高一数学10月月考试题11
重庆市2024-2025学年高一上学期10月月考试题 数学含答案

重庆高2027届高一上期月考数学试题卷(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤ B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥ B.2a > C.6a > D.6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}m m -<<∣B.{3m m <-∣或1}m >C.{13}m m -<<∣D.{1mm <-∣或3}m >6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.的B.34aa b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为168.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >,则有*12,2n a a a n n n+++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z xx y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫-⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.重庆高2027届高一上期月考数学试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤【答案】A 【解析】【分析】根据集合的交集运算法则运算即可.【详解】因为{}{}4016A x x =≤=≤≤,{}2323B x x x x ⎧⎫==>⎨⎩⎭,所以A B = 2163x x ⎧⎫<≤⎨⎬⎩⎭.故选:A .2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤【答案】B 【解析】【分析】利用特称命题的否定形式回答即可.【详解】根据特称命题的否定形式可知命题.“230,1x x x ∃<+>”的否定是“230,1x x x ∀<+≤”.故选:B3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫ ⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭【答案】D 【解析】【分析】根据抽象函数及具体函数的定义域求解即可.【详解】因为函数()2f x +的定义域为()3,4-,所以函数()f x 的定义域为()1,6-,则对于函数()1g x +=,需满足116310x x -<+<⎧⎨->⎩,解得153x <<,即函数()1g x +=的定义域为1,53⎛⎫⎪⎝⎭.故选:D.4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥B.2a >C.6a > D.6a ≥【答案】C 【解析】【分析】对于全称量词命题2[1,2],0x x x a ∀∈+-≤,我们需要先求出使得该命题为真时a 的取值范围,然后再根据充分不必要条件的定义来判断选项.【详解】令2()f x x x =+,[1,2]x ∈.对于二次函数2y ax bx c =++,其对称轴为122b x a =-=-.因为10a =>,所以函数()f x 在[1,2]上单调递增.那么()f x 在[1,2]上的最大值为2max ()(2)226f x f ==+=.因为2[1,2],0x x x a ∀∈+-≤为真命题,即2a x x ≥+在[1,2]上恒成立,所以max ()6a f x ≥=.A 是B 的充分而不必要条件,即值A B ⇒,B A ¿.当6a >时,一定满足6a ≥,所以6a >是6a ≥的充分不必要条件.而2a >时,不能保证一定满足6a ≥,2a ≥时,也不能保证一定满足6a ≥.故选:C.5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}mm -<<∣ B.{3m m <-∣或1}m > C.{13}m m -<<∣ D.{1mm <-∣或3}m >【答案】C 【解析】【分析】利用基本不等式和常值代换法求得28x y+的最小值,依题得到不等式2236m m -+<,解之即得.【详解】因3x y +=,由28128()()3x y x y x y+=++1281(10)(10633y x x y =++≥+=,当且仅当28y x x y =时取等号,即当1,2x y ==时,28x y+取得最小值6.因不等式22823m m x y+>-+恒成立,故2236m m -+<,即2230m m --<,解得13m -<<.故选:C.6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫ ⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,1【答案】D 【解析】【分析】根据题意,得到()f x 在定义域R 上为单调递减函数,结合分段函数的单调性的判定方法,列出不等式组,即可求解.【详解】由函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩因为函数()y f x =任意12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,所以函数()f x 在定义域R 上为单调递减函数,则满足()()242223024252321a a a a +⎧≥⎪⎪-<⎨⎪-+⨯+≥-⨯+⎪⎩,即0321a a a ≥⎧⎪⎪<⎨⎪≤⎪⎩,解得01a ≤≤,所以实数a 的取值范围是[]0,1.故选:D.7.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.B.34a a b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为16【答案】B 【解析】【分析】利用基本不等式可判断AC 的正误,利用“1”的代换可判断B 的正误,利用换元法结合常数代换可判断D 的正误.【详解】选项A:2112,1a b a b +=+≤++===时取等,+A 对;选项B:3433443577a a b a b a b aa b a b a b+++++=+=++≥+,当且仅当35,22a b -==时取等,故34a a b ++的最小值为7+,故B 错选项C :()()2119111,242a b a b a b +++⎛⎫++≤=== ⎪⎝⎭时取等,故()()11a b ++的最大值为94,故C 对;选项D :换元,令3,2x a y b =+=+,则6x y +=,故()()222232941032x y a b x y a b x y x y--+=+=+-++++94194251413446666x y y x x y x y ⎛⎫⎛⎫+=+⋅-=++-≥-= ⎪ ⎪⎝⎭⎝⎭,当且仅当1812,55x y ==取等号,故2232a b a b +++的最小值为16,故D 正确;故选:B.8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512【答案】A 【解析】【分析】将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,从而有集合A 与集合B 的交替和之和为4,再利用符合条件的集合对有92个,即可求解.【详解】由题知{}5,4,3,2,1,0,1,2,3,4M =-----,将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,则符合条件的集合对有92个,又由题设定义有集合A 与集合B 的交替和之和为4,所以交替和的总和为9114222048⨯==.故选:A.二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--【答案】BD 【解析】【分析】利用特殊值验证AC 是错误的,利用作差法判断B 的真假,利用配方法证明D 是正确的.【详解】对A :令1a =-,1b =,则0ab ≠且a b <,但11a b>不成立,故A 错误;对B :当0a b >>时,()()()20242024202420242024b a a b b b a a a a +-++-=++()()202402024b a a a -=<+,所以20242024b b a a +<+成立,故B 正确;对C :令3a =-,4b =-,0c =,1d =-,则,a b c d >>,但ac bd >不成立,故C 错误;对D :因为()()()222212222144a b a b a b a b ++----++++=()()22120a b =-++≥,所以()221222a b a b ++≥--成立,故D 正确.故选:BD10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦【答案】ACD 【解析】【分析】根据充分条件、必要条件的概念判断A ,分类讨论求出k 的范围判断B ,根据数轴穿根法及不等式的解集求出ba及0a <解不等式判断C ,由命题的否定转化为不等式恒成立,看作关于a 的不等式恒成立即可判断D.【详解】对A ,若p 是q 的必要不充分条件,p 是r 的充要条件,则q p r ⇒⇔,但是p 不能推出q ,所以q r ⇒,但是r 不能推出q ,所以q 是r 的充分不必要条件,故A 正确;对B ,当0k =时,原不等式为03≥,恒成立满足题意,当0k ≠时,由题意需满足()2Δ16430k k k k >⎧⎨=-⋅+≤⎩,解得01k <≤,综上,实数k 的取值范围是01k ≤≤,故B 错误;对C ,由不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,结合数轴穿根法知,1,2bc a==,且0a <,所以不等式2320ax ax b --≥可化为2340x x --≤,解得14x -≤≤,故C 正确;对D ,由题意知[]()21,3,2130a ax a x a ∀∈---+-≥为真命题,则()22130a x x x --++≥在[]1,3a ∈-时恒成立,令()2()213g a a x x x =--++,只需()()2213403350g x x g x x ⎧-=-++≥⎪⎨=-≥⎪⎩,则14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,解得[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦,故D 正确.