半导体发光与光吸收

合集下载

PL简介

PL简介

l1
2015/10/21
l2
l 2
l3
二、基本原理
在这个过程中,有六种不同的复合机构会发射光子,它们是:
(1)自由载流子复合——导带底电子与价带顶空穴的复合;
(2)自由激子复合——晶体中原子的中性激发态被称为激子,激子 复合也就是原子从中性激发态向基态的跃迁,而自由激子指的是可以 在晶体中自由运动的激子,这种运动显然不传输电荷; (3)束缚激子复合——指被施主、受主或其他陷阱中心(带电的或不 带电的)束缚住的激子的辐射复合,其发光强度随着杂质或缺陷中心 的增加而增加; (4)浅能级与本征带间的载流子复合——即导带电子通过浅施主能 级与价带空穴的复合,或价带空穴通过浅受主能级与导带电子的复合;
ห้องสมุดไป่ตู้2015/10/21
五、优缺点
优点
光致发光分析方法的实验设备比较简单、测量本身是非破坏性的,而 且对样品的尺寸、形状以及样品两个表面间的平行度都没有特殊要求。 它在探测的量子能量和样品空间大小上都具有很高的分辨率,因此适 合于作薄层分析和微区分析。
缺点
它的原始数据与主要感兴趣的物理现象之间离得比较远,以至于经常 需要进行大量的分析,才能通过从样品外部观测到的发光来推出内部 的符合速率。 光致发光测量的结果经常用于相对的比较,因此只能用于定性的研究 方面。 测量中经常需要液氦低温条件也是一种苛刻的要求。 对于深陷阱一类不发光的中心,发光方法显然是无能为力的。
2015/10/21
四、应用
光致发光光谱是一种探测材料电子结构的方法,它与材料无接触且不 损坏材料。光直接照射到材料上,被材料吸收并将多余能量传递给材 料,这个过程叫做光激发。这些多余的能量可以通过发光的形式消耗 掉。由于光激发而发光的过程叫做光致发光。光致发光的光谱结构和 光强是测量许多重要材料的直接手段。光激发导致材料内部的电子跃 迁到允许的激发态。当这些电子回到他们的热平衡态时,多余的能量 可以通过发光过程和非辐射过程释放。光致发光辐射光的能量是与两 个电子态间不同的能级差相联系的,这其中涉及到了激发态与平衡态 之间的跃迁。激发光的数量是与辐射过程的贡献相联系的。

半导体物理第十章半导体的光学性质

半导体物理第十章半导体的光学性质
自发辐射光子的位相和传播方向与 入射光子不相同。
吸收 自发吸收
受激辐射:
当处于激发态(E2)的原子收到另一个能量为(E2-E1)的光子 作用时,受激原子立刻跃迁到基态E1,并发射一个能量也 为(E2-E1)的光子。这种在光辐射的刺激下,受激原子从激 发态向基态跃迁的辐射过程,成为受激辐射。 受激辐射光子的全部特性(频率,位相,方向和偏振态等 与入射光子完全相同。 受激辐射过程中,一个入射光子能产生两个相位,同频率 的光子
透过一定厚度d的媒质(两个界面):
T = (1− R)2 e−αd
如:玻璃,消光系数k=0 T=(1-R)2=0.962~92%
10.2 半导体的光吸收
本征吸收 直接跃迁,间接跃迁 其他吸收过程
10.2.1 本征吸收
本征吸收: 电子吸收光子由价带激发到导带的过程
条件:
hω ≥ hω0 = Eg
反射系数
R = ( n1 − n2 )2 n1 + n2
= ( n −1− ik )2 n +1− ik
=
(n −1)2 + k 2 (n +1)2 + k 2
玻璃折射率为 n~1.5,k~0, 反射率R~4% 如某一材料 n~4, k~0, 反射率为 R~36%
透射系数,透过某一界面的光的能流密度比值: T=1-R
把处于激发态E2的原子数大于处于基态E1的原子数的这种 反常情况,成为“分布反转”或“粒子数反转”。
要产生激光,必须在系统中造成粒子数反转。
粒子数反转条件
为了提高注入效率 异质结发光: PN结两边禁带宽度不等,势垒不对称。 空穴能注入N区,而电子不能注入P区。 P区为注入区,N区为发光区。

