半导体的带间光吸收谱曲线
半导体的光学常数和光吸收-PPT

R)2 ed
• 二、半导体得光吸收
光在导电介质中传播时具有衰减现象,即产生 光得吸收,半导体材料通常能强烈得吸收光能,具有 105cm-1得吸收系数。对于半导体材料,自由电子 与束缚电子得吸收都很重要。
价带电子吸收足够得能量从价带跃迁入导带, 就是半导体研究中最重要得吸收过程。与原子吸 收得分立谱线不同,半导体材料得能带就是连续分 布得,光吸收表现为连续得吸收带。
⑶反射系数R:反射系数R就是界面反射能流密度
与入射能流密度之比,若以 与0 分别代表入
射波与反射波电矢量振幅,则有:
R
2 0
/
2
⑷透射系数T:透射系数T为透射能流密度与入射
能流密度之比,由于能量守恒,在界面上可以得到:
T=1-R
当光透过厚度为d,吸收系数为得介质时有:
T
透射光强度 入射光强度
(1
得相互作用,因此理论上这就是一种二级过程。其
发生概率要比直接跃迁小很多。因此,间接跃迁得
光吸收系数比直接跃迁得光吸收系数小很多。前
者一般为1~1×103cm-1数量级,而后者一般为
1×104~1×106cm-1。
(4)激子(exciton)吸收
在低温时发现,某些晶体在本征连续吸收光谱出现以前, 即hν<Eg时,就会出现一系列吸收线,但产生这些吸收线得 过程并不产生光电导,说明这种吸收不产生自由电子或空 穴。
h>Eg
(h ) A(h Eg )1/ 2
h Eg
(h ) 0
(3)间接跃迁与间接带隙半导体:诸
如硅与锗得一些半导体材料,导带底 与价带顶并不像直接带隙半导体那 样具有相同得波矢k。这类半导体称 为间接带隙半导体,对这类半导体,任 何直接跃迁所吸收得光子能量都应 该比其禁带宽度Eg大得多。因此,若 只有直接跃迁,这类半导体应不存在 与禁带宽度相当得光子吸收。这与 实际情况不符。
半导体材料的光谱分析

(3) 电子能级的能量差ΔΕe较大1~20eV。电子跃迁产生的
吸收光谱在紫外—可见光区,紫外-可见光谱或分子的电子光 谱;
高
化学键断裂
电子跃迁
射线
紫外
UV
频 率 va 能 量a
振动跃迁
低
转动跃迁 原子核自转 电子自转
红外
微波
无线 电波
射 频 区
IR
NMR
长λmax。
②不同浓度的同一种物
质,其吸收曲线形状相似λmax
不变。而对于不同物质,它们
的吸收曲线形状和λmax则不同。
吸收曲线的特点2
③吸收曲线可以提供物质的结构信息,并作为物质定性 分析的依据之一。
④不同浓度的同一种物质,在某一定波长下吸光度A有
差异,在λmax处吸光度A的差异最大。此特性可作为物质定
c =λν =ν/σ(波动性) E = hν = h c /λ(微粒性)
c :光速=2.998×1010cm·s;
λ:波长;ν:频率;σ:波数 ;E :能量;
h :普朗克常数=6.624×10-34J·s
电磁辐射具有波动性和微粒性;
光学分析分类
光谱法——基于物质与辐射能作用时,分子或原 子发生能级跃迁而产生的发射、吸收的波长或强度 进行分析的方法。通常需要测定试样的光谱,由于 其光谱的产生是基于物质原子或分子的特定能级的 跃迁所产生的,因此根据其特征光谱的波长可进行 定性分析;同时,光谱的强度又与物质的含量有 关,因而可进行定量分析。
I0 入射光
It 透过光
吸光度A (Absorbance)
物质颜色和吸收光颜色的关系
绿
黄
青
第三章 带间跃迁的吸收与发射光谱

Eg E=0 Eg
(自由电子近似)
2 K i 2 2 K 2 Ei ( K i ) * * 2m h 2mh 2 K 2 E f (K f ) Eg Eg * * 2 me 2 me 2 K 2 2 K 2 2 K 2 E E f Ei E g Eg * * 2 me 2mh 2 * 2 K 2 f
金属导体:它最上面的能带或是 未被电子填满,或虽被填满但填 满的能带却与空带相重叠。
电子与空穴 波包-准经典粒子 群速度
vk 0 1 ( k E ) k 0
充满带,外 场不改变电 子的对称分 布,即满带 电子不导电
准动量 d ( k ) F 外力 dt