故选:ACD11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦【答案】ABD 【解析】【分析】根据所给函数解析式直接求解判断A ,根据()f x 的性质及(),()g x f x 图象判断B ,归纳出()f x 在[]2024,2025上的解析式判断C ,根据规律,归纳值域特点判断D.【详解】选项A :()()()()()210121013101320272025202331f f f f f λλλλλ====== ,()()()()()210111012202420222020200f f f f f λλλλ====== ,则()()101320272024f f λ+=,所以选项A 正确;选项B :由()()122f x f x =-知,()0,2024x ∈时,()()()()()[)()()[)()()[)210112,0,2124,2,42146,4,62120222024,2022,20242x x x x x x f x x x x x x x ⎧-∈⎪⎪--∈⎪⎪⎪=--∈⎨⎪⎪⎪⎪--∈⎪⎩ ,由于()()()()()()1111111,33,553254g f g f g f ===<==<=,但()()()()31011111177,202320237220232g f g f =>==>= ,作,的图象,如图,结合图象可知()0,6x ∈上有2226++=个交点,在[)6,2024x ∈上无交点,故选项B 正确;选项C :[]2024,2025x ∈时,()()()1012120242026f x x x λ=--,故()f x 在[]2024,2025上单增,故C 错误;选项D :因为1λ<-,所以当[]0,4x ∈时,值域为[],1λ;当[]0,8x ∈时,值域为32,λλ⎡⎤⎣⎦;当[]0,12x ∈时,值域为54,λλ⎡⎤⎣⎦;当[]0,16x ∈时,值域为76,λλ⎡⎤⎣⎦;L 当[]0,4x n ∈时,值域为2122,n n λλ--⎡⎤⎣⎦,故D 正确.故选:ABD.【点睛】关键点点睛:根据所给函数解析式,可知函数类似周期特点,图象形状类似,振幅有规律变化,据此可归纳函数的性质是解题的关键所在.三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.【答案】4【解析】【分析】求出集合A ,列举出集合A 的子集即可.【详解】因2{10}{1,1}A x x =-==-∣,故集合A 的子集有,{1},{1},{1,1}∅--共4个.故答案为:4.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.【答案】10,4⎡⎤⎢⎥⎣⎦【解析】【分析】根据集合的包含关系,讨论0a =和0a >两种情况,求集合B ,再比较端点值,即可求解.【详解】因为A B B = ,所以A B ⊆,因为()(){}10B x x a ax =+-≤∣,且0a ≥:1 当0a =时,[)0,B ∞=+,符合题意;2当0a >时,1,B a a ⎡⎤=-⎢⎥⎣⎦,则11404a a ≥⇒<≤,综上,10,4a ⎡⎤∈⎢⎥⎣⎦.故答案为:10,4⎡⎤⎢⎣⎦14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.【答案】【解析】【分析】根据函数的单调性可知243x y =-,代入可得234386y x y xx x y x y++=+,根据基本不等式可得最值.【详解】由题可知()()()()3323231313x x y y -+-=-+-,因为3,y t y t ==在R 上单调递增,所以()3g t t t =+在R 上单增,所以上式可表示为()()2313g x g y -=-,则2313x y -=-,即243x y =-,因此()22433433866x y y x y y x x x x y x y x y -++=++=+≥=当且仅当38243y x x y x y⎧=⎪⎨⎪=-⎩即25x -=,2415y -=时等号成立,故答案为:.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.【答案】(1)02x =或3-(2)5,42⎛⎫-⎪⎝⎭【解析】【分析】(1)根据分段函数定义分类列方程求解;(2)根据分段函数定义分类列不等式求解.【小问1详解】由()01f x =可得:1∘>−1−1=1⇒0=20=−2舍去)0000123,,23;21x x x x ≤-⎧⇒=-=-⎨--=⎩ 综上或【小问2详解】由()3f a a <+可得:1∘>−11<+3⇒>−12−2−8<0⇒>−1−2<<4⇒∈−1,4;2∘≤−1−−2<+3⇒≤−1>−52⇒∈−52,−1综上可得5,42a ⎛⎫∈-⎪⎝⎭.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.【答案】(1)3{|4A B x x =≤ 或1}x >(2)3,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)根据条件,先求出集合,A B ,再利用集合的运算,即可求解;(2)由(1)可得R 3,24A ⎛⎤= ⎥⎝⎦ð,再根据条件,分M =∅和M 蛊两种情况讨论,即可求解.【小问1详解】由5402x +≥-,即4302x x -≥-,得到2x >或34x ≤,所以3{|4A x x =≤或2}x >,又由321x ->,得到321x -<-或321x ->,即13x <或1x >,所以1{3B x =<或1}x >,所以3{|4A B x x =≤ 或1}x >.【小问2详解】因为3{|4A x x =≤或2}x >,所以R 3,24A ⎛⎤= ⎥⎝⎦ð,①当321a a ->-,即43a <时,此时M =∅()RA ð,所以43a <满足题意,②当43a ≥,即M 蛊时,由题有212334a a -≤⎧⎪⎨->⎪⎩,解得4332a ≤≤,综上,实数a 的取值范围是3,2a ⎛⎤∈-∞ ⎥⎝⎦.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.【答案】(1)4(2)()222f x x x=-(3)(],10-∞【解析】【分析】(1)令1x =-即可求出()1f -.(2)根据条件,先设出二次函数的解析式,再根据()26231x f x x --≤≤+恒成立,可求待定系数.(3)问题转化成()f x 在区间(]1,6的最小值不小于()g x 在[]6,10上的最小值求参数的取值范围.【小问1详解】在不等式()26231x f x x --≤≤+,令()()141414x f f =-⇒≤-≤⇒-=.【小问2详解】因为()f x 为二次函数且图象过原点()0,0,所以可设()()2,0f x ax bx a =+≠,由()1444f a b b a -=⇒-=⇒=-,于是()()24f x ax a x =+-,由题:()()262220,f x x ax a x x ≥--⇔+++≥∈R 恒成立⇔>0Δ≤0⇔>0+22−8=−22≤0⇒=2,=−2⇒=22−2,检验知此时满足()()223110,f x x x x ≤+⇔+≥∈R ,故()222f x x x =-.【小问3详解】函数()222f x x x =-,开口向上,对称轴12x =,所以()222f x x x =-在区间(]1,6上单调递增,因此,(]11,6x ∈时,()()()(11,6f x f f ⎤∈⎦,即()(]10,60f x ∈,而()g x m x =-在[]6,10上单调递减,所以[]26,10x ∈时,()[]210,6g x m m ∈--因为对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,等价于()()(]110010,10f g m m ∞≥⇒≥-⇒∈-18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a > ,则有*12,2n a a a n n n +++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.【答案】(1)6(2)最大值为272048,38x =(3)1*1111,1kk k k k +⎛⎫⎛⎫+<+∈ ⎪ ⎪+⎝⎭⎝⎭N ,证明见解析【解析】【分析】(1)根据三阶基本不等式的内容直接可得解;(2)由()()32722212128333x x xx x x -=⋅⋅⋅⋅-,结合四阶基本不等式可得最值;(3)猜测111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N 成立,验证1k =不等式成立;结合推广公式证明2k ≥结论成立.【小问1详解】因为,,0x y z >,所以由三阶基本不等式可得:246y z x x y z ++≥,当且仅当24y z xx y z==即2y z x ==时取等号,因此24y z x x y z++的最小值为6;【小问2详解】当10,2x ⎛⎫∈ ⎪⎝⎭时,由四阶基本不等式可得:()()()432221227222272733312128333842048x x x x x x x x x x ⎛⎫+++- ⎪-=⋅⋅⋅⋅-≤= ⎪⎝⎭,当且仅当2123xx =-即310,82x ⎛⎫=∈ ⎪⎝⎭时取等号,因此()312x x -的最大值为272048;【小问3详解】大小关系为111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N ,证明如下:由条件可知:12,,,0n a a a > 时,*1212,,2nn n a a a a a a n n n +++⎛⎫⋅≤∈≥ ⎪⎝⎭N ,当1k =时,左边11121⎛⎫=+= ⎪⎝⎭,右边219124⎛⎫=+= ⎪⎝⎭,左边<右边,不等式成立;当2k ≥,*k ∈N 时,由1k +阶基本不等式,可知:不等式左边111111111kk k k k ⎛⎫⎛⎫⎛⎫⎛⎫=+=+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()(1)1111111111(11)11()111k k k k k k k k k k k k k ++++⎛⎫⎛⎫⎛⎫⎛⎫++++++++++ ⎪⎪ ⎪⎪⎛⎫++⎝⎭⎝⎭⎝⎭ ⎪≤== ⎪+++ ⎪⎝⎭⎪⎝⎭个个1111k k +⎛⎫=+ ⎪+⎝⎭而111k ⎛⎫+≠ ⎪⎝⎭,因此上式的不等号取不到等号,于是1111111111kk k k k k k ++++⎛⎫⎛⎫⎛⎫+<=+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,综上,原不等式得证.