高一数学周末练习(含答案)

合集下载

高一数学周末测试卷(第12周)解析版

高一数学周末测试卷(第12周)解析版

高一数学周末测试卷(第12周)时量:90分钟 分数:100分班级:_____ 姓名:_____ 分数:______一、选择题:(每小题4分,共40分) 1.如图所示,在平行四边形ABCD 中,AB AD +=( A ) A .BD B .CA C . AC D .DB 2.为了得到函数cos()4y x π=+的图象象,只需将cos y x =的图象向左平移 ( D )A .向左移14个单位长度 B .向右移4π个单位长度 C .向右移14个单位长度 D .向左移4π个单位长度3.如果c 是非零向量,且2=-a c ,3=b c ,那么a 与b 的关系是 ( B ).A .相等B .共线C .不共线D .不能确定 4.sin (-6π19)的值是 ( A ) A .21B .-21 C .23 D .-23 5.函数)4x sin(y π+=在闭区间 ( D ) (A )]2,2[ππ-上是增函数 (B )]43,4[ππ-上是增函数(C )]0,[π-上是增函数 (D )]4,43[ππ-上是增函数 6. 函数sin(2)3y x π=+的图像 ( A )A .关于点(,0)3π对称 B .关于直线4x π=对称 C .关于点(,0)4π对称 D .关于直线3x π=对称7.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是( C ) A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-==8.袋中装有白球和黑球各3个,从中任取2个,则至多有一个黑球的概率是( B )A.15B.45C.13D.129.在平行四边形ABCD 中,若AB AD AB AD +=-,则必有 ( C ) A. 0AD = B. 00AB AD ==或 C. ABCD 是矩形 D. ABCD 是正方形 10.设()y f t =是某港口水的深度关于时间t (时)的函数,其中024t ≤≤,下表是该港口某一天从0至24时记录的时间t 与水深y 的关系.经长期观察,函数()y f t =的图象可以近似地看成函数sin()y k A t ωϕ=++的图象. 根据上述数据,函数()y f t =的解析式为( A )A .123sin,[0,24]6ty t π=+∈ B .123sin(),[0,24]6ty t ππ=++∈C .123sin ,[0,24]12t y t π=+∈D .123sin(),[0,24]122t y t ππ=++∈二、填空题:(每小题4分,共20分) 11.如果5sin 13α=,(,)2παπ∈,那么tan α等于__________.512- 12.在如图所示的向量a ,b ,c ,d ,e 中(小正方形的边长为1),是否存在:(1)是共线且同向向量的有 ;(2)是相反向量的为 ; (3)模为向量的的 ; (4)模相等的向量 .13.如图,在△ABC 中,M 是BC 的中点, 若AB AC AM λ+=,则实数λ= .214. 已知12,ee 不共线,1212,a ke e b e ke =+=+,当k =______时,,a b 共线。

【高一】高一数学下册周末作业题(附答案)

【高一】高一数学下册周末作业题(附答案)

【高一】高一数学下册周末作业题(附答案)数学训练5本卷满分为100分,时限为60分钟(2022.4)(沙洋中学陈信国)第一卷旧题改重做(每题3分,共24分)1、在中,已知,则分别为.2.不等式的解集为3、在中,分别为角的对边,则的值等于.4.如果给定序列的通项公式为,则序列的前几项之和5、已知数列是等比数列,,则.6.如果已知序列满足:,则一般项7、已知函数且当时恒成立,则的取值范围是.8.函数和的最小值为第ii卷新选编训练题(共76分)一、:(每个子问题6分,共36分)1、右图的几何体是由下面哪个平面图形旋转得到的()2.算术序列和前一项之和为,如果,值为()(a)55(b)95(c)100(d)1903.如果是这样,以下不等式成立()(a)(b)(c)(d)4、等差数列的的前项的和为,前项的和为,则它的前项的和为()(a)(b)170(c)(d)5、已知实数满足不等式组则关于的一元二次方程的两根之和的最大值是()(a)(b)(c)(d)6、某产品总成本(万元)与产量(台)之间的函数关系式是,如果每件产品的售价为10000元,则生产商不亏损(销售收入不低于总成本)时的最低产量为()(a)100台(b)120台(c)150台(d)180台二、问题:(每个子问题6分,共18分)7、三角形的一边长为14,这条边所对的角为,另两边之比为,则这个三角形的面积为.8.已知两个等差序列的第一项和第二项分别为如果是,则9、设数列是公差为的等差数列,如果,那么的值为.第一卷1、2、3、4、5、6、; 7、8、第ii卷1、2、3、4、5、6、; 7、8、; 9、.三、解答题:共22分10.(10点)锐角的中间边缘是方程的两边。

如果角度满足,求出:(1)角度的度数;(2)边C的长度和面积11、(12分)如图,树顶离地面米,树上另一点离地面米,在离地面米的处看此树,离此树多远时看的视角最大?(提示:计算视角的正切值)数学培训5参考答案第i卷1.或23、4、5、6、;78.当时,;当时第ii卷1、 a2、b3、b4、c5、a6、c;7、8、9。

高一数学周末练习 ( 含答案)

高一数学周末练习 (  含答案)

高一数学周末练习 2015-5-241.不等式2x x <的解集是2. 从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个 的两倍的概率为 .3. 阅读右边的程序框图,运行相应的程序,则输出的值为 .4.在各项均为正数的等比数列{}n b 中,若783b b ⋅=, 则3132log log b b ++……314log b += .5. 数列{}n a 的前n 项和*23()n n S a n N =-∈,则=n a .6. 一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为 . 7.ABC ∆中,若a ,b ,c 成等差数列,30B =,ABC ∆的面积为23, 那么b =________.8.数列{}n a 满足12a =,112n n na a --=,则n a = . 9.已知31x y +=,则28x y +的最小值为____________.10.若ABC ∆的三个内角,,A B C 成等差数列,1AB =,4BC =,则边BC 上的中线AD 的长为 .11. 设y x ,为实数,若1422=++xy y x ,,则y x +2的最大值是 . 12.在ABC ∆中边,,a b c 成等比数列,则B 的取值范围是 . 13.若关于的不等式对任意的正实数恒成立,则实数的取值范围是 .14.ABC ∆中,D 在边BC 上,且2