资产定价模型CAPM

合集下载

资本资产定价模型(CAPM)理论及应用

资本资产定价模型(CAPM)理论及应用

资本资产定价模型(CAPM)理论及应用资本资产定价模型(CAPM)理论及应用引言资本资产定价模型(Capital Asset Pricing Model,简称CAPM)是一种用于定量分析风险与收益之间关系的理论模型。

该模型通过对资产收益的风险与市场整体风险的比较,来确定资产的预期收益率。

本文将对CAPM模型的原理和应用进行深入探讨,并分析其在实际投资决策中的应用效果。

一、资本资产定价模型的基本原理1.1 风险与收益的关系在金融领域,风险与收益被广泛认为是密切相关的。

一般来说,投资者对于收益越高的资产风险的承受愿意越低,而对于风险越大的资产,投资者要求的预期收益率也会更高。

1.2 市场组合的重要性CAPM模型假设了市场处于均衡状态,投资者能够以市场组合作为风险基准。

市场组合包含了所有可交易资产的组合,且每个资产的权重与其在整个市场中的市值成正比。

1.3 Beta系数的引入CAPM模型引入了Beta系数,用于度量某一资产相对于市场整体风险的波动程度。

Beta系数为正值,表示资产与市场整体风险具有正相关关系;为负值,则表示二者呈现负相关关系;若为0,则代表二者之间无关。

1.4 资本资产定价模型的公式表示CAPM模型的公式表示为:E(R_i) = R_f + β_i * [E(R_m) - R_f]其中,E(R_i)代表资产i的预期收益率,R_f代表无风险利率,E(R_m)代表市场的预期收益率,β_i代表资产i的Beta系数。

二、资本资产定价模型的应用2.1 风险管理与资产配置利用CAPM模型,投资者可以根据不同资产的预期收益率和风险度量,进行合理的资产配置。

通过控制投资组合中不同资产的权重,投资者可以达到既满足风险可承受程度又能获得足够收益的目标。

2.2 测算资本成本CAPM模型可以用于测算企业的资本成本。

通过测算不同项目或投资的Beta系数,结合市场的预期收益率和无风险利率,可以得出不同项目的资本成本。

投资学中的资本资产定价模型(CAPM)风险与预期收益的关系

投资学中的资本资产定价模型(CAPM)风险与预期收益的关系

投资学中的资本资产定价模型(CAPM)风险与预期收益的关系资本资产定价模型(Capital Asset Pricing Model, CAPM)是投资学中广泛应用的理论模型,它用于评估资产的预期收益与风险之间的关系。