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.【答案】(1)0(2)()f x 在1,2⎛⎫+∞⎪⎝⎭上单调递减,证明见解析(3)3,4⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)令1a b ==可得302f ⎛⎫= ⎪⎝⎭,再由()()0f x f x -+=,即可得出答案;(2)由单调性的定义证明即可;(3)由单调性和奇偶性列出不等式,再结合二次函数的性质求解即可.【小问1详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中令333120222a b ff f ⎛⎫⎛⎫⎛⎫==⇒=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(或令53532,102222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭).而()()333000222f x f x f f f ⎛⎫⎛⎫⎛⎫-+=⇒-+=⇒-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【小问2详解】()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减.下证明:由④知:对任意,0a b >,恒有111222f ab f b f a ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.证一:任取2112x x >>,于是()()22211111111111122112222222x x f x f x f x f x f x x ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎛⎫⎛⎫-=⋅-+--+=+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪--⎝⎭⎝⎭因为2112x x >>,所以2111022x x ->->221111132********x x x x --⇒>⇒+>--,而对任意32x >时恒有()0f x <,故211120122x f x ⎛⎫- ⎪+<⎪ ⎪-⎝⎭,即()()210f x f x -<,所以()f x 在1,2∞⎛⎫+⎪⎝⎭上单调递减,证毕;证二:任取2112x x >>,设2111,,1,022x mn x n m n =+=+>>()()21111222f x f x f mn f n f m ⎛⎫⎛⎫⎛⎫-=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为131.22m m >+>,所以102f m ⎛⎫+< ⎪⎝⎭,即()()21f x f x <,也即()f x 在1,2∞⎛⎫+⎪⎝⎭单调递减,证毕;【小问3详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中:令5599222222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而()()0f x f x -+=,于是922f ⎛⎫-= ⎪⎝⎭令139339,402442242a b f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⇒+==⇒=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,由(2)知()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减,又()()0f x f x -+=,可得()f x 在1,2∞⎛⎫-- ⎪⎝⎭上也单调递减,如图,可知不等式()()21232f t k t k -+-+≤等价于:对任意[]11t ,∈-,不等式()231234t k t k -+-+≥……①或者()29112322t k t k -≤-+-+<-恒成立,……②法一:令()()[]2123,1,1g t t k t k t =-+-+∈-立,因为()g t 开口向下,由()g t 图像可知:不等式①()()11313204;334144k g k g k ⎧⎧≥-≥⎪⎪⎪⎪⇔⇒⇒≥⎨⎨⎪⎪≥≥⎪⎪⎩⎩对于②,当1t =±时,由()()1391121022919112222k g k g k ∅⎧⎧-≤<-≤-<-⎪⎪⎪⎪⇒⇒∈⎨⎨⎪⎪-≤<--≤<-⎪⎪⎩⎩,即一定不存在k 满足②.综上取并,得3,4k ∞⎡⎫∈+⎪⎢⎣⎭法二:令()()[]()2123,1,1,g t t k t k t g t =-+-+∈-开口向下,对称轴为12t k =-,且()()211152,1,224g k g k g k k k ⎛⎫-=-=-=++ ⎪⎝⎭,1 当112k -<-即32k >时,问题等价于>321≥34或>32−1<−121≥−92,解得32k >;2 当1102k -≤-≤即1322k ≤≤时,等价于()1322314k g ⎧≤≤⎪⎪⎨⎪≥⎪⎩或()13221133,;2242912k g k k g ⎧≤≤⎪⎪⎪⎛⎫⎡⎤-<-⇒∈⎨ ⎪⎢⎥⎝⎭⎣⎦⎪⎪≥-⎪⎩3 当1012k <-≤即1122k -≤<时,问题等价于()1122314k g ⎧-≤<⎪⎪⎨⎪-≥⎪⎩或()11221122912k g k g ⎧-≤<⎪⎪⎪⎛⎫-<-⎨ ⎪⎝⎭⎪⎪-≥-⎪⎩,解得k ∈∅;4 当112k ->即12k <-时,问题等价于()12314k g ⎧<-⎪⎪⎨⎪-≥⎪⎩或()()12112912k g g ⎧<-⎪⎪⎪<-⎨⎪⎪-≥-⎪⎩,解得k ∈∅;综上,3,4k ∞⎡⎫∈+⎪⎢⎣⎭.。
北京市和平街第一中学2024-2025学年高一上学期10月月考数学试题

北京市和平街第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.设集合{}0,1,2,3A =,{}1,0,1,2,3B =-,则A B =I ( ) A .{}1,0,1,2,3-B .{}1,2C .{}0,1,2,3D .{}1,2,32.已知命题20001:,04∃∈-+≤p x x x R ,则命题p 的否定为( ) A .20001,04∃∈-+>x x x R B .20001,04∃∈-+<x x x R C .21,04∀∈-+≤x x x RD .21,04x x x ∀∈-+>R 3.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则下列结论正确的是( ) A .B A ⊆B .{}1,5U A =ðC .{}3A B =UD .{}2,4,5A B =I4.设集合{}2{,},0,A x y B x ==,若A B =,则2x y +等于( )A .0B .1C .2D .-15.已知0x >,则2x x +的最小值为( )A B .2C .D .46.若a ,b 是任意实数,且a b >,则( ) A .22a b >B .1b a< C .1a b -> D .0a b ->7.不等式2230x x --<的解集为( ) A .()1,3-B .()3,1-C .(1)(3)∞∞--⋃+,, D .(3)(1)∞∞--⋃+,, 8.“02x <<”是“13x -<<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件9.已知集合{}0,A a =,{}230,Z B b b b b =-<∈,A B ≠∅I ,则实数a 的值为( )A .1B .2C .1或2D .2或310.设集合A 的最大元素为M ,最小元素为m ,记A 的特征值为A X M m =-,若集合中只有一个元素,规定其特征值为0.已知1A ,2A ,3A ,…,n A 是集合*N 的元素个数均不相同的非空真子集,且12360n A A A A X X X X +++⋅⋅⋅+=,则n 的最大值为( )A .10B .11C .12D .13二、填空题11.已知函数()43f x x =+,则()3f =.12.设x 、y 满足10x y +=,且x 、y 都是正数,则xy 的最大值为.13.满足{}{}11,2,3A ⊆⊆的集合A 的个数为个.14.已知集合{}{}21,2,3,2,A B a a a ==+.若{}2A B =I ,则a =.15.函数2(0)y ax bx c a =++≠的图像如图所示,则不等式20ax bx c ++<的解集是,不等式0ax bcx a+<+的解集是.三、解答题16.已知集合{}2|430A x x x =-+<,集合{}|2B x x =>.(1)化简集合A 并求A B ⋂,A B U . (2)若全集U R =,求()U B A ⋂ð. 17.完成如下三个小题并写出必要过程(1)设()()23M x x =++,()()14N x x =++,比较,M N 的大小.(2)已知,a b c d ><,求证:a c b d ->-;(3)已知R x ∈,设()1A x x =-;2B x =-,比较A 与B 的大小.18.已知集合{}45A x x =-<<,{}36B x x =-<<,{}|121,R C x m x m m =-≤≤+∈. (1)求A B U ,A B ⋂;(2)若()C A B ⊆⋂,求实数m 的取值范围.19.函数()243f x mx mx =++(1)若1m =,求()0f x ≤的解集;(2)当()0f x >恒成立时,求m 的取值范围;(3)若方程()0f x =有两个实数根12,x x ,且22121230x x x x +->,求m 的取值范围 20.设一个矩形长为x ,宽为y .(1)当点(),P x y 位于直线4y x =-+上时,求该矩形面积的最大值. (2)当点(),P x y 位于曲线81212y x x ⎛⎫=> ⎪-⎝⎭上时,求该矩形周长的最小值. (3)当该矩形的面积比周长多5时,求该矩形面积的取值范围.21.设集合*A ⊆N .定义:和集合{},,B x y x y A x y =+∈≠,积集合{},,C x y x y B x y =⋅∈≠,分别用,,A B C 表示集合,,A B C 中元素的个数. (1)若{}1,2,3,4A =,求集合C ;(2)若5A =,求B 的所有可能的值组成的集合; (3)若4A =,求证:9C ≥.。
高一10月数学月考试题含答案

