贺一男用该电路做输入兼推动的混合型胆石机,频响宽达360kHz等指标后.曾立志今后—定要玩—玩该电路。
同年,2月时,再看到何绍和先生在《无线电与电视》上介绍该电路时,再也抑制不住兴奋。
从1993年春到1996年春这三年里不断地摸索,反复六次拆装,才终于做成今天这一款较理想的前级。
说句心理话,要做成一款电子管前级并不难。
因为几十年来,电子管技术的发展已经达到了颠峰,各种电路也非常成熟,关键是如何提高制作的技术,具体地说是如何提高它的倌噪比和降低失真度,而最难的就是提高信噪比。
在附图中,图1和图2分别是一个声道的放大电路和电源的电路图。
图1图2主电路是非常经典的SRPP电路,高低音电路是参照陈锦华先生发表在《音响世界》的路。
VR1是左右声道平衡电位器(VR1a表示一个声道的).用的是带有中间定位的ALPS 100k Ω×2的B型电位器。
由于本人使用的激光唱机是PhilipsCD931,带有音量调节,信号输出可达2伏,所以在本前级中不设音量控制,只设了输出电平调节VR4。
输入管G1我用的是旧的金脚ECC88,输出管G2常用6DJ8、6N11、有时也用6N2。
不同的管于有不同的声音,内阻越高胆味越浓,我爱用6DJ8听打击乐,用6N11听丝竹音乐,而用6N2听情歌。
事实上该电路适应性强,甚至全部用6N1也有非常好的声音。
由于上述各管的管脚相同,可以相互换插,不同的管子有不同的最佳工作点,但电子管的适应能力很强,屏压从6 0V到500V都能工作。
电子管功放调整方法

电子管功放调整方法电子管功放调整方法电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。
下面是店铺为大家整理的电子管功放调整方法,欢迎大家阅读浏览。
一、栅负压电路调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。
电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。
栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。
为了使胆管工作稳定,栅负压必须用直流电来供给。
按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。
另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。
使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负压整流电路发生故障,胆管失去栅负压后,屏流会上升过高而烧坏胆管,因此没有自给式栅负压工作可靠。
自给式栅负压产生的过程如下:图1表示电路中电流的流经过程,当电子管工作时,屏极和帘栅极吸收电子,电流从电源高压的负极经阴极电阻RK、屏极、输出变压器初级线圈和帘栅极的电流一起到高压的正极,成为一个负荷回路,当电流流过RK时,RK就产生一个电压降,RK两端的电压,在地线的一端为负极,在阴极的一端为正极。
这样,阴极和地线间就有了RK所产生的电位差,栅极电阻R1将栅极和地线连接,所以栅极和阴极间也就有了RK所产生的电位差。
由于不同的电子管所需要的栅负压不同,阴极电阻的阻值也不同,如6V6的阴极电阻300Ω,而6L6的阴极电阻170Ω。
阴极电阻的阻值可用欧姆定律求得:阴极电阻=栅负压/放大管电流(屏极电流+帘栅极电流)。
当栅极输入信号时,屏流立即被控制而波动,阴极电阻上的电流也就是波动的,所产生的电位差也是波动的,阴极电阻上电压波动的相位恰巧和输入的信号相反,因而减弱了输入信号,这种情况通常称本级电流负反馈,这种作用减低了本级放大增益。
电子管功放的调整

电子管功放的调整电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。
胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。
只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。
工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。
一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。