有效质量 - 能带顶 dv 1 *F dt m 2 E * m ( x , y , z ) 2 k 空穴
相互作用哈密顿量
辐射场(光场) 矢量势 标量势
( it k .r ) i (t k .r ) A A0a[e e ]
A A E t t
哈密顿量 电子动量:在光场作用下为 相互作用哈密顿量
HI H
注释:
(1)
P eA
e指数区
~ 102 cm 1
弱吸收区
102 cm 1
半导体GaAs的吸收光谱
3.2 允许的直接跃迁
直接带结构半导体(GaAs) 能量守恒 E f Ei 动量守恒 Ki + k = Kf 直接跃迁 Ki Kf =K(竖直跃迁) 带边跃迁:取跃迁几率为常数 抛物线能带结构近似
N (E ) N
i i i, f
if
f
( E f ) B( Eg EP )2
半导体发光与光吸收

2、半导体光吸收
1、光吸收:光子将电子由低能态激发到更高能态的过程。
I=I0exp(-αd), d:光穿过半导体材料的距离, α:吸收系数
对于直接带隙半导体: α:104—105/cm
2、本征吸收:价带电子吸收能量跃迁到导带的过程。
吸收条件:hv≥Eg
特点:在10-100meV的能量范围内α下降3-4个数量级。直接带 隙半导体的吸收系数与光子能量的关系为:
横向光学声子(TO),横向声学声子(TA),纵向光学声子 (LO),纵向声学声子(LA)一般最易观察到纵向光学声子
(LO声子)伴线。
1、辐射跃迁
束缚激子发光:束缚激子 中的电子和空穴复合发光 束缚激子:束缚在杂质或缺陷上的激子,不能在晶体中自由运动。
激子可束缚在中性施主,中性受主,电离施主,电离受主上。 中性施主束缚激子:D0X 电离施主束缚激子:D+X 中性受主束缚激子:A0X 电离受主束缚激子:A+X 发光峰能量:hv= Eg-Ex-Eb 束缚能:Ex+Eb 其中,Ex为自由激子束缚能,Eb是将自由激子
束缚到杂质中心的附加能。
1、辐射跃迁
特征:发光峰能量略低于自由激子,发射谱线很窄,半峰宽一般低 于1meV。
判定:低温观察KT/ EDx﹤0.3。有效质量比,σ:me*/mh*,对于电离 施主,σ小于0.71,系统能量下降,也有认为,σ小于0.2时,束缚激子 (D+X)才是稳定的。对于电离受主束缚激子,只有当σ大于1.4时,才 可能存在,因此一般电离受主束缚激子很难观察到。 束缚激子的声子伴线:束缚激子在复合时,发射了一个或多个声子,同 时发出的光子。
α(hv)=A(hv-Eg)1/2,hv ≥Eg
=0
,hv<Eg
第五章半导体中的光辐射和光吸收

第五章半导体中的光辐射和光吸收1. 名词解释:带间复合、杂质能级复合、激子复合、等电子陷阱复合、表面复合。
带间复合:在直接带隙的半导体材料中,位于导带底的一个电子向下跃迁,同位于价带顶的一个空穴复合,产生一个光子,其能量大小正好等于半导体材料E。
的禁带宽度g浅杂质能级复合:杂质能级有深有浅,那些位置距离导带底或价带顶很近的浅杂质能级,能与价带之间和导带之间的载流子复合为边缘发射,其光子能量总E小。
比禁带宽度g激子复合:在某些情况下,晶体中的电子和空穴可以稳定地结合在一起,形成一个中性的“准粒子”,作为一个整体存在,即“激子”。
在一定条件下,这些激子中的电子和空穴复合发光,而且效率可以相当高,其复合产生的光子能量小E。
于禁带宽度g等电子陷阱复合:由于等电子杂质的电负性和原子半径与基质原子不同,产生了一个势场,产生由核心力引起的短程作用势,从而形成载流子的束缚态,即陷阱能级,可以俘获电子或空穴,形成等电子陷阱上的束缚激子。
由于它们是局域化的,根据测不准关系,它们在动量空间的波函数相当弥散,电子和空穴的波函数有大量交叠,因而能实现准直接跃迁,从而使辐射复合几率显著提高。
表面复合:晶体表面的晶格中断,产生悬链,能够产生高浓度的深的或浅的能级,它们可以充当复合中心。
通过表面的跃迁连续进行表面复合,不会产生光子,因而是非辐射复合。