高一10月数学月考(考试总分:150 分)一、 单选题 (本题共计8小题,总分40分) 1.(5分)1.cos 240=( )A .12-B .C .12D 2.(5分)2.已知扇形的面积为4,扇形圆心角的弧度数是2,则扇形的周长为( ) A .2B .4C .6D .83.(5分)3.已知20.2a =,2log 0.9b =,0.12c =,则,,a b c 的大小关系为( )A. a b c >>B. c a b >>C. a c b >>D. c b a >>4.(5分)4.已知函数3()log 5f x x x =+-,则()f x 的零点所在的区间为( )A.(0,1)B.(1,2)C.(3,4)D.(4,5)5.(5分)5.已知:1p x >,1:1q x≤,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)6.设0,0,22a b a b >>+=,则11a b+的最小值为( )B.3 37.(5分)7.函数222()1x xf x x --=-的图象大致为( )A. B.C. D.8.(5分)8.当0<x ≤12时,4x<log a x (a >0且a ≠1),则a 的取值范围是( )A. (0,22) B. (22,1) C. (1,2) D. (2,2) 二、 多选题 (本题共计4小题,总分20分)9.(5分)9.下列函数中是偶函数,且在(0,)+∞上为增函数的有( )A .y =e -xB .2yx C .3y x = D .2log ||y x =10.(5分)10.已知函数()log (1),()log (1)(0,1)a a f x x g x x a a =+=->≠,则( )A .函数()()f x g x +的定义域为(1,1)-B .函数()()f x g x +的图象关于y 轴对称C .函数()()f x g x +在定义域上有最小值0D .函数()-()f x g x 在区间(0,1)上是减函数11.(5分)11.如图,某湖泊的蓝藻的面积y (单位:2m )与时间t (单位:月)的关系满足t y a =,则下列说法正确的是( )A .蓝藻面积每个月的增长率为100 %B .蓝藻每个月增加的面积都相等C .第6个月时,蓝藻面积就会超过260mD .若蓝藻面积蔓延到2222,3,6m m m 所经过的时间分别是123, , t t t ,则一定有123t t t +=12.(5分)12.德国著名数学家狄利克雷在数学领域成就显著,狄利克雷函数就以其名命名,其解析式为1,()0,x D x x ⎧=⎨⎩是有理数是无理数,关于函数D()x 有以下四个命题,其中真命题是( )A .函数D()x 是奇函数B .,x y ∀∈R ,()()()D x y D x D y +=+C .函数(())D D x 是偶函数D .x ∃∈R ,(())1D D x =三、 填空题 (本题共计4小题,总分20分)13.(5分)13.已知函数()11x f x a +=+()01a a >≠且,则函数()f x 的图像恒过点 ;14.(5分)14. 已知函数y =g (x )的图象与函数y =3x的图象关于直线y =x 对称,则g (2)= ;15.(5分)15.用二分法求方程x 3-2x -5=0在区间(2,3)内的实根,取区间中点为x 0=2.5,那么下一个有根的区间是________.16.(5分)16.已知函数2|1|41,0()2,0x x x x f x x -⎧++≤⎪=⎨>⎪⎩,若()()g x f x a =-恰好有三个零点,则实数a 的取值范围是 .四、 解答题 (本题共计6小题,总分70分) 17.(10分)17.(本题满分10分)计算:(1)3321432116864281---⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭; (2)0.5231lg8lg125log log 3log 24+-+⋅.18.(12分)18. (本题满分12分)已知全集,=,集合是函数的定义域.(1)求集合; (2)求.19.(12分)19.(本题满分12分)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎝ ⎛⎭⎪⎫12x .(1)求函数f (x )的解析式;(2)画出函数的图象,根据图象写出函数f (x )的单调区间20.(12分)20.( (本题满分12分) 已知不等式()()22log 1log 72x x +≤-.(1)求不等式的解集A ;(2)若当x A ∈时,不等式 1114242x xm -⎛⎫⎛⎫-+≥ ⎪⎪⎝⎭⎝⎭总成立,求m 的取值范围. 21.(12分)21.(本题满分12分)已知函数()()212log 31f x ax x a =+++. (1)当0a =,求函数()f x 的单调区间;(2)对于[]1,2x ∈,不等式()1302f x x ⎛⎫-≤ ⎪⎝⎭恒成立,求实数a 的取值范围.22.(12分)22、(本题满分12分)已知定义域为R 的函数f (x )=2x -1a +2x +1是奇函数.(1)求a 的值;(2)求证:f (x )在R 上是增函数;(3)若对任意的t ∈R ,不等式f (mt 2+1)+f (1-mt )>0恒成立,求实数m 的取值范围.R U =A }52{<≤x xB lg(9)y x =-B )(BC A U答案一、 单选题 (本题共计8小题,总分40分) 1.(5分)1. A 2.(5分)2. D 3.(5分)3. B 4.(5分)4. C 5.(5分)5. A 6.(5分)6. A 7.(5分)7. B 8.(5分)8. B二、 多选题 (本题共计4小题,总分20分) 9.(5分)9. BD10.(5分)10. AB11.(5分)11. ACD12.(5分)12. CD三、 填空题 (本题共计4小题,总分20分) 13.(5分)13. 14.(5分)14. g (2)=log 32. 15.(5分)15. (2,2.5) 16.(5分)16.[1,2)四、 解答题 (本题共计6小题,总分70分)17.(10分)17. (Ⅰ)原式1274888=+++312=. (Ⅰ)原式3lg 23lg521=+-+3lg1012=-=. 18.(12分)18. 解:(1)由得所以集合. ...................................6分(2)因为,,所以. (12)()1,2-⎩⎨⎧>-≥-0903x x ⎩⎨⎧<≥93x x {}93|<≤=x x B {}93|≥<=x x x B C U 或{}52|<≤=x x A (){}32|<≤=⋂x x B C A U分19.(12分)19. 解 (1)因为f (x )是定义在R 上的奇函数, 所以f (0)=0,当x <0时,-x >0, f (x )=-f (-x )=-⎝⎛⎭⎫12-x =-2x .所以函数的解析式为:(2)函数图象如图所示:通过函数的图象可以知道,f (x )的单调递减区间是(-∞,0),(0,+∞). 20.(12分)20.解(1)由已知可得:10123172x x x x+>⎧⇒-<≤⎨+≤-⎩分(]1,25∴-不等式解集为分(2)令()1114242x xf x -⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭,则原问题等价为()min 6f x m ≥分()1111442=t ,294224xxxf x ⎛⎫⎛⎫⎛⎫⎡⎫=-+∈ ⎪ ⎪ ⎪⎪⎢⎝⎭⎝⎭⎝⎭⎣⎭令分()()22min 1442412111112112f x t t t t x f x m ⎛⎫=-+=-+ ⎪⎝⎭===∴≤则当时,即时分分21.(12分)21. 解:(1)因为0a =,所以()()12log 31f x x =+,定义域为1,3⎛⎫-+∞ ⎪⎝⎭, 记31t x =+,在1,3⎛⎫-+∞ ⎪⎝⎭上单调递增, ()12log f x t =在()0+∞,上单调递减.所以()()12log 31f x x =+在1,3⎛⎫-+∞ ⎪⎝⎭上单调递减,所以()f x 的单调减区间为1,3⎛⎫-+∞ ⎪⎝⎭,无单调增区间.(2)原问题等价于当[]1,2x ∈时,2310ax x a +++>恒成立且()1302f x x ⎛⎫-≤ ⎪⎝⎭恒成立,()213031302f x x ax x a x ⎛⎫-≤⇔+++-≤ ⎪⎝⎭210ax a ⇔++≤ 211a x -⇒≤+恒成立 即2min1112a a x -⎛⎫≤⇒≤-⎪+⎝⎭, 因为102a ≤-<,23103104610a a ax x a a a +++>⎧+++>⇔⎨+++>⎩ 717525a a ⇒>-⇒-≥>-.22.(12分)22、 [解] (1)由f (x )为R 上的奇函数,得f (1)+f (-1)=0,得2-1a +4+-12a +1=0, 解得a =2.检验a =2时,f (x )=2x -12+2x +1.f (-x )=2-x -12+2-x +1=2-x -121+2-x =12x-121+12x=-2x -12+2x +1=-f (x ),所以对x ∈R ,f (x )是奇函数.(2)证明:任取x 1<x 2,∵2>1,∴2x 2>2x 1. 由(1)知f (x )=2x -122x +1=2x +1-222x+1=12-12x +1, ∴f (x 2)-f (x 1)=(12-12x 2+1)-(12-12x 1+1)=12x 1+1-12x 2+1=2x 2+1-2x 1+12x 1+12x 2+1=2x 2-2x 12x 1+12x 2+1>0.∴f (x 2)>f (x 1).∴f (x )在R 上为增函数. (3)∵f (x )是奇函数,∵f (mt 2+1)+f (1-mt )>0,∴f (mt 2+1)>f (mt -1).∵f (x )在R 上是增函数, ∴对任意的x ∈R ,不等式f (mt 2+1)+f (1-mt )>0恒成立,即mt 2+1>mt -1对任意的t ∈R 恒成立,即mt 2-mt +2>0对任意的t ∈R 恒成立.①m =0时,不等式即为2>0恒成立,符合题意; ②m ≠0时,有⎩⎨⎧m >0,Δ=m 2-8m <0,即0<m <8.综上,实数m 的取值范围为0≤m <8.。
广西柳州高级中学2023-2024学年高一上学期10月月考数学试题