发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。
没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。
胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。
如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。
调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。
三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。
EL34胆机原理、制作及调试3

EL34胆机原理、制作及调试3电子管机电路调试的内容.除了将噪声降至可以接受的程度和更换输入、输出耦合电容的牌子或容量外,最重要的是调整各级电子管的屏压、屏流和负偏压,使电子管工作在合适的工作点上,使每只电子管的魅力达到满意的放音效果。
(一)第一级SRPP电路的调试6N11双三极管做电压放大电路甲类工作时,工作电流应在6N11管子最大屏流的30%-60%之间为宜,也即0.48mA-1.2mA为宜。
上管屏压应在电源电压Ecc=B+的一半。
对于SRPP电路而言,每个管子分一半电压,下管屏压应在电源电压的25%。
工作点的调试方法是:1.通过测量下管V1a的屏极电压.看是否是上管V1b的屏极电压的二分之一。
测量上管V1b的屏极电压,看是否是电源电压B+的二分之一.只要调整上管V1b的屏极负载电阻R5阻值即可。
当屏极电阻R5的阻值用的比较高时,失真小。
但这时,整流输出必须有较高的电压才行。
2.通过测量下管V1a阴极电阻(R2+R3)上的电压,可换算成屏极电流Ia。
只要同时调整上下两管阴极电阻(R2+R3)和R4的阻值,即可调整6N11下管V1a的屏极电流。
为了获取最低的失真和较大的动态范围.要求6N11的两只三极管性能对称,6N11两只三极管阴极电阻相等,也即R2+R3=R4。
第一级采用SRPP电路放音效果确实好听,但它存在两个缺点:一是第一、二级采用直耦,一、二级工作点要一块儿调整;二是当输入信号电压过高时,第二级倒相推动电路会有栅流,所以要求输入信号电压不能大。
(二)第二级倒相推动电路的调试倒相推动级的调整至关重要,上下两只管子输出信号是否对称相等,关系到整机的最大输出功率与失真。
因为电路状态的不同,一般情况下管屏极负载电阻R7,应比上管屏极负载电阻R9的阻值大10%。
两管阴极耦合电阻R8在10-20kΩ,两管屏极负载电阻R7、R9在20-50kΩ,调整方法很简单:1.通过调整上下两管屏极负载电阻阻值,使上下两管屏极电压相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用EL34制作的合并式电子管功放(上)电子管功放音色纯真而柔美,谐韵丰富,胆味浓郁,深受广大发烧友青睐。
今特推荐一款适合普通家庭使用和欣赏音乐的电子管合并式功放。
本机通用性强,制作简便,成功率高,升级换代方便。
电子管功放的负载能力很强,当额定输出功率能达到30W+30W时,其音乐功率可达120W+120W,可带动一对中型音箱,完全能满足家庭影院和欣赏各种室内乐的要求。
本功放电路采用通用型设计方案,功率放大管可采用6L6、6P3P、EL34、6CA7、KT88、6550等,工作状态根据制作者的偏爱,可分别制成A类或AB类放大形式,电路基本不变,只要调整功放栅极负压与部分元件参数即可。
常用功率管作A类与AB类推挽功放应用参考数据表:一、合并式功放电路简析图1 电子管合并式功放电原理图图l为电子管合并式功放电原理图。
输入电压放大级采用目前最流行的SBPP电路,由双三极电子管6N11担任,该管屏流与跨导值大,屏极线性范围宽,输入动态范围大。
输入的音频信号由下管栅极输入,工作于共阴极方式;上管工作于共栅极方式,经放大后的音频信号由上管阴极输出。
本输入级的特点是:输入阻抗高,输出阻抗低,因此,本前级放大具有传输损耗小,抗干扰性能好,频率响应特性好,特别是高频特性极佳,高频瞬态响应特性好的优点。
倒相放大级采用长尾式倒相电路,将输入级的音频信号直接耦合至倒相级。
这样不但拓宽了频响;同时又减少了因极间耦合电容带来的相位失真。
本电路由双三极电子管6N1l或6N6来担任。
上管为激励管;下管为倒相管。