该模型的核心思想是通过系统性风险,即贝塔系数,来解释预期收益率,从而提供了一种衡量投资风险的方法。

本文将探讨CAPM模型中风险与预期收益之间的关系。

一、CAPM模型基本原理CAPM模型是由美国学者威廉·夏普、约翰·莱特纳和杰克·特雷纳提出的。

该模型建立在一系列假设的基础上,包括投资者风险厌恶程度相同、无风险利率存在、市场资产组合是风险资产的惟一有效组合等。

根据这些假设,CAPM模型得出了风险与预期收益之间的线性关系,即预期收益率等于无风险利率加上风险溢价,而风险溢价等于资产的贝塔系数乘以市场风险溢价。

二、风险与预期收益的关系在CAPM模型中,风险通过资产的贝塔系数来度量。

贝塔系数是一个衡量资产价格与市场整体波动性之间关系的指标,它代表了资产相对于市场的敏感性。

贝塔系数大于1表示资产的价格波动幅度大于市场,小于1表示资产的价格波动幅度小于市场,等于1表示资产的价格波动与市场相同。

根据CAPM模型,贝塔系数越高,意味着资产的风险越高,预期收益也越高。

这是因为高风险资产需要提供更高的预期收益率来吸引投资者。

三、市场风险溢价CAPM模型中的市场风险溢价是指投资者愿意支付的超过无风险利率的溢价。

市场风险溢价表示了投资者对承担市场整体风险的回报要求。

根据CAPM模型,市场风险溢价等于市场整体风险与无风险利率之差,即市场风险溢价=市场预期收益率-无风险利率。

四、CAPM模型的应用与局限性CAPM模型在投资组合的风险评估、资产定价等方面具有广泛的应用。

通过使用CAPM模型,投资者能够评估特定资产的预期收益与风险,并与市场整体表现进行比较,以作出投资决策。

然而,CAPM模型也存在一定的局限性。

名词解释资本资产定价模型

名词解释资本资产定价模型

名词解释资本资产定价模型
资本资产定价模型(Capital Asset Pricing Model,CAPM)是一种金融模型,用于确定资产的期望回报率。

该模型基于投资组合理论,旨在帮助投资者衡量资产的风险和预期回报之间的关系。

CAPM的核心假设是,投资者在形成投资组合时是理性的,并且希望最大化预期回报并最小化风险。

该模型使用市场风险溢价和无风险利率来衡量资产的预期回报。

市场风险溢价是指投资者预期获得的超过无风险资产(通常是国库券)回报的额外回报,而无风险利率则代表没有风险的资产的预期回报率。

CAPM的数学表达式为,\[E(R_i) = R_f + \beta_i(E(R_m)
R_f)\]
其中,\(E(R_i)\)代表资产i的预期回报率,\(R_f\)代表无风险利率,\(\beta_i\)代表资产i的贝塔系数,\(E(R_m)\)代表市场组合的预期回报率。

根据CAPM,资产的预期回报率取决于其贝塔系数和市场风险溢价。

贝塔系数衡量了资产相对于整个市场组合的风险,当资产的贝
塔系数大于1时,意味着资产的风险高于市场平均水平,反之亦然。

尽管CAPM在金融理论中具有重要地位,但也存在一些争议。


些批评者指出,CAPM的假设过于简化,忽视了许多现实世界中的复
杂因素,例如市场摩擦和投资者的非理性行为。

此外,一些研究也
发现CAPM在解释实际市场中的资产回报率时存在一定的局限性。

总的来说,CAPM是一种重要的金融模型,用于帮助投资者理解
资产回报率与风险之间的关系,但在实际应用中需要结合其他因素
进行综合分析。

详解资本资产定价模型(CAPM)

详解资本资产定价模型(CAPM)
命题成立,证毕。
rp
可行集
( 1 , r1 )
为风险资产组合
r1 rf
rf
1
可行集的斜率为
r1 rf
p
1
不可行
在过无风险利率点的很多可行集 (直线)中,与原本的风险资产 组合的可行集相切的那条直线是加 入无风险资产后的新的组合的有效集。

收益rp
M ● Rf-M为有效集
rf
非有效
风险σp
8.1.2 CAPM的基本假设


CAPM模型是建立在一系列假设基础之上的。 设定假设的原因在于:由于实际的经济环境过于复杂, 以至我们无法描述所有影响该环境的因素,而只能集 中于最重要的因素,而这又只能通过对经济环境作出 的一系列假设来达到。 放宽假设
8.1.2 CAPM的基本假设
命题1:一种无风险资产与风险组合构成的新组 合的可行集为一条直线。 证明:假定风险组合(基金)已经构成, 其期望收益为 r1 ,标准差为 1 。 无风险资产的收益为 rf ,标准差为 0 。 1 w1为无风险 w1 为风险组合的投资比例, 证券的的投资比例,则组合的期望收益 rp 为
rp w1 r1 (1 w1 )rf
(1)
组合的标准差为 p w1 1 (2) 由()和( 1 2)可得
一种风险资产与无风险资产构 成的组合,其标准差是风险资 产的权重与标准差的乘积。
p p (r1 rf ) rp r1 (1 )rf =rf p 1 1 1 r1 可以发现这是一条以rf 为截距,以 为斜率的直线。 1

切点证券组合图示
收益rp
无差异曲线
8.1.3 分离定理

例子:考虑 A、B、C 三种证券,市场的无风险利率为 4% ,我们证明了切点证券组合 T 由 A、B、C 三种证券 按0.12,0.19,0.69的比例组成。如果假设1-10成立, 有两个投资者,他们的初始资金都是100万元,则,第 一个投资者把一半的资金50万,投资在无风险资产上, 把另一半 50 万投资在 T 上,而第二个投资者以无风险 利率借到相当于他一半初始财富的资金 50万,再把所 有的资金150万投资在T上。这两个投资者投资在A、B、 C三种证券上的比例分别为:

capm模型的名词解释

capm模型的名词解释

capm模型的名词解释投资领域中的CAPM模型被广泛用于衡量风险和回报的关系。

CAPM是英文名称Capital Asset Pricing Model的缩写,中文翻译为资本资产定价模型。

它是由美国经济学家沃伦·巴菲特在1964年首次提出的。

本文将对CAPM模型涉及的一些名词进行解释和探讨,以便更好地理解这一模型。

1. 资本资产定价模型(Capital Asset Pricing Model)资本资产定价模型是一个衡量资本资产收益与风险之间关系的理论模型。

它的核心概念是用回报率的期望值和风险的标准差来衡量资产的预期收益率。

CAPM模型认为,一个资产的回报率应该等于无风险回报率与该资产的风险系数(β)的乘积,再加上市场整体回报率减去无风险回报率的差异。

2. 无风险回报率(Risk-Free Rate)无风险回报率是投资者可以在完全没有风险的情况下获得的回报率,比如国家债券或其他政府支持的债券。

CAPM模型使用无风险回报率作为市场的参考点,因为投资者应该至少要得到与无风险投资相当的回报。

3. β系数(Beta)β系数衡量了一个资产相对于整个市场波动的程度。

它是资产的系统性风险,也称为市场风险。

β系数的计算基于历史数据,通过与市场整体的回报率进行对比,可以获得一个资产的β系数。

β系数大于1表示资产的波动比市场整体更大,而小于1则表示资产的波动比市场整体更小。

4. 风险溢价(Risk Premium)风险溢价表示投资者因承担更高风险而获得的额外回报。

在CAPM模型中,风险溢价是指资产预期回报率与无风险回报率之间的差异。

投资者愿意承担更高的风险,是因为他们期望通过获得更高的回报来弥补这种风险。

5. 市场整体回报率(Market Return)市场整体回报率是指整个市场内所有资产组合的回报率加权平均值。

在CAPM 模型中,市场整体回报率也被称为市场组合回报率,它是根据市场上所有资产的权重来计算的。

市场整体回报率的变化将直接影响资产的期望回报率。

capm资本资产定价模型简答题

capm资本资产定价模型简答题

题目:解读CAPM资本资产定价模型1. 什么是CAPM资本资产定价模型?CAPM资本资产定价模型是一种金融模型,用于估算证券的期望回报率。

该模型是由美国学者威廉·夏普(William Sharpe)、约翰·林特纳(John Lintner)、詹姆斯·托布因(Jan Mossin)在20世纪60年代开发的。

2. CAPM资本资产定价模型的核心假设CAPM模型基于以下核心假设:投资者是风险规避者,市场不存在交易费用,所有投资者对市场信息持相同看法,资本市场是完全有效的,即投资者可以无限倾向于能够实现无风险利率的债券。

3. 核心公式及理论CAPM模型最核心的公式为:\[E(R_i) = R_f + \beta_i(E(R_m) - R_f)\] 其中,\(E(R_i)\)代表证券的期望回报率,\(R_f\)代表无风险资产的利率,\(\beta_i\)代表证券相对于市场组合的贝塔系数,\(E(R_m)\)代表市场组合的期望回报率。

4. CAPM模型的应用CAPM模型在金融领域有着广泛的应用,特别是在证券投资组合的构建和管理中。

通过CAPM模型,投资者可以评估证券的风险和期望回报率,从而做出投资决策。

5. 我的观点与理解个人认为,CAPM模型作为一种理论模型,虽然具有一定的局限性,但在一定程度上仍然能够帮助投资者分析和评估资产的风险和收益。

然而,应该根据实际情况在实践中灵活运用,结合其他金融模型进行综合分析和决策。

总结回顾:CAPM资本资产定价模型是一种用于估算证券期望回报率的理论模型,其核心公式和假设为投资者提供了一种分析风险和回报的方法。

然而,投资者在实际运用中需注意该模型的局限性,并结合其他模型进行综合分析和决策。

希望以上对CAPM资本资产定价模型的简要解读能够帮助您更全面地了解这一重要的金融概念。

CAPM资本资产定价模型是现代金融学中非常重要的一部分,它为投资者和市场参与者提供了一种分析和估算证券回报率的理论模型。

资本资产定价模型CAPM和公式

资本资产定价模型CAPM和公式

资本资产定价模型CAPM和公式资本资产定价模型(Capital Asset Pricing Model,CAPM)是一种金融模型,用于估算资产价格与风险之间的关系。