广西柳州高级中学2023-2024学年高一上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________A .2B .4C .6D .88.已知方程2260x ax a +++=的两根分别是1x 和2x ,且满足22121210x x x x +³,则实数a 的取值范围是( )A .[]5,1--B .[]1,5C .[]5,2--D .(]3,5参考答案:1.B【详解】根据元素与集合关系的表示法,0A ∈,故A 正确;根据集合与集合关系的表示法,{1}⊂A ,判断B 假;∅是任意集合的子集,故C 正确;根据集合子集的定义,{0,1}⊆A ,故D 正确;故选B .点睛:本题考查的是集合的包含关系的判断及其应用,元素与集合关系的判断,是基础题.2.A【分析】采用作差法,判断差的正负,从而可判断y 1与y 2的大小关系.【详解】22212222(1 221()01)14y y x x x x x x x -++=+-=+>=-+-- ,故12y y > ,故选:A3.C【分析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.4.C【分析】分析可得T S Í,由此可得出结论.【详解】任取t T Î,则()41221t n n =+=×+,其中Z n Î,所以,t S Î,故T S Í,【分析】(1)根据()y f x =在区间[]1,0-上的单调性,结合零点存在性定理可得;(2)将问题转化为两个函数值域的包含关系问题,然后可解.【详解】(1)()y f x =的图象开口向上,对称轴为1x =,所以函数()f x 在[]1,0-上单调递减.因为函数()y f x =在区间[]1,0-上存在零点,所以(1)30(0)0f a f a -=+³ìí=£î,解得30a -££,即实数a 的取值范围为[3,0]-.(2)记函数()22f x x x a =-+,[1,3]x Î-的值域为集合A ,()5g x ax a =+-,[1,3]x Î-的值域为集合B .则对任意的[]11,3x Î-,总存在[]21,3x Î-,使得()()12f xg x =成立ÛA B Í.因为()y f x =的图象开口向上,对称轴为1x =,所以当[1,3]x Î-,min max ()(1)1,()(3)3f x f a f x f a ==-==+,得{|13}A y a y a =-££+.当0a =时,()g x 的值域为{5},显然不满足题意;当0a >时,()g x 的值域为{|5252}B y a y a =-££+,因为A B Í,所以521523a a a a -£-ìí+³+î,解得2a ³;当a<0时,()g x 的值域为{|5252}B y a y a =+££-,因为A B Í,所以521523a a a a +£-ìí-³+î,解得6a £-.综上,实数a 的取值范围为][(),62,¥¥--È+。
广西壮族自治区贵百河武鸣高中2024-2025学年高一上学期10月月考试题 数学(含解析)

2024级“贵百河—武鸣高中”10月高一年级新高考月考测试数 学(考试时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.回答非选择题时,将答案写在答题卡上,写在试卷上无效。
一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,集合,则图中阴影部分表示的集合为()A . B.C .D .2.已知命题,则是( )A .B .C .D .3.已知集合,则“”是“集合M 仅有1个真子集”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件4.已知函数的对应关系如下表,函数的图象如图,则的值为()A .3B .0C .1D .25.给出下列结论:①两个实数a ,b 之间,有且只有a ﹥b ,a =b ,a <b 三种关系中的一种;②若,则a ﹥b ;③若,;④已知,则.其中正确结论的个数为( )A .1B .2C .3D .4x123230{32}A x x =-<<{05}B x x =<<{35}x x -<<{02}x x <<{30}x x -<≤{3025}x x x -<≤≤<或2:1,1p x x ∀<->p ⌝21,1x x ∃≤-≤21,1x x ∃<-≤21,1x x ∀<->21,1x x ∀≥->{}()210R M x ax x a =-+=∈14a =)(x f y =)(x g y =()1f g ⎡⎤⎣⎦1>ab0a b >>0a bc d d c >>⇒>0ab >11a b a b>⇔<()f x6.已知函数的定义域是,则的定义域为()A .B .C .D .7.已知函数,若对于任意的实数与至少有一个为正数,则实数m 的取值范围是( )A .B .C .D .8.已知正实数a ,b ,记,则M 的最小值为()AB .2C .1D .二、多选题:本题共3小题,每小题6分,共18分。
浙江省嘉兴市2024-2025学年高一上学期10月月考数学试题含答案

嘉兴2024学年第一学期10月阶段性测试高一年级数学试卷(答案在最后)命题人:高一数学组审核人:高一数学组本试题卷共6页,满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸上规定的位置.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸上的相应位置规范作答,在本试题卷上的作答一律无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{13}A x x =-<≤∣,{}24B x x =<,那么集合A B = ()A.{22}xx -<<∣ B.{12}x x -<<∣ C.{23}x x -<≤∣ D.{13}xx -<<∣【答案】C 【解析】【分析】解出集合B ,再利用交集含义即可得到答案.【详解】{}{}2422B x x x x =<=-<<,则{12}A B xx =-<< ∣.故选:C.2.已知命题():1,p x ∀∈+∞,20x x ->,则()A.命题p 的否定为“()1,x ∃∈+∞,20x x ->”B.命题p 的否定为“(],1x ∃∈-∞,20x x -≤”C.命题p 的否定为“()1,x ∃∈+∞,20x x -≤”D.命题p 的否定为“(],1x ∀∈-∞,20x x ->”【答案】C 【解析】【分析】根据全称命题的否定即可得到答案.【详解】根据全称命题的否定得命题p 的否定为“()1,x ∃∈+∞,20x x -≤”.故选:C .3.设命题“2x >”是命题“240x -≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解出不等式,再根据充分不必要条件判断即可.【详解】∵240x -≤,∴2x ≤-或2x ≥,∴命题“2x >”是命题“240x -≤”的充分不必要条件.故选:A .4.设函数()221,036,0x x x f x x x ⎧++<=⎨+≥⎩,则不等式()()1f x f >的解集是()A.()(),41,-∞-+∞U B.()(),21,-∞-+∞ C.()(),42,-∞-+∞ D.()(),22,∞∞--⋃+【答案】A 【解析】【分析】根据题意,分段建立方程,可得临界点,作图,可得答案.【详解】由题意()1369f =+=,令2219x x ++=,解得4x =-或2,3691x x +=⇒=,则作图如下:由图可得不等式()()1f x f >的解集是()(),41,∞∞--⋃+.故选:A.5.设a ,b ,R c ∈,则下列命题正确的是()A.若a b >,则a b> B.若0a b c >>>,则a a cb b c+<+C.若a b >,则11a b< D.若0a b c >>>,则b ca b a c>--【答案】D 【解析】【分析】举例说明判断AC ;作差比较大小判断B ;利用不等式性质判断D.【详解】对于AC ,取1,1a b ==-,满足a b >,而11||1||,11a b a b===>-=,AC 错误;对于B ,0a b c >>>,则()()()0()()a a c abc b a c a b cb bc b b c b b c ++-+--==>+++,B 错误;对于D ,由0a b c >>>,得0a c a b ->->,则110a b a c >>--,b ca b a c>--,D 正确.故选:D 6.不等式1122x x x x --->-++的解集为()A.{2x x <-或>1B.{|2}x x <- C.{}1x x > D.{}21x x -<<【答案】D 【解析】【分析】根据题意结合绝对值性质可得102x x -<+,再结合分式不等式运算求解.【详解】因为1122x x x x --->-++,即1122x x x x -->++,可得102x x -<+,等价于()()120x x -+<,解得21x -<<,所以不等式的解集为{}21x x -<<.故选:D .7.设0m >,若2420mx x -+=有两个不相等的根1x ,2x ,则12x x +的取值范围是()A.()0,2 B.(]0,2 C.()2,+∞ D.[)2,+∞【答案】C 【解析】【分析】根据判别式得到02m <<,再根据韦达定理即可得到答案.【详解】 关于x 的方程2420mx x -+=有两个不相等的实数根,20Δ(4)420m m >⎧∴⎨=--⨯>⎩,解得:02m <<,则()1242,x x m=∈++∞.故选:C.8.对于实数a 和b 定义运算“⋅”:⋅a b =22,,a ab a bb ab a b ⎧-≤⎨->⎩,设()(21)(2)f x x x =-⋅-,如果关于x 的方程()()f x m m R =∈恰有三个互不相等的实数根123x x x ,,,则m 的取值范围()A.9,4⎛⎤-∞ ⎥⎝⎦B.90,4⎡⎤⎢⎥⎣⎦C.9(0,4D.φ【答案】C 【解析】【分析】由定义的运算求出()f x 的解析式,然后利用数形结合的方法知当()()f x m m R =∈恰有三个互不相等的实数根123x x x ,,时,y m =与()y f x =图像恰有三个不同的交点,即可得出答案.【详解】解:由已知a •b =22,,a ab a b b ab a b ⎧-≤⎨->⎩得2221,1()(21)(2)2,1x x x f x x x x x x ⎧+-≤-=-⋅-=⎨-++>-⎩,其图象如下:因为()f x m =恰有三个互不相等实根,则y m =与()y f x =图像恰有三个不同的交点,所以904m <<,故选:C .【点睛】本题主要考查一次函数和二次函数和函数的表示方法,考查数形结合和运算求解能力,属于基础题型.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错得0分.9.下列各组函数是同一个函数的是()A.()221f x x x =--与()221g s s s =--B.()f x =与()g x =-.C.()xf x x=与()g x =D.()f x x =与()g x =【答案】ABC 【解析】【分析】分别求出函数的定义域,化简其对应关系,判断其定义域和对应关系是否相同即可.【详解】对于选项A :()221f x x x =--的定义域为R ,()221g s s s =--的定义域为R ,定义域相同,对应关系也相同,是同一个函数,故A 正确;对于选项B :()f x ==-{}|0≤x x ,()g x =-的定义域为{}|0≤x x ,定义域相同对应关系相同,是同一个函数,故B 正确;对于选项C :()1xf x x==的定义域{}|0x x ≠,()1g x ==的定义域{}|0x x ≠,定义域相同,对应关系也相同,是同一个函数,故C 正确;对于选项D :()f x x =的定义域为R ,()g x x ==的定义域为R ,定义域相同对应关系不同,不是同一个函数,故D 错误.