两管共用阴极电阻,并具有深度电流负反馈的作用,故稳定性能好,相移失真小,共模抑制能力强。
对上管来说是串联输入;对下管来说是并联输入。
当有音频信号输入时,利用两管阴极的互耦作用,使屏极与阴极电流均随之变化,由于两管屏极负载电阻的阻值相同,两管输出电压的幅值相等,而两管屏极的输出电压方向相反,从而完成了倒相放大工作。
值得注意的是:前级输入放大管与倒相级放大管的阴极电位均接近100V,所以在选用双三极电子管代用时不能忽视,因为一般的双三极电子管,其阴极与灯丝之间的耐压均不超过100V,超过此极限电压时,将会导致灯丝与阴极间的击穿。
故比较适合使用的双三极管有:6Nll、6N6、12AX7、12AU7等。
此外,还必须注意的是倒相管栅极对地电容的容量可从0.1—0.22μF,耐压400V以上,不允许有丝毫的漏电,否则将会影。
向倒相级的工作状态,因此必须选用高质量的CBB电容为最佳。
推动放大级采用阴极输出电路,并将音频推动信号直接耦合至功放管的栅极,由双三极电子管6N 6担任。
本电路具有输入阻抗高,输出阻抗低,频率响应宽,失真系数小的优点。
因为阴极输出器实际上是串联输入式电压反馈电路的特例。
对于音频信号来说,屏极是接地点,而由阴极输出,此种电路其电压无增益,电流有增益。
为了使阴极输出器能获得较高的输出,就必须要求前级有较大的输入信号电压,而且要有效地利用阴极器非常优越的特性,其前级也必须输出几乎没有失真的信号电压。
本电路的输入放大级与倒相放大级在设计上均保持了足够的增益,而且为确保放大信号的高质量,两级放大器中均有适当的负反馈。
阴极输出器带负载能力极强,它能给出强劲的无削波的推动功率。
同时,由于阴极输出电压全部反馈,因而利用负反馈能大为改善功率放大器的各项性能,如非线性失真、频率响应、信号噪声比等均能得到近乎完美的改善。
功率放大器采用高保真超线性电路,超线性功放的显著特点是输出级加有帘栅极的负反馈。
在功放级输出变压器一次侧中增加一抽头接到帘栅极,因此,帘栅极上就从屏极输出电压中得到一部分反馈电压。
如果功放管栅极上加上正向信号时,此时电子管的屏流增加,于是负载电阻两端的信号电压也增加,也就是说,功放管栅极输入信号和屏极输出信号电压两者相位相反,而增加了帘栅极反馈后,使功放级输出电压有所降低,这表明,应用帘栅反馈时功放级的非线性失真可显著减小,噪声输出降低,频率特性得到改善,功放管等效内阻降低。
在超线性功放电路中,帘栅极反馈电压的深度与抽头位置有关,当抽头位置越接近屏极时,则反馈越深,最终如全部反馈时即成了三极管接法,此时放大器的增益将大幅度减小。
为了确保放大器的增益与性能两者兼顾,输出变压器上帘栅极抽头位置按阻抗比0.18计算为最佳,则线圈的匝数比为其平方根,即应设置在0.43处。
如功放管采用6L6、EL34时,该管栅极与帘栅极之间放大系数μ约等于8—9,则可求得反馈系数β=0.43/(8—9)≈1/20。
二、合并式功放底板布局图2 电子管合并式功放底板图图2为电子管合并式功放底板图。
电子管合并式功放的底板布局经多次实践后确定,本底板采用通用型设计方案,有利于改装与今后的升级换代。
底板尺寸为400mmX360mm,方便于放置在标准型机架之上。
底座后排中央安装电源变压器,两侧分别安装左、右声道输出变压器,垂直方向放置,电磁场感应最小。
电子管的布局分成三排,最后一排安装左、右声道两对功率电子管,采用标准型瓷八脚灯座,可适用于6L6、EL34、6P3P、6CA7、KT88、6550等各种功率电子管,这样与左、右声道输出变压器距离最近,接线最短,相互感应也最小;中间一排为左、右声道推动电子管,采用瓷九脚灯座,这样与功放级及前级距离最近;前面一排安装左、右声道输入放大管与倒相管,采用瓷九脚灯座,适合于6N1、6N2、6N11、6D J8、12AX7、12AU7等双三极电子管。
底座前下方为电源开关与左、右声道音量控制电位器;底座后下方为左、右声道输入端子与输出端子,电源进线与保险丝盒。
三、A类与AB类功放型式的选择根据制作者的偏爱,本机可制作成A类或AB类功放型式,功放电路基本相同,只要适当改变推动信号强度与功放管栅极负偏压,即可制作成不同类型的功率放大器。
为了使制作者能了解A类功放与AB类功放的特点,故特作如下简要的分析,使制作者可根据不同功放类型的:特点加以选择后确定。
图3为A类与AB类推挽功放特性曲线图。
A类功放的特点是:保真度高,音色纯真而柔和,但功放级的输出效率较低,一般只能达到25%—3 0%。