第五章半导体中的光辐射和光吸收

第五章半导体中的光辐射和光吸收

第五章半导体中的光辐射和光吸收1. 名词解释:带间复合、杂质能级复合、激子复合、等电子陷阱复合、表面复合。

带间复合:在直接带隙的半导体材料中,位于导带底的一个电子向下跃迁,同位于价带顶的一个空穴复合,产生一个光子,其能量大小正好等于半导体材料E。

的禁带宽度g浅杂质能级复合:杂质能级有深有浅,那些位置距离导带底或价带顶很近的浅杂质能级,能与价带之间和导带之间的载流子复合为边缘发射,其光子能量总E小。

比禁带宽度g激子复合:在某些情况下,晶体中的电子和空穴可以稳定地结合在一起,形成一个中性的“准粒子”,作为一个整体存在,即“激子”。

在一定条件下,这些激子中的电子和空穴复合发光,而且效率可以相当高,其复合产生的光子能量小E。

于禁带宽度g等电子陷阱复合:由于等电子杂质的电负性和原子半径与基质原子不同,产生了一个势场,产生由核心力引起的短程作用势,从而形成载流子的束缚态,即陷阱能级,可以俘获电子或空穴,形成等电子陷阱上的束缚激子。

由于它们是局域化的,根据测不准关系,它们在动量空间的波函数相当弥散,电子和空穴的波函数有大量交叠,因而能实现准直接跃迁,从而使辐射复合几率显著提高。

表面复合:晶体表面的晶格中断,产生悬链,能够产生高浓度的深的或浅的能级,它们可以充当复合中心。

通过表面的跃迁连续进行表面复合,不会产生光子,因而是非辐射复合。

2. . 什么叫俄歇复合,俄歇复合速率与哪些因素有关?为什么长波长的InGaAsP 等材料的俄歇复合比短波长材料严重?为什么俄歇复合影响器件的J th 、温度稳定性和可靠性? 解析:● 俄歇效应是一个有三粒子参与、涉及四个能级的非辐射复合的效应。

在半导体中,电子与空穴复合时,把能量或者动量通过碰撞转移给第三个粒子跃迁到更高能态,并与晶格反复碰撞后失去能量。

这种复合过程叫俄歇复合.整个过程中能量守恒,动量也守恒。

●半导体材料中带间俄歇复合有很多种,我们主要考虑CCHC 过程(两个导带电子与一个重空穴)和CHHS 过程(一个导带电子和两个重空穴)。

半导体光过程_第四章半导体中的光发射 1

半导体光过程_第四章半导体中的光发射 1

第四章半导体中的光发射
光发射是所有半导体发光器件的原点
发光Å----Æ吸收;两个互为反过程
不同之处:
--吸收可以包含材料中的所有可能的跃迁过程,光谱比较宽;
--发光只包含很小能量范围的载流子,光谱较窄(宽度>=kT)
发光要求系统处于非平衡状态,因此需要外界提供某些条件。

半导体的光发射
--van Roosbroeck-Shockley 关系--发光效率
--各类发光过程
--直接带间发光
--能带-杂质能级间发光
--施主-受主对发光
--激子复合发光
自由激子,束缚激子
n-type
D.A.Cusano, Solid State Communications2,353(1964).
M.I.Nathan and G.Burns, Appl. Phys. Lett. 1,89(1962)
作业:1)上述文献阅读;2)调查Si, Ge, GaN, ZnO任一种材料的发光随掺杂浓度(n,p两种)变化规律
光子能量(eV)。

半导体物理-第10章-半导体的光学性质

半导体物理-第10章-半导体的光学性质

光电导的弛豫时间越短,光电导的定态值也越小(即灵敏 度越低)
10.2.3 复合中心和陷阱对光电 导的影响
高阻光电材料中典型的 复合中心对光电导的影响。 这样的材料对光电导起决定 作用的是非平衡多数载流 子,因为非平衡少数载流子 被陷在复合中心上,等待与 多数载流子的复合。
复合中心和多数载 流子陷阱作用。延 长了光电导的上升 和下降的驰豫时间, 降低了定态光电导 灵敏度。
4. 晶格吸收
半导体晶格热振动也可引起对光的吸收,光子能量直接 转变为晶格热振动的能量,使半导体的温度升高,这样的 光吸收过程称为晶格吸收。晶格吸收光谱在远红外范围, 对于离子晶体或离子性晶体具有较明显的晶格吸收作用
10.2 半导体的光电导 10.2.1 光电导的描述
光照射半导体,使其电导率改变的现象为光电导效应。 (1)本征光电导:本征吸收引起载流子数目变化。 (2)杂质光电导:杂质吸收引起载流子数目变化。
这种自由载流子吸收光子之后,实际上是在同一能带中发 生不同状态之间的跃迁,因此吸收的光子能量不需要很大, 所以吸收光谱一般在红外范围
3. 杂质吸收
当温度较低时,半导体施主能级上束缚的电子(或受 主能级上束缚的空穴)没有电离,被束缚的电子(或被 束缚的空穴)吸收光子的能量之后,可激发到导带(或 价带)中去,这样的光吸收过程称为杂质吸收。
2 光电池的电流-电压特性
金属和p型半导体接触阻挡层的光致电流为
IL
qAN0
1
Ln
exp
d
式中:A为接触面积;N0为在单位时间内单位接触面 积从表面到扩散区内产生的电子-空穴对数;λ为入 射光平均深入的距离;d为耗尽宽度
P-n结光致电流表示
IL qQA Lp Ln