故选:ABC.10.已知集合{}22M y y x ==-,{N x y ==,则()A.M N M ⋂=B.M N M ⋃=C.()N M ⋂=∅Rð D.()M N ⋂=∅Rð【答案】AC 【解析】【分析】求出集合,M N ,得到两者的包含关系,再根据集合的交并补即可.【详解】{{}5N xy x x ===≤∣∣,222y x =-≤,则{}|2M y y =≤,M N ∴⊆,则M N M ⋂=,M N N ⋃=,选项A 正确,B 错误;∁R =U >5,则()N M ⋂=∅R ð,选项C 正确;∁R =b >2,∁R ∩=b2<≤5,选项D 错误.故选:AC11.已知2()2f x x x a =-+.若方程()0f x =有两个根12,x x ,且12x x <,则下列说法正确的有()A.1>0x ,20x >B.1a <C.若120x x ≠,则121211x x x x ++的最小值为D.,R m n ∀∈,都有()()()22f m f n m nf ++≥【答案】BD 【解析】【分析】举例说明判断AC ;利用一元二次方程判别式判断B ;作差变形比较大小判断D.【详解】对于AC ,取3a =-,由2230x x --=,解得1210,3x x =-<=,1212110113x x x x =-+<+,AC 错误;对于B ,方程()0f x =有两个不等实根,则440a ∆=->,解得1a <,B 正确;对于D ,222()()22()()()2222f m f n m n m m a n n a m n f m n a++-++-++-=-++-2222()()0244m n m n m n ++-=-=≥,()()(22f m f n m n f ++≥恒成立,D 正确.故选:BD三、填空题:本题共3小题,每小题5分,共15分.12.设集合{}21,,45A t t t =-+,若2A ∈,则实数t 的值为______.【答案】3【解析】【分析】由题意分情况讨论,建立方程,可得答案.【详解】当2t =时,则2454851t t -+=-+=,故不符合题意;当2452t t -+=时,则2430t t -+=,化简可得()()310t t --=,3t =(1不合题意舍去);故答案为:3.13.已知不等式()()22240a x a x -+--≥解集是∅,则实数a 的取值范围是______.【答案】(2,2]-【解析】【分析】利用命题的否定去判断.分情况讨论当,2a =时不等式即为40-<,对一切恒成立,当2a ≠时利用二次函数的性质列出a 满足的条件并计算,最后两部分的合并即为所求范围.【详解】解:不等式()()22240a x a x -+--≥解集是∅等价于:不等式()()22240a x a x -+--<解集是R ,①当20,2a a -==时,不等式即为40-<,对一切x R ∈恒成立,②当2a ≠时,则须2204(2)16(2)0a a a -<⎧⎨∆=-+-<⎩,即222a a <⎧⎨-<<⎩,22a -<<,由①②得实数a 的取值范围是(2,2]-.故答案为(2,2]-【点睛】本题考查不等式恒成立的参数取值范围,考查二次函数的性质.注意对二次项系数是否为0进行讨论.14.已知a ,b ,0c >满足4a b c ++=,则11ab bc+的最小值为________.【答案】1【解析】【分析】根据给定条件,利用基本不等式“1”的妙用求出最小值.【详解】正数,,a b c ,4a b c ++=,则1111111121112()()()()444c a a b c ab bc ab bc a c b ab bc a c b +=+++=++++≥+++1141141144()()())161614b a c a b c a b c a c b a b c a b a c c b ++=++++=++++=1(6116≥+=,当且仅当222b a c ===时取等号,所以11ab bc+的最小值为1.故答案为:1【点睛】思路点睛:在运用基本不等式时,要特别注意“拆”、“拼”、“凑”等技巧,使用其满足基本不等式的“一正”、“二定”、“三相等”的条件.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知全集为R ,集合{}22A x x x =+<,{124}B xx a =-<+<∣.(1)当1a =时,求R ()A B ⋃ð;(2)若A B B = ,求实数a 的取值范围.【答案】(1)3{|1}2x x x <≥或;(2)23a ≤≤.【解析】【分析】(1)解不等式化简集合,A B ,再利用补集、并集的定义求解即得.(2)根据给定条件,利用交集的结果,结合集合的包含关系求出a 的范围【小问1详解】解不等式22x x +<,即220x x +-<,得2<<1x -,则{|21}A x x =-<<,当1a =时,3{1214}{|1}2B xx x x =-<+<=-<<∣,R 3{|1}2B x x x =≤-≥或ð,所以R 3(){|1}2A B x x x =<≥ ð或.【小问2详解】依题意,14{|}22a aB x x ---=<<,B ≠∅,由A B B = ,得B A ⊆,因此122412aa --⎧≥-⎪⎪⎨-⎪≤⎪⎩,解得23a ≤≤,所以实数a 的取值范围是23a ≤≤.16.设函数2()(1)2(R)f x ax a x a a =+-+-∈(1)若不等式()2f x ≥-对一切实数x 恒成立,求a 的取值范围;(2)解关于x 的不等式:()1f x a <-.【答案】(1)1[,)3+∞(2)答案见解析【解析】【分析】(1)对a 是否为零进行讨论,再结合二次函数的性质即可求解.(2)不等式化简为2(1)10ax a x +--<,根据一元二次不等式的解法,分类讨论即可求解.【小问1详解】()2f x ≥-对一切实数x 恒成立,等价于2R,(1)0x ax a x a ∀∈+-+≥恒成立.当0a =时,不等式可化为0x ≥,不满足题意.当0a ≠,有0Δ0a >⎧⎨≤⎩,即203210a a a >⎧⎨+-≥⎩,解得13a ≥所以a 的取值范围是1[,)3+∞.【小问2详解】依题意,()1f x a <-等价于2(1)10ax a x +--<,当0a =时,不等式可化为1x <,所以不等式的解集为{|1}<x x .当0a >时,不等式化为(1)(1)0ax x +-<,此时11a-<,所以不等式的解集为1{|1}x x a -<<.当0a <时,不等式化为(1)(1)0ax x +-<,①当1a =-时,11a -=,不等式的解集为{|1}x x ≠;②当10a -<<时,11a->,不等式的解集为1{|1}x x x a >-<或;③当1a <-时,11a-<,不等式的解集为1{|1}x x x a ><-或;综上,当1a <-时,原不等式的解集为1{|1}x x x a><-或;当1a =-时,原不等式的解集为{|1}x x ≠;当10a -<<时,原不等式的解集为1{|1}x x x a>-<或;当0a =时,原不等式的解集为{|1}<x x ;当0a >时,原不等式的解集为1{|1}x x a-<<.17.设a 为实数,函数()f x =.(1)求函数()f x 的定义域;(2)设t =()f x 表示为t 的函数()h t ,并写出定义域;(3)若0a <,求()f x 的最大值【答案】(1)[]1,1-;(2)()212h t at t a =+-,定义域为2⎤⎦;(3)答案见解析【解析】【分析】(1)根据函数特征得到不等式,求出定义域;(2)0t =两边平方得到[]2110,12t =-∈2t ≤≤,得到函数解析式和定义域;(3)在(2)的基础上结合对称轴,分10a <-<和12a ≤-≤和12a->三种情况,得到函数最大值.【小问1详解】由题意得2101010x x x ⎧-≥⎪+≥⎨⎪-≥⎩,解得11x -≤≤,故定义域为[]1,1-;【小问2详解】0t =两边平方得22t =+,[]2110,12t =-∈2t ≤≤,故()212h t at t a =+-,定义域为2⎤⎦;【小问3详解】由(2)知,()()221111222f x h t at t a a t a a a⎛⎫==+-=+-- ⎪⎝⎭,定义域为2⎤⎦,0a <,若10a <-<,即2a <-时,当t =时,()()f x h t =取得最大值,最大值为h=;12a ≤-≤,即122a -≤≤-时,()()f x h t =在对称轴处取得最大值,最大值为12a a --;若12a ->,即102a -<<时,当2t =时,()()f x h t =取得最大值,最大值为()222h a t a a =+-=+;综上,当22a <-当2122a -≤≤-时,最大值为12a a --,当102a -<<时,最大值为2a +.18.已知x ,0y >满足6x y +=.(1)求22x y +的最小值;(2)求3y x y+的最小值;(3)若()2244x y m x y +≥+恒成立,求m 的取值范围.【答案】(1)18;(2)12+;(3)83m ≤.【解析】【分析】(1)配方变形求出最小值.(2)根据给定条件,利用基本不等式“1”的妙用求出最小值.(3)对给定不等式分离参数,消元配凑变形,再利用基本不等式求出最小值即可.【小问1详解】由0,0x y >>,6x y +=,得22222()()1()1822x y x y x y x y ++-+=≥+=,当且仅当3x y ==时取等号,所以当3x y ==时,22x y +取得最小值18.【小问2详解】23321121113(1()(1(3)122y y x y x x y x y x y x y x y x y++=+-=+-=++-=++-11(3122≥+-=+2y x x y =,即x =时取等号,由6x x y ⎧=⎪⎨+=⎪⎩,得6(21)x y =-=,所以当6(21)x y ==-时,3y x y +取得最小值12+.【小问3详解】由0,0x y >>,6x y +=,得6,06x y y =-<<,不等式224(4)x y m x y +≥+恒成立,即2244x y m x y +≤+恒成立,2222224(6)4512365(2)32(2)804363(2)3(2)x y y y y y y y x y y y y +-+-++-++===++++516325328[(2)]323333y y =++-≥⋅=+,当且仅当1622y y +=+,即2y =时取等号,因此当4,2x y ==时,2244x y x y++取得最小值83,则83m ≤,所以m 的取值范围83m ≤.19.