A类功放输出音频信号电压的波形,与栅极输入的波形完全相似,要达到此目的,功放管必须工作于栅压与屏流特性曲线中点Q的直线部分,功放管的栅极负压必须配置适当,使栅极上的输人推动电压在正半周最大值时,不超过所规定的栅极负压值;同时在负半周时,也不能使栅负压太低,致使达到屏流截止点或屏流曲线的弯曲部分,而引起失真。
图3 A类与AB类推挽功放特性曲线图所以说,A类功放栅负压必须配置在特性曲线中心段的直线部分,并在屏流截止值一半的位置上。
例如EL34功放管的栅负压作A类放大时,其屏流截止规定值为—18V,因此该管的栅极负压值应配置在—9V左右,而前级输入的推动电压变化亦要限制在最高不超过±9V范围之内,这样性能最好、保真度最高。
A类推挽功放中功放管的栅极负压,通常采用自给栅负压方式,使输入电压低于栅负压,功放级始终工作于线性放大的区域内,故栅极始终处于负电位,不会产生栅流,失真也最小。
只要按照已经设计好电路中所规定的数值,一般无需进行调试,功放均能正常地工作。
A类推挽功放级的屏极电流在零信号与满信号时起伏变化很小,如采用EL34作功放级推挽放大时,其功放管的屏极电流在零信号与满信号时,均保持在100—120mA之间,这样即保证了A类功放性能的稳定,因此,A类功放重放音的音质细腻而圆润,温顺而柔美,不像AB类功放的大起大落,重放音质粗犷而豪放,强劲而雄壮。
功率放大器的输出功率最终应是扬声器负载上所得的有效功率,因为输出变压器在传输过程中还存在一定的损耗,除去传输损耗后才是实际输出功率。
本机作A类推挽放大时,在8Ω负载下,每个声道的输出有效电压值为14V,则额定输出功率P=14 2/8≈25W。
AB类功放的特点是:功率强劲,动态范围大。
功放级的屏极效率比A类功放高,可达到50%左右,输出功率比A类增加一倍,功放电路与A类基本相同。
推动信号比A类强,因此功放管的栅极负压必须用得高一些,使功放管在不工作时,屏极电流比A类放大略小,但当前级有推动信号时,屏流即随之增高,推动电压越大,屏流也越大。
AB类功率放大器如果遇到输入的推动信号过强时,栅极亦会产生栅流,故AB类功率放大器又可分为ABl类与AB2类放大,ABl类放大时不产生栅流,因输入推动电压低于固定栅负压,故栅极始终处于负电位,不会产生栅流。
而AB2类放大器的特性已接近于B类功率放大器,其工作点已接近特性曲线的弯曲区域,故在强推动信号输入的瞬间,亦会产生栅流,但输出功率显著增大。
本合并式功放如功放管采用EL34作A类推挽放大时,栅极负压用—18V,而作ABl类放大时,则栅负压取—26V:为了提高推动级的输出电压,可将推动管6N6阴极电阻的阻值适当加大,这样输出电压即会提高。
ABl类放大器的工作点并不在特性曲线的直线部分,但由于推挽输出变压的作用,其失真系数亦可大大地减小。
ABl类功率放大器的栅极负压,同样可以取自于功放管的阴极电阻,阴极的自给栅负压电阻Rk是利用功放管阴极电流产生的压降作栅负压之用,其阴极电阻Rk的阻值是依据功放管屏流大小而变化的。
如功放管EL34作A类或ABl类推挽放大时,如推挽两管的总电流按照0.1A计算。
当功放管栅负压取—18V时,则阴极电阻的阻值Rk:18/0.1=180Ω;如栅负压需加深一些取—26V时,则阴极电阻的阻值Rk:26/0.1=260Ω。
功放级一次侧的负载阻抗取决于功放管屏极电压与电流,同时与功放输出功率的大小均有关系。
如功放管采用EL34,屏极电压取400V,屏极电流为0.1A时,则负载阻抗Rz=Va/Ia=400/0.1=4000Ω。
但在实际中还必须考虑到功放级的工作状态,如屏极负载阻抗过小时,功放管的工作可能进入特性曲线的弯曲区域内,从而引起失真,此时应适当增加其屏极的负载阻抗,当输出功率为25—30W时,其负载阻抗应为5000Ω左右;而当输出功率增大到50—60W时,则负载阻抗应取6000Ω左右为宜。
本合并式功放如采用EL34功放管作ABl类推挽放大时,其功放级栅至栅极的推动信号电压,由A类功放的38V增加到58V,功放管栅极的负电压亦由A类功放的—18V加深至—26V,因此输出功率亦随着栅极负压的加深而大幅度地增加。
功放管屏极电流的变化,亦由A类功放的100~120mA,变为ABl类9 0~180mA大幅度地起伏。
本机实测功放级的输出电压可达到20V,所以每声道输出功率P=202/8=50W。
ABl功放在使用时,音量控制电位器起初越开越响,继续增大时,当响到一定程度声音即会发毛,扬声器中有时还会出现扑扑声,这表明功放级输入的推动电压过强所致。