2. . 什么叫俄歇复合,俄歇复合速率与哪些因素有关?为什么长波长的InGaAsP 等材料的俄歇复合比短波长材料严重?为什么俄歇复合影响器件的J th 、温度稳定性和可靠性? 解析:● 俄歇效应是一个有三粒子参与、涉及四个能级的非辐射复合的效应。
在半导体中,电子与空穴复合时,把能量或者动量通过碰撞转移给第三个粒子跃迁到更高能态,并与晶格反复碰撞后失去能量。
这种复合过程叫俄歇复合.整个过程中能量守恒,动量也守恒。
●半导体材料中带间俄歇复合有很多种,我们主要考虑CCHC 过程(两个导带电子与一个重空穴)和CHHS 过程(一个导带电子和两个重空穴)。
(完整版)半导体材料光学带隙的计算

半导体材料光学带隙的计算禁带宽度是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。
禁带宽度的大小实际上是反映了价电子被束缚强弱程度的一个物理量,也就是产生本征激发所需要的最小能量。
禁带宽度可以通过电导率法和光谱测试法测得,为了区别用电导率法测得禁带宽度值,用光谱测试法测得的禁带宽度值又叫作光学带隙。
下面以光谱测试法为例介绍半导体材料光学带隙的计算方法:对于半导体材料,其光学带隙和吸收系数之间的关系式为[1]:αhν=B(hν-Eg)m (1)其中α为摩尔吸收系数,h为普朗克常数,ν为入射光子频率, B 为比例常数,Eg为半导体材料的光学带隙,m的值与半导体材料以及跃迁类型相关:(1)当m=1/2 时,对应直接带隙半导体允许的偶极跃迁;(2)当m=3/2 时,对应直接带隙半导体禁戒的偶极跃迁;(3)当m=2 时,对应间接带隙半导体允许的跃迁;(4)当m=3 时,对应间接带隙半导体禁戒的跃迁。
下面介绍两种禁带宽度计算公式的推导方法:推导1:根据朗伯比尔定律可知:A=αb c (2)其中 A 为样品吸光度,b 为样品厚度,c 为浓度,其中bc 为一常数,若B1=(B/bc)1/m,则公式(1)可为:(Ahν)1/m=B1(hν-Eg) (3)根据公式(3),若以hν 值为x 轴,以(Ahν)1/m 值为y 轴作图,当y=0 时,反向延伸曲线切线与x 轴相交,即可得半导体材料的光学带隙值Eg。
推导2:根据K-M 公式可知:F(R∞)=(1- R∞)2/2 R∞=K/S (4)其中R∞为绝对反射率(在日常测试中可以用以硫酸钡做参比测得的样品相对反射率代替[2]),K 为吸收系数,S 为散射系数。
若假设半导体材料分散完全或者将样品置于600入射光持续光照下可认为K=2α[3]。
因在一定温度下样品散射系数为一常数,假设比例常数为B2,,我们可通过公式(4)和公式(1)可得:(F(R∞) hν)1/m=B2(hν-Eg) (5)根据公式(5),若以hν 值为x 轴,以(F(R∞) hν)1/m值为y 轴作图,当y=0 时,反向延伸曲线切线与x 轴相交,即可得半导体材料的光学带隙值Eg。
半导体物理-第10章-半导体的光学性质

光电导的弛豫时间越短,光电导的定态值也越小(即灵敏 度越低)
10.2.3 复合中心和陷阱对光电 导的影响
高阻光电材料中典型的 复合中心对光电导的影响。 这样的材料对光电导起决定 作用的是非平衡多数载流 子,因为非平衡少数载流子 被陷在复合中心上,等待与 多数载流子的复合。
复合中心和多数载 流子陷阱作用。延 长了光电导的上升 和下降的驰豫时间, 降低了定态光电导 灵敏度。
4. 晶格吸收
半导体晶格热振动也可引起对光的吸收,光子能量直接 转变为晶格热振动的能量,使半导体的温度升高,这样的 光吸收过程称为晶格吸收。晶格吸收光谱在远红外范围, 对于离子晶体或离子性晶体具有较明显的晶格吸收作用
10.2 半导体的光电导 10.2.1 光电导的描述
光照射半导体,使其电导率改变的现象为光电导效应。 (1)本征光电导:本征吸收引起载流子数目变化。 (2)杂质光电导:杂质吸收引起载流子数目变化。
这种自由载流子吸收光子之后,实际上是在同一能带中发 生不同状态之间的跃迁,因此吸收的光子能量不需要很大, 所以吸收光谱一般在红外范围
3. 杂质吸收
当温度较低时,半导体施主能级上束缚的电子(或受 主能级上束缚的空穴)没有电离,被束缚的电子(或被 束缚的空穴)吸收光子的能量之后,可激发到导带(或 价带)中去,这样的光吸收过程称为杂质吸收。