已知二次函数()()1f x ax x =-,()0,4a ∈,()0,1x ∈.若有()00f x x =,我们就称0x 为函数()f x 的一阶不动点;若有()()00f f x x =,我们就称0x 为函数()f x 的二阶不动点.(1)求证:()01f x <<;(2)若函数()f x 具有一阶不动点,求a 的取值范围;(3)若函数()f x 具有二阶不动点,求a 的取值范围.【答案】(1)证明见解析(2)14a <<(3)14a <<【解析】【分析】(1)利用基本不等式以及不等式的性质证明即可;(2)利用不动点的性质求解即可;(3)根据(2)可知当14a <<时,符合题意,再对(]0,1a ∈分析判断即可.【小问1详解】由题可知()0,4a ∈,()0,1x ∈,所以()()()211010101124x x x x x x ax x +-⎛⎫<-≤⇒<-≤⇒<-< ⎪⎝⎭故()01f x <<.【小问2详解】由题可知()0000111ax x x a x -=⇒=-因为()00,1x ∈,()0,4a ∈所以14a <<.【小问3详解】若14a <<,由(2)可知:函数()f x 具有一阶不动点,即存在()00,1x ∈,使得()00f x x =,则()()()000ff x f x x ==,所以函数()f x 具有二阶不动点,若(]0,1a ∈,由(2)可知函数()f x 不具有一阶不动点,可知对任意()0,1x ∈,且()f x 连续不断,可知()f x x >或()f x x <恒成立,若()f x x >,则()()()ff x f x x >>,此时函数()f x 不具有二阶不动点;若()f x x <,则()()()f f x f x x <<,此时函数()f x 不具有二阶不动点;即(]0,1a ∈时,函数()f x 不具有二阶不动点;综上所述:a 的取值范围为14a <<.【点睛】关键点点睛:对于复合函数我们经常令某一个函数()f x t =,然后换元计算.。
重庆市巴蜀中学2024-2025学年高一上学期10月月考数学试题

重庆市巴蜀中学2024-2025学年高一上学期10月月考数学试题一、单选题1.命题“[)30,,0x x x ∀∈∞+≥+”的否定是( )A .()3,0,0x x x ∀∈-∞+<B .()3000,0,0x x x ∃∈-∞+< C .[)30000,,0x x x ∞∃∈++<D .[)30000,,0x x x ∃∈+∞+≥2.已知()21f x x -=,则()()2f f =( )A .9B .100C .1D .03.若集合{}{}1,2,3,4,5,7,1A B x x A ==-∈,则A B =I ( ) A .{}1,2,3,4,5B .{}2,3,4,5C .{}1,2,3,4D .{}0,1,2,3,4,64.若实数1x <,则221x x +-的最大值为( ) A .2-B .4-C .4D .65.设集合{}{}02,02M x x N y y =≤≤=≤≤,则如下的4个图形中能表示定义域为M ,值域为N 的严格单调函数的是( )A .B .C .D .6.已知集合{}{}14,32,A x x B x m x m B =≤≤=-+≤≤不是空集,若x B ∈是x A ∈的充分不必要条件,则实数m 的取值范围为( ) A .{}2m m <B .{}2m m ≤C .{}12m m ≤<D .{}12m m ≤≤7.设集合A 为非空实数集,集合{,B xy x y A =∈且}x y ≠,称集合B 为集合A 的积集,则下列结论正确的是( )A .当{}1,2,3,4A =时,集合A 的积集{}2,3,4,8,12B =B .若A 是由5个正实数构成的集合,其积集B 中元素个数最多为8个C .若A 是由5个正实数构成的集合,其积集B 中元素个数最少为7个D .存在4个正实数构成的集合A ,使其积集{}2,4,5,8,10,16B =8.已知,a b R ∈,不等式22122x ax bx x ++<++在x R ∈上恒成立,则( ) A .0a <B .0b <C .02ab <<D .04ab <<二、多选题9.下列命题是真命题的为( ) A .若0a b c d >>>>,则ab cd > B .若22ac bc >,则a b > C .若0a b >>且0c <,则22c c a b > D .若a b >且11a b>,则0ab < 10.下列说法不正确的是( )A .函数()1f x x =+与()2g x =是同一个函数B .若函数()f x 的定义域为(]0,1,则函数()()21f x f x --的定义域为()0,1C .函数()f x =112x x ⎧⎫≤≤⎨⎬⎩⎭D .若函数()f x =的定义域为R ,则实数k 的取值范围是()0,411.已知220,0,1a b a b ab >>+-=,则( )A .112a b+≥B .2a b +≥C .222a b +≥D .332a b +≤三、填空题12.集合6x x ⎧⎫∈⎨⎬⎩⎭N 的非空子集的个数是.13.若()()2324,15,1x a x x f x x a x ⎧-+--<=⎨+≥⎩在R 上单调递增,则实数a 的取值范围为.14.高一某班共有54人,每名学生要从物理、化学、生物、历史、地理、政治这六门课程中选择3门进行学习.已知选择物理的有36人,选择化学的有24人,选择生物的有20人,其中选择了物理和化学的有18人,选择了化学和生物的有10人,选择了物理和生物的有16人.那么班上选择物理或化学或生物的学生最多有人.四、解答题15.已知{}12A x x =-≤≤,{}23B x x a =-<. (1)若3a =,求B A ⋃R ð;(2)若A B B =I ,求实数a 的取值范围.16.已知关于x 的不等式()223130kx k x k -++<(其中k ∈R ).(1)若不等式的解集为{}13x x <<,求k 的值; (2)若0k ≤,试求该不等式的解集. 17.已知命题p :对任意0,0x y >>且11134x y +=,不等式23093a a x y +≤+恒成立;命题2:,23q x x x a ∃∈--<R .(1)若命题p 为真命题,求实数a 的取值范围;(2)若命题p 和命题q 中至少有一个为真命题,求实数a 的取值范围.18.设函数()y f x =的定义域为M ,且区间I M ⊆.若函数()y f x x =+在区间I 上单调递增,则称函数()f x 在区间I 上具有性质A ;若函数()y f x x =-在区间I 上单调递增,则称函数()f x 在区间I 上具有性质B .(1)试证明:“函数()f x 在区间I 上具有性质B ”是“函数()f x 位区间I 上单调递增”的充分不必要条件; (2)若函数()kf x x=在区间[)2,+∞上具有性质A ,求实数k 的取值范围; (3)若函数()32f x x x=+在区间[],1a a +上同时具有性质A 和性质B ,求实数a 的取值范围.19.对于在平面直角坐标系第一象限内的两点()()1122,,,A x y B x y 作如下定义:若2121y y x x ≥,则称点B 领先于点A .(1)试判断点(P是否领先于点(Q ,并说明理由;(2)若点()22,B x y 领先于点()11,A x y ,试证明:点B 领先于点()1212,C x x y y ++.(3)对{}{}1,2,3,2024,k m m m m *∀∈∃∈≥∈N ,点()3,2027m +领先于点(),k n ,且点(),k n 领先于点(),2024m ,求符合条件的正整数n 组成的集合中元素的个数.。
2024-2025学年北京市海淀区八一学校高一上学期10月月考数学试题(含答案)

2024-2025学年北京市海淀区八一学校高一上学期10月月考数学试题一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={−1,0,1,2},B={x|0<x<3},则A∩B=().A. {−1,0,1}B. {0,1}C. {−1,1,2}D. {1,2}2.数集A={x|x=(2n+1)π,n∈Z},B={x|x=(4k±1)π,k∈Z},则A,B之间的关系是( )A. ABB. BAC. A=BD. A≠B3.命题p“∃x∈R,使得x2+x+1=0”下列说法正确的是( )A. ¬p:“∀x∉R,x2+x+1≠0”是假命题B. ¬p:“∀x∈R,x2+x+1≠0”是假命题C. ¬p:“∀x∉R,x2+x+1≠0”是真命题D. ¬p:“∀x∈R,x2+x+1≠0”是真命题4.已知−2<x<2,1<y<3,则x−2y的取值范围是( )A. (−8,0)B. (−8,2)C. (−4,2)D. (−10,−2)5.“a2+b2>0”是“ab>0”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.关于x的方程(x−a)2=1的解集可能是( )A. 空集B. 单元素集合C. {1,−1}D. {2,6}7.已知集合A={x∣x2−5x+6=0},B={x∣0<x<6,x∈N},则满足A⊆C⊆B的集合C的个数为( )A. 4B. 8C. 7D. 16<x+1的解集是( )8.不等式1x−1A. {x|x>−2}B. {x|x>2或−2<x<1}C. {x|−2<x<1}D. {x|43<x<22}9.已知命题p:∃x∈R,(m+1)(x2+1)≤0,命题q:∀x∈R,x2−mx+1>0恒成立.若p和q至多有一个为真命题,则实数m的取值范围为( )A. [2,+∞)B. (−1,2]C. (−∞,−2]∪[2,+∞)D. (−∞,−2]∪(−1,+∞)10.刘老师沿着某公园的环形道(周长大于1km)按逆时针方向跑步,他从起点出发、并用软件记录了运动轨迹,他每跑1km,软件会在运动轨迹上标注出相应的里程数.已知刘老师共跑了11km,恰好回到起点,前5km的记录数据如图所示,则刘老师总共跑的圈数为( )A. 7B. 8C. 9D. 10二、填空题:本题共5小题,每小题5分,共25分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省定州市第二中学2016-2017学年高一数学10月月考试题
第I 卷(共18分)
1.(本小题4分)已知集合{
}
{}
2
|20,|55A x x x B x x =->=-<<,则 ( ) A .A
B =∅ B .A B R =
C .B A ⊆
D .A B ⊆
2.(本小题4分)当0a >且1a ≠时,函数13x y
a -=+的图象一定经过点 ( )
A.()4,1
B.()1,4
C.()1,3
D.()1,3-
3.(本小题10分)
:
)(1
22
)(R a a x f x ∈+-
=对于函数 (1) 判断函数)(x f 的单调性,并证明;
(2) 是否存在实数a 使函数)(x f 为奇函数? 若存在,求出a ;若不存在,说明 理由.