CAPM模型假设投资者在资产配置的过程中决策基于风险和预期收益,通过计算其中一资产的预期收益率,可以确定该资产的合理价格。

下面将详细介绍CAPM模型的原理和公式。

CAPM模型的基本原理:CAPM模型是由美国学者Sharpe、Lintner和Mossin等人在1960年代提出的。

该模型基于以下几个假设:1.投资者的决策基于预期收益和风险。

投资者倾向于追求高收益且厌恶风险。

2.投资者会将资金分散投资在多个资产上,以降低整体风险。

3.资本市场的效率假设,即投资者可以自由买入或卖出任何资产,并且资产价格反映市场上所有信息的整体预期价值。

CAPM模型的公式:CAPM模型的核心公式是:E(Ri)=Rf+βi(E(Rm)-Rf)其中E(Ri):表示资产i的预期收益率。

Rf:表示无风险资产的收益率。

βi:表示资产i的β系数,用于衡量资产i相对于市场整体风险的敏感程度。

E(Rm):表示市场整体的预期收益率。

公式中的Rf是无风险利率,可以选择国债利率等稳定且无风险的投资收益。

资产i的β系数衡量资产i相对于市场整体风险的敏感程度,β系数越大表示资产i的风险越高,反之亦然。

市场整体的预期收益率E(Rm)可以通过历史数据或其他方法进行估算。

CAPM模型的应用:CAPM模型可以应用于多种情况,比如投资组合的优化、资产定价和投资决策等。

通过计算资产的预期收益率,我们可以判断该资产的价格是否被市场低估或高估。

如果资产的实际收益率高于其预期收益率,我们可以认为该资产被低估,反之亦然。

尽管CAPM模型在理论上存在一些假设和限制,但它仍然是衡量资产风险和收益之间关系的重要工具。

通过对CAPM模型的研究和应用,我们可以更准确地估算资产的风险和收益,从而做出更明智的投资决策。

CAPM资本资产定价模型

CAPM资本资产定价模型

资本资产定价模型(Capital Asset Pricing Model简称CAPM)资本资产定价模型(CapitalAssetPricingModel简称CAPM)是由美国学者夏普(William Sharpe)、林特尔(John Lintner)、特里诺(Jack Treynor)和莫辛(JanMossin)等人在资产组合理论的基础上发展起来的,是现代金融市场价格理论的支柱,广泛应用于投资决策和公司理财领域。

一、资本资产定价模型资本资产定价模型就是在投资组合理论和资本市场理论基础上形成发展起来的,主要研究证券市场中资产的预期收益率与风险资产之间的关系,以及均衡价格是如何形成的.CAPM是建立在马科威茨模型基础上的,马科威茨模型的假设自然包含在其中:1、投资者希望财富越多愈好,效用是财富的函数,财富又是投资收益率的函数,因此可以认为效用为收益率的函数。

2、投资者能事先知道投资收益率的概率分布为正态分布。

3、投资风险用投资收益率的方差或标准差标识。

4、影响投资决策的主要因素为期望收益率和风险两项。

5、投资者都遵守主宰原则(Dominancerule),即同一风险水平下,选择收益率较高的证券;同一收益率水平下,选择风险较低的证券。

CAPM的附加假设条件:6、可以在无风险折现率R的水平下无限制地借入或贷出资金。

7、所有投资者对证券收益率概率分布的看法一致,因此市场上的效率边界只有一条。

8、所有投资者具有相同的投资期限,而且只有一期。

9、所有的证券投资可以无限制的细分,在任何一个投资组合里可以含有非整数股份。

10、买卖证券时没有税负及交易成本。

11、所有投资者可以及时免费获得充分的市场信息。

12、不存在通货膨胀,且折现率不变。

13、投资者具有相同预期,即他们对预期收益率、标准差和证券之间的协方差具有相同的预期值。

上述假设表明:第一,投资者是理性的,而且严格按照马科威茨模型的规则进行多样化的投资,并将从有效边界的某处选择投资组合;第二,资本市场是完全有效的市场,没有任何磨擦阻碍投资。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
-50% -41% -32% -23% -14%
-5% 4% 13% 22% 31% 40% 49% 58% 67%
期望收益率(连续型)
n
R
=
S
i=1
(
Ri
)
/
(
n
)
R 资产的期望收益率,
Ri 第I期的可能收益率, n 可能性的数目.
5-14
计算标准差 (衡量风险)
n
=
S(
i=1
Ri
-
R
)2
安徽省总会计师协会
专家论坛
(选编)
风险和收益
5-1
风险和收益
风险和收益的概念 用概率分布衡量风险 风险态度 证券组合中的风险和收益 投资分散化 资本-资产定价模型 (CAPM)
5-2
收益的概念
收益等于一项投资的收入加上市价的任何 变化,它经常以占投资的初始市价的一 定百分比来表示。
R=
$1.00 + ($9.50 - $10.00 ) $10.00
= 5%
5-5
风险的概念
证券预期收益的不确定性.
你对今年的投资(储蓄)的期望报酬率是多少? 你实际上赚取的收益率是多少? 如果它是银行信用卡或一份股票投资呢?
5-6
计算期望收益率
n
R
=
S(
i=1
Ri
)(
Pi
)
R是资产的期望收益率
R = Dt + (Pt - Pt-1 )
Pt-1
5-3
收益举例
股票A在1年前的价格为10美元。现在的交易价 格为9.50美元,并且股东刚刚收到了1美元的股 利。在过去的一年中,股票A的收益是多少?
5-4
收益举例
股票A在1年前的价格为10美元。现在的交易价 格为9.50美元,并且股东刚刚收到了1美元的股 利。在过去的一年中,股票A的收益是多少?
CV = s / R CV (BW) = .1315 / .09 = 1.46
5-12
离散型和连续型
离散型
0.4 0.35
0.3 0.25
0.2 0.15
0.1 0.05
0 -15% -3% 9% 21% 33%
5-13
连续型
0.035 0.03 0.025 0.02 0.015 0.01 0.005
)(
Rj
)
Rp 是投资组合的期望报酬率
Wj 是投资于 j 证券的资金占总投资额的比例或
权数
Rj 是证券 j 的期望收益率
m 是投资组合中不同证券的总数
5-24
计算投资组合的标准差
mm
P =
SS
j=1 k=1
Wj
Wk
jk
Wj 是投资于证券 j 的资金比例(占总投资) Wk 是投资于 k 证券的资金比例(占总投资) jk 是j证券和k证券可能收益的协方差
-0.2 ENTER