2 光电池的电流-电压特性
金属和p型半导体接触阻挡层的光致电流为
IL
qAN0
1
Ln
exp
d
式中:A为接触面积;N0为在单位时间内单位接触面 积从表面到扩散区内产生的电子-空穴对数;λ为入 射光平均深入的距离;d为耗尽宽度
P-n结光致电流表示
IL qQA Lp Ln
吸收光谱

运用和研究
吸收光谱广泛应用于材料的成分分析和结构分析,以及各种科学研究工作。观察吸收光谱的方法有以下几种:
①使用具有连续光谱的光源,如白炽灯、连续谱红外光源。光通过样品后经过分光仪器被记录下来,在连续 的白光本底上显示暗的吸收光谱。
②使上述光源发出的光先通过分光仪器,成为准单色光。调节分光仪器,使光的频率连续扫描,通过样品并 被记录下来,得到吸收光谱的线形。
紫外吸收光谱的产生 图2同核双原子分子的分子轨道能级图吸光物质分子吸收特定能量(波长)的电磁波(紫外光)产生分子的电 子能级跃迁。 二、电子跃迁类型 1.分子轨道 有机分子中常见的分子轨道: σ轨道、π轨道和非键轨道 (未共用电子对n) 分子轨道图如图2 2.电子跃迁(transition)类型 (1)σ~σ跃迁: 能级跃迁图由饱和键产生,能级差大,吸收光波波长短,吸收峰多处于真空紫外区。
吸收光谱
光谱学术语
01 简介
03 分类
目录
02 概念说明 04 运用和研究
吸收光谱(absorption spectrum)是指物质吸收光子,从低能级跃迁到高能级而产生的光谱。吸收光谱可 是线状谱或吸收带。研究吸收光谱可了解原子、分子和其他许多物质的结构和运动状态,以及它们同电磁场或粒 子相互作用的情况。
处于基态和低激发态的原子或分子吸收具有连续分布的某些波长的光而跃迁到各激发态,形成了按波长排列 的暗线或暗带组成的光谱。
吸收光谱是温度很高的光源发出来的白光,通过温度较低的蒸气或气体后产生的,如果让高温光源发出的白 光,通过温度较低的钠的蒸气就能生成钠的吸收光谱。光谱背景是明亮的连续光谱。在钠的标识谱线的位置上出 现了暗线。通过大量实验观察总结,每一种元素的吸收光谱里暗线的位置与其明线光谱的位置互相重合。即每种 元素所发射的光频率与其所吸收的光频率相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体的带间光吸收谱曲线
Xie Meng-xian. (电子科大,成都市)
(1)光吸收系数:
半导体吸收光的机理主要有带间跃迁吸收(本征吸收)、载流子吸收、晶格振动吸收等。
吸收光的强弱常常采用描述光在半导体中衰减快慢的参量——吸收系数α来表示;若入射光强为I,光进入半导体中的距离为x,则定义:
吸收系数的单位是cm-1。
(2)带间光吸收谱曲线的特点:
对于Si和GaAs的带间跃迁的光吸收,测得其吸收系数a与光子能量hν的关系如图1所示。
这种带间光吸收谱曲线的特点是:①吸收系数随光子能量而上升;②各种半导体都存在一个吸收光子能量的下限(或者光吸收长波限——截止波长),并且该能量下限随着温度的升高而减小(即截止波长增长);③GaAs的光吸收谱曲线比Si的陡峭。
为什么半导体的带间光吸收谱曲线具有以上一些特点呢?——与半导体的能带结构有关。
(3)对带间光吸收谱曲线的简单说明:
①因为半导体的带间光吸收是由于价带电子跃迁到导带所引起的,则光吸收系数与价带和导带的能态密度有关。
而在价带和导带中的能态密度分布较复杂(在自由电子、球形等能面近似下,能态密度与能量是亚抛物线关系),不过在价带顶和导带底附近的能态密度一般都很小,因此,发生在价带顶和导带底附近之间跃迁的吸收系数也就都很小;随着能量的升高,能态密度增大,故吸收系数就相应地增大,从而使得吸收谱曲线随光子能量而上升。
但是由于实际半导体能带中能态密度分布函数的复杂性,而且电子吸收光的跃迁还必须符合能量守恒、动量守恒和量子力学的跃迁规则——选择定则,所以就导致半导体光吸收谱曲线变得很复杂,可能会出现如图1所示的台阶和多个峰值或谷值。