第II 卷(共42分)
4.(本小题4分)已知集合{}
{}
2log 1,1P x x Q x x =<-=<,则P Q = ( )
A .10,2⎛
⎫ ⎪⎝⎭
B .1,12⎛⎫ ⎪⎝⎭
C .()0,1
D .11,2⎛
⎫- ⎪
⎝
⎭
5.(本小题4分)函数||)(x x x f =的图象大致是 ( )
6.(本小题4分)下列各组函数中,表示同一函数的是 ( ) A .1,x
y y x
== B .211,1y x x y x =-+=-
C .3
3
,y x y x ==
D .()2
,y x y x ==
7.(本小题4分)已知幂函数()f x 的图像过点14,2⎛⎫ ⎪⎝⎭
,则()8f 的值为 ( )
A .
24 B .64 C .22 D .164
8.(本小题4分)设c b a ,,都是正数,且c b a 643==,那么 ( )
A .
111c a b =+ B .221c a b =+ C .122c a b =+ D .212
c a b =+
9.(本小题4分)设1
25211
(),2,log 55
a b c ===,则 ( )
A.c a b <<
B.c b a <<
C.a c b <<
D.a b c <<
10.(本小题8分)已知集合
{}()(){}2|230,,|220,,A x x x x R B x x m x m x R m R =--≤∈=-+--≤∈∈.
(1)若{}|03A
B x x =≤≤,求实数m 的值;
(2)若R A C B ⊆,求实数m 的取值范围.
11.(本小题10分)已知函数)1,0(21)(2≠>--=a a a a x f x
x (1)当3=a 时,求函数)(x f 的值域;
(2) 当1>a ,]1,2[-∈x 时,)(x f 的最小值为7-,求a 的值. 第I I I 卷(共60分)
12.(本小题4分)全集U R =,集合2
{|20}A x x x =-->,{|128}x
B x =<<, 则()
U C A B 等于 ( )
A .[1,3)-
B .(1,2]
C .(0,2]
D .(2,3)
13.(本小题4分)若定义在R 上的函数f (x )满足:⎩⎨
⎧
>---≤-=,0),2()1(,0),1(log )(2x x f x f x x x f
则=+)2017()2016(f f ( )
A .-1
B .0
C .1
D .2
14.(本小题4分)用}{c b a ,,m in 表示c b a ,,三个数中的最小值,设
{
})0(10,2,2m in )(≥-+=x x x x f x
,则)(x f 的最大值为 ( )
A .4
B .5
C .6
D .7 15.(本小题4分)已知0a >且1a ≠,函数(1)34,(0)(),(0)
x
a x a x f x a x -+-≤⎧=⎨
>⎩满足对
任意实数12x x ≠,都有
2121
()()
0f x f x x x ->-成立,则a 的取值范围是 ( )
A .()0,1
B .()1,+∞
C .51,3⎛⎤ ⎥⎝⎦
D .5,23⎡⎫⎪
⎢⎣
⎭
16.(本小题4分)若幂函数2
42
)22(----=m x m m y 在),0(+∞∈x 上为减函数,则
实数m 的值是______.
17.(本小题4分)已知函数ax x y 42
+-=在区间]3,1[上单调递减,则实数a 的取值范围 是 .
18.(本小题4分)已知函数()f x 是定义在R 上的偶函数,且在区间[)0,+∞上单调递 增,若实数a 满足)(log )(log 4
14a f a f +≤)1(2f ,则实数a 的取值范围
是 .
19.(本小题4分)下列几个命题:
①方程2
(3)0x a x a +-+=若有一个正实根,一个负实根,则0a <; ②函数2211y x x =
--是偶函数,但不是奇函数;
③函数()f x 的值域是]2,2[-,则函数(1)f x +的值域为]1,3[-;
④一条曲线2
|3|y x =-和直线()y a a R =∈的公共点个数是m ,则m 的值不可 能 是1.
其中正确的有 .
20.(本小题8分)某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成
本为1万元,设生产该产品x (百台),其总成本为()g x 万元(总成本=固定成本+
生产成本),并且销售收入()r x 满足20.5710.5,07()=13.5,7x x x r x x ⎧-+-≤≤⎨>⎩
,假设该产
品产销平衡,根据上述统计数据规律求:
(1)要使工厂有盈利,产品数量x 应控制在什么范围?
(2)工厂生产多少台产品时盈利最大?
21.(本小题10分)
已知函数 )(x f 的定义域为(0,+∞),且对一切0,0>>y x 都有)()()(y f x f y
x
f -=
当1>x 时,有0)(>x f .
(1)求)1(f 的值; (2)判断)(x f 的单调性并证明; (3)若1)6(=f ,解不等式2)1()5(<-+x
f x f
22.(本小题10分)
已知函数1
212)(+-=x x x f ,352)(2
++=mx x x g
(1)求出所有满足不等式0)3()2(2
>+-f a a f 的实数a 构成的集合;
(2)对任意的实数]1,1[1-∈x ,都存在一个实数]1,1[2-∈x ,使得)()(21x g x f =,求实数 m 的取值范围.
高一数学第二次月考答案
1.B
2.B 4.A 5.C 6.C 7.A
8.B 9.A 12.C 13.A 14.C 15.C
16. 3 17. 18. 19.①④
3.(1)增函数证明略(2)
10.(1);(2).
【解析】,
(1)由于,则,∴;
(2),
∵,∴,
∴,
∴的取值范围是.
11.(1)值域为(2)
20.(Ⅰ);(Ⅱ)600.
解:依题意得,设利润函数为,则,
所以
(Ⅰ)要使工厂有盈利,则有f(x)>0,因为
f(x)>0⇔,
⇒⇒
⇒或,
即.
所以要使工厂盈利,产品数量应控制在大于300台小于1050台的范围内.(Ⅱ)当时,
故当x=6时,f(x)有最大值4.5. 10分
而当x>7时,.
所以当工厂生产600台产品时,盈利最大.
21.(1)0;(2)证明见解析;(3)0<x<4.
试题解析:(1)f(1)=f=f(x)-f(x)=0,x>0.
(2)f(x)在(0,+∞)上是增函数.
证明:设0<x1<x2,则由f=f(x)-f(y),得
f(x2)-f(x1)=f,∵>1,∴f>0.
∴f(x2)-f(x1)>0,即f(x)在(0,+∞)上是增函数.
(3)∵f(6)=f= f(36)-f(6),又 f(6)=1,
∴f(36)=2,原不等式化为:f(x2+5x)<f(36),
又∵ f(x)在(0,+∞)上是增函数,
∴解得0<x<4.
22.(1)
(2)或
试题解析:
(1)∵
∴在上是奇函数
∵
∴
又∵在上是增函数
∴
解得
∴所求实数构成的集合为
(2)∵在上是增函数∴当时,即设在上的值域为,则由题意可知
∵∴,解得或
①当时,函数在上为减函数,
所以
由得解得
②当时,函数在上为增函数,
所以
由得解得
综上可知,实数的取值范围为或。