20.9 ENTER


28.3 ENTER


-5.9 ENTER


3.3 ENTER


12.2 ENTER


10.5 ENTER


5-18
使用计算器!
检查结果! 按键:
2nd
Stat
输出结果. 期望收益率是 9%
标准方差是 13.32%.
计算速度比笔算快,但比 用spreadsheet慢.
(Ri - R )2(Pi) .00576 .00288 .00000 .00288 .00576 .01728
计算标准差 (衡量风险)
n
=
S
i=1
(
Ri
-
R
)2(
Pi
)
= .01728
= .1315 或 13.15%
5-11
方差系数
概率分布的标准差与期望值 的比率。 它是相对风险的衡量标准
5-19
风险态度
确定性等值 (CE) 是某人在一定时点所要
求的确定的现金额,此人觉得该索取的 现金额与在同一时间点预期收到的一个 有风险的金额无差别。
5-20
风险态度
确定性等值 > 期望值 风险爱好
确定性等值 = 期望值 风险中立
确定性等值 < 期望值 风险厌恶
绝大多数的个人都是风险厌恶者。
5-21
计算期望收益率和标准方差.
5-16
使用计算器!
先按 “Data”. 然后按键:
2nd
Data
2nd CLR Work 9.6 ENTER -15.4 ENTER 26.7 ENTER 注意只输入“X”变量的 数据.
5-17
使用计算器!
Enter “Data” first选择:(1)有保证的 $25,000 或 (2) 不知结果的 $100,000 (50%的概率) 或者 $0 (50% 的概率)。赌博的期望价值是 $50,000。
Mary 选择有保证的$25,000. Raleigh 选择期望价值是 $50,000。 Shannon 期望至少$52,000
(n)
注意:适用于连续分布的随机变量在一个 时点可取任意值
R 代表加权平均数
5-15
连续型变量
下面是一种特殊的连续型变量人口的收益 率 (只有10个可能性的数据).
9.6%, -15.4%, 26.7%, -0.2%, 20.9%, 28.3%, -5.9%, 3.3%, 12.2%, 10.5%
5-22
风险态度举例
每个人的风险倾向是什么?
Mary 属于风险厌恶者,因为她对赌博的确定性等
值 < 期望值。
Raleigh 属于风险中立者。因为她对赌博的确定
性等值 = 期望值。
Shannon属于风险爱好者。因为她对赌博的确定
性等值>期望值。
5-23
计算投资组合的期望收益率
m
RP
=S j=1
(
Wj
or 9%
计算标准差 (衡量风险)
n
=
S
i=1
(
Ri
-
R
)2(
Pi
)
标准差, , 是一种衡量变量的分布预期平 均数偏离的统计量。
它是方差的平方根。
5-9
如何计算期望收益率和标准差
股票 BW
Ri
Pi
-.15
.10
-.03
.20
.09
.40
.21
.20
.33
.10
总计 1.00
5-10
(Ri)(Pi) -.015 -.006 .036 .042 .033 .090
5-25
Tip Slide: 附录 A
第 5 章17-19幅投影假设学生已 阅读过第5章附录 A
5-26
什么是协方差 ?
jk = j k rjk
Ri 是第 i 种可能的收益率 Pi 是收益率发生的概率 n 是可能性的数目
5-7
怎样计算期望收益率和标准差
BW 股票
Ri
Pi
-.15
.10
-.03
.20
.09
.40
.21
.20
.33
.10
合计
1.00
5-8
(Ri)(Pi)
-.015 -.006 .036 .042 .033 .090
BW 股票 的期望收 益率是 .09
相关文档
最新文档