33半导体的光吸收、光辐射(3.5)

33半导体的光吸收、光辐射(3.5)

§3.3 半导体的光吸收和光辐射在半导体中,与光有关的现象就是两点:光吸收与光辐射,这是两个相反过程,它构成光与半导体中的电子相互作用的基本内容。

在光吸收过程中,电子吸收光子能量从低能级跃迁到高能级。

而在光辐射过程中,电子从高能级跃迁至低能级,发射一个光子。

光吸收应用于探测器,光辐射应用于半导体光源。

一、 光吸收半导体中的光吸收主要有五种形式:1、本征吸收半导体吸收光子能量使价带中的电子激发到导带,此过程称为本征吸收。

结果是产生等量的自由电子和自由空穴。

本征吸收产生的条件: g E h ≥ν 既光子能量大于禁带宽度或 g E c h≥λ ν和λ为照射光的频率和波长 ∴h E g ≥ν, c g g m ev E E hc λμλ==≤)()(24.1(阈值波长) c λ只与禁带宽度有关举例: T = 300K E g (ev) c λ(μm)Ge 0.66 1.87Si 1.12 1.1GaAs 1.35 0.922、 杂质吸收杂质能级上的电子(或空穴)吸收光子能量从杂质能级跃迁到导带(或价带),此过程称为杂质吸收。

杂质吸收产生的条件:光子能量大于杂质电离能。

d E h ∆≥ν(施主电离能) n 型 a E h ∆≥ν (受主电离能) p 型阈值波长 )()(1.24m ev E E hc d d c μλ∆=∆= n 型 )()(1.24m ev E E hc a a c μλ∆=∆= p 型 一般杂质电离能比禁带宽度小很多,因此杂质吸收的阈值波长较长 ,多在红外或远红外区。

举例: )(ev E d ∆ )(ev E a ∆ )(m c μλSi:P 0.045 29Si:B 0.0439 29Ge:B 0.0104 120Ge:Au 0.053 25实际上,杂质吸收还可以由价带与施主能级之间的跃迁以及受主能级与导带之间的跃迁而产生,这两种跃迁因能级差大,需要吸收较大的光子能量。

第十章-半导体的光学性质和光电_.....

第十章-半导体的光学性质和光电_.....

杂质吸收
杂质可以在半导体的禁带中引入杂质能级,例 如Ge和Si中的III族和V族杂质。占据杂质能级 的电子或空穴的跃迁可以引起光吸收,这种吸 收称为杂质吸收,可以分为下面三种类型: 吸收光子可以引起中性施主上的电子从基 态到激发态或导带的跃迁; 中性受主上的空穴从基态到激发态或价带 的跃迁; 电离受主到电离施主间的跃迁; 由于杂质能级是束缚态,因而动量没有确定的 值,所以不必 满足动量守恒的要求,因此跃迁 几率较大。

在半导体中。最主要的吸收过程是电子由价带 向导带的跃迁所引起的光吸收,称为本征吸收 或基本吸收.这种吸收伴随着电子-空穴对的产 生,使半导体的电导率增加,即产生光电导。 显然,引起本征吸收的光子能量必须等于或大 于禁带宽度,即
h h 0 = E g

对应的波长称为本征吸收限。根据上式,可得 出本征吸收长波限的公式为


I = I 0e
半导体的光吸收吸收
半导体材料中的电子吸收光子的能量,从能量较低 的状态跃迁到能量较高的状态。这种跃迁可以发生 在: 1、不同的能带之间; 2、同一能带的不同状态之间; 3、禁带中的分立能级之间; 4、禁带中的分立能级和能带之间。 以上各种吸收引起不同的吸收过程。

本征吸收
1.242 c = ( mm) Eg (eV )
Burstein-Moss effect
吸收谱与吸收边
吸收系数对光子能量(或波 长)的依赖关系称为吸收谱。 本征吸收限可在吸收谱中明 显地表现出来。吸收系数曲 线在短波端陡峭地上升,是 半导体吸收谱突出的一个特 点。它标志着本征吸收的开 始。 通常把吸收限附近的吸收谱 称为吸收边。它相应于电子 由价带顶附近到导带底附近 的跃迁。
E g E P w E g E p w < E g