②因为价电子要能够从价带跃迁到导带,至少应该吸收禁带宽度Eg大小的能量,这样才能符合能量守恒规律,所以就存在一个最小的光吸收能量——光子能量的下限,该能量下限也就对应于光吸收的长波限——截止波长λg :
一些用于光电探测器的半导体的禁带宽度、截止波长和带隙类型,如下表所示。
根据光吸收截止波长的这种关系,即可通过光吸收谱曲线的测量来确定出半导体的禁带宽度。
由于半导体禁带宽度会随着温度的升高而减小,所以光吸收截止波长也将随着温度的升高而增长。
③GaAs和Si的光吸收效率比较:
* 直接跃迁带隙的GaAs:
GaAs的光吸收谱曲线上升得比较陡峭,这是由于GaAs具有直接跃迁能带结构的缘故。
在此,当价电子吸收了足够能量的光子、从价带跃迁到导带时,由于它的价带顶与导带底都在Brillouin区的同一点上(即价带顶电子的动量?kv=导带底电子的动量?kc),则在跃迁时动量几乎不会发生变化:
同时们能量守恒规律为:
由于这种吸收光的直接跃迁既符合能量守恒、又符合动量守恒的规律,则这种光吸收的效率很高,使得光吸收系数将随着光子能量的增加而快速增大,从而形成陡峭的光吸收谱曲线。
这时,吸收系数与光子能量hν和禁带宽度Eg之间的函数关系可以表示为
式中的γ是常数。
当光子能量降低到Eg时,吸收系数即减小到0,这就明确地对应于截止波长。
* 间接跃迁带隙的Si:
Si的光吸收情况与GaAs的有所不同。
由于Si的能带结构是间接跃迁型的,它的价带顶电子的动量?kv小于导带底电子的动量?kc,则当价电子在跃迁时,就需要借助于声子的帮助(提供动量)才能达到动量守恒、得以实现跃迁(光子的动量非常小、不能提高所需要的动量)。
如果声子动量为?K,于是光吸收的动量守恒规律为:
同时,如果声子能量为Ep,则光吸收的能量守恒规律为:
这时,吸收系数与光子能量hν和禁带宽度Eg之间的函数关系可以表示为
式中的常数γ等于2(容许跃迁)或者3(禁戒跃迁)。
可以见到:a)这种间接跃迁的实现需要第三者(声子)参与,因此这种光吸收的效率要低于直接跃迁的光吸收,所以光吸收谱曲线的上升速度较慢(即不太陡峭);b)因为声子的参与,则这时的能量守恒规律即给出:最小的光吸收能量(相应的)并不严格地对应于禁带宽度(其间多出了一个声子能量Ep),因此光吸收的截止波长并不像直接带隙半导体的那么明显。
不过,由于声子能量非常小(Ep<0.1eV),所以最小的光吸收能量往往比较接近于禁带宽度。
(4)参考曲线:一些半导体的带间光吸收谱曲线见图2。
Si和Ge是间接跃迁能带结构的半导体,它们具有类似型式的光吸收谱;而GaAs和InP等则是直接跃迁能带结构的半导体,它们的光吸收谱曲线都很陡峭。
此外,半导体中载流子的光吸收谱曲线一般都位于带间光吸收谱曲线的截止波长以外。
因为载流子光吸收是关系到在能带内部的各个能级之间的跃迁,所以吸收的光子能量更小,因此吸收的光波长更长。
【注】带间光跃迁的量子力学规则:
价电子从价带到导带的光跃迁除了考虑各个能带的能态密度的分布形式以外,还需要考虑初态和终态的性质。
这就是说,按照量子力学的跃迁理论,电子的跃迁还需要遵从一定的规律——选择定则(selection rule),即只有在跃迁前后能够保持动量几乎不变的那些跃迁才是可能的。
对于带间光跃迁,满足选择定则的跃迁有两种:容许跃迁(allowed transition)和禁戒跃迁(forbidden transition)。
这是由于电子在跃迁时的初态和终态的奇偶性需要符合一定的要求,才能吸收光而发生跃迁。
例如电子从s态跃迁到p 态是可以的——容许跃迁,但是从s态跃迁到s态却是不可以的——禁戒跃迁。
这就意味着,波函数奇偶性不同的状态之间的跃迁是容许跃迁,波函数奇偶性相同的状态之间的跃迁是禁戒跃迁。
然而,禁戒跃迁并不是一点也不会发生的一种跃迁过程,实际上禁戒跃迁也是一种吸收光的跃迁形式,只是跃迁几率非常小——远小于容许跃迁。
之所以禁戒跃迁也可以吸收光,是由于能带之间的相互作用将使得电子状态的奇偶性会有一点点改变,所以奇偶性相同的电子状态之间,也有可能发生一定几率的光吸收跃迁——禁戒跃迁。