半导体的光学性质和光电与发光现象

半导体的光学性质和光电与发光现象

束缚在杂质能级上的电子或空穴也可以引起光的吸收。

电子可以吸收光子跃迁到导带能级;光电导灵敏度一般定义为单位光照度所引起的光电导。

复合和陷阱效应对光电导的影响少数载流子陷阱作用多数载流子陷阱作用本征光电导的光谱分布指对应于不同的波长,光电导响应灵敏度的变化关系。

杂质光电导对于杂质半导体,光照使束缚于杂质能级上的电子或空穴电离,因而增加了导带或价带的载流子浓度,产生杂质光电导。

4半导体的光生伏特效应当用适当波长的光照射非均匀半导体(pn结等)时,由于内建电场的作用(不加外电场),半导体内部产生电动势(光生电压);如将pn结短路,则会出现电流(光生电流)。

这种由内建场引起的光电效应,称为光生伏特效应。

pn结的光生伏特效应由于pn结势垒区内存在较强的内建场(自n区指向p区),结两边的光生少数载流子受该场的作用,各自向相反方向运动:p区的电子穿过pn结进入n区;n区的空穴进入p区,使p端电势升高,n端电势降低,于是pn结两端形成了光生电动势,这就是pn结的光生伏特效应。

光电池的电流电压特性5半导体发光1.处于激发态的电子可以向较低的能级跃迁,以光辐射的形式释放能量。

也就是电子从高能级向低能级跃迁,伴随着发射光子。

这就是半导体的发光现象。

2.产生光子发射的主要条件是系统必须处于非平衡状态,即在半导体内需要有某种激发过程存在,通过非平衡载流子的复合,才能形成发光。

3.发光过程:电致发光(场致发光)、光致发光和阴极发光。

其中电致发光是由电流(电场)激发载流子,是电能直接转变为光能的过程。

辐射跃迁从高能态到低能态:1.有杂质或缺陷参与的跃迁2.带与带之间的跃迁3.热载流子在带内跃迁上面提到,电子从高能级向较低能级跃迁时,必须释放一定的能量。

如跃迁过程伴随着放出光子,这种跃迁称为辐射跃迁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、半导体光吸收
1、光吸收:光子将电子由低能态激发到更高能态的过程。
I=I0exp(-αd), d:光穿过半导体材料的距离, α:吸收系数
对于直接带隙半导体: α:104—105/cm
2、本征吸收:价带电子吸收能量跃迁到导带的过程。
吸收条件:hv≥Eg
特点:在10-100meV的能量范围内α下降3-4个数量级。直接带 隙半导体的吸收系数与光子能量的关系为:
横向光学声子(TO),横向声学声子(TA),纵向光学声子 (LO),纵向声学声子(LA)一般最易观察到纵向光学声子
(LO声子)伴线。
1、辐射跃迁
束缚激子发光:束缚激子 中的电子和空穴复合发光 束缚激子:束缚在杂质或缺陷上的激子,不能在晶体中自由运动。
激子可束缚在中性施主,中性受主,电离施主,电离受主上。 中性施主束缚激子:D0X 电离施主束缚激子:D+X 中性受主束缚激子:A0X 电离受主束缚激子:A+X 发光峰能量:hv= Eg-Ex-Eb 束缚能:Ex+Eb 其中,Ex为自由激子束缚能,Eb是将自由激子
束缚到杂质中心的附加能。
1、辐射跃迁
特征:发光峰能量略低于自由激子,发射谱线很窄,半峰宽一般低 于1meV。
判定:低温观察KT/ EDx﹤0.3。有效质量比,σ:me*/mh*,对于电离 施主,σ小于0.71,系统能量下降,也有认为,σ小于0.2时,束缚激子 (D+X)才是稳定的。对于电离受主束缚激子,只有当σ大于1.4时,才 可能存在,因此一般电离受主束缚激子很难观察到。 束缚激子的声子伴线:束缚激子在复合时,发射了一个或多个声子,同 时发出的光子。
α(hv)=A(hv-Eg)1/2,hv ≥Eg
=0
,hv<Eg
禁带宽度的判断:
α2=A2(hv-Eg)
2、半导体光吸收
实际情况:低能方向的吸收系数并不按理论预期下降, 存在吸收带尾,一般是指数下降,与材料的杂质和缺陷, 生长质量,声子参与有关。(1)声子参与,(2)莫脱 效应:施主间的平均距离:r=(1/ND)1/3 ,当r小于 2a*,施主电子云交叠。 高掺杂杂的情况下,吸收边 向高能方向移动。
1、辐射跃迁
带-带跃迁:导带的电子跃迁到价带,与空穴复合。 自由载流子复合。
F(hv )∝( hv )2(hv-Eg)1/2 exp[-(hv-Eg)/K0T ] 特征:发光峰在Eg附近。发光峰具有一个高能量尾部在hv=Eg处,
低能量边缘突然截止。在低激发情况,发射峰的半峰宽近似等 于0.7kT。随掺杂浓度增加,发光峰位置和高能边缘均向高能量 方向移动。增加激发强度也可导致发光向高能方移动。自吸收 导致实验观测的发光光谱向低能方向漂移。 300K时,KT约 26meV。77K时,KT约6.6meV。
1、辐射跃迁
深跃迁:电子从导带跃迁到受主能级,或从施主能级跃迁到价带。 发光能量:hv= Eg-Ei Ei (EA受主束缚能,ED施主束缚能) mn*: 电导有效质量,m0: 电子惯性质量。εr: 相对介电常数。 特征:发光峰能量低于激子峰,一般谱线较宽。当杂质浓度增加时,
发光峰展宽,峰位能量漂移。
1、辐射跃迁
施主-受主对复合发光:施主离子及其束缚的电子和受主 离子及其束缚的空穴可以构成施主-受主对(D-A对)。 发光峰能量:hv=Eg-(EA+ED)+e2/(4πεr)。r为施主受主对的间距。
特征:当r不是很大(10-50晶格常数)可显示为一系列分 立的谱线,但在r较大时,形成一个连续的宽发射谱。随激 发密度增大,激发近距离的D-A对数目增多,发光峰向高能 方移动。
a
m0 mr
g r aH
1 mr
1 mh
1H mn
2、半导体光吸收
4、杂质吸收: 两类吸收:(1)施主到导带,价带到受主;(2)价带到
施主,受主到导带。 特点:(1)施主到导带,价带到受主,吸收限为杂质电离
能,在红外区。 (2)价带到施主,受主到导带,吸收在Eg-ΔEi,
吸收表现为在吸收低能处有一台阶。 5、自由载流子吸收:发生在红外。 6、晶格振动吸收:杂质振动吸收,电子从施主到受主吸收。
a
m (hv) kBT
2、半导体光吸收
3、激子吸收
吸收峰能量:hv=Eg-Eex ,Eex为自由激子束缚能
Eex
mrq4
8
r2
2 0
h2
n2
mr* m0
• E0
2 r
mr* g( 1 ) •13.6eV
m0
2 r
n2
特点:在半导体吸收边的低能侧附近具有一些窄吸收峰, 在低温时出现的可能性大。一般只在较纯的样品中才了 观察到,理论上,当自由电子浓度大于5×10-2a*-3时,激 子波函数相互交叠,分立的激子态不在存在。a*:激子的 等效玻尔半径,一般在100埃数量级。
1、辐射跃迁
辐射跃迁:处于激发态的电子向较低的能级跃迁,同时发射 光子的过程。
半导体处于非平衡状态,通过一些外加的激发手段达到。 电致发光:电流激发。 阴极射线发光:电子束激发。 光致发光:光激发,入射光子能量要大于材料禁带宽度。
发光波长与能量的关系: λ=c/v=hc/E=1240/E(nm),E单位为电子伏特(eV)
1、辐射跃迁
自由激子发光:自由激子 中的电子和空穴复合发光
自由激子:自由电子和自由空穴由与库仑力作用而束缚在一起 所形成的系统,可在晶体中运动。
发光峰能量:hv=Eg-Eex ,Eex为自由激子束缚能
Eex
mrq4
8 r2 02 h2 n2
mr* m0
• E0
2 r
mr*
m0
2 r
g(
1 n2
)
•13.6eV
mr 为电子和空穴的折合质量。n=1,2
1 11 mr mn mp
特征:发光峰能量略低于Eg,发光峰尖锐,半峰宽在几个meV
以内,一般在低温下才可观察到。
1、辐射跃迁
自由激子的声子伴线:自由激子在复合时,发射了一个或多 个声子,同时发出的光子。
发光峰能量:hv=Eg-Eex-mEp 特征:发光峰一般伴随自由激子峰出现。其与自由激子的能量差 为声子能量。出现多声子伴线时,发射峰之间的能量差相等。
相关文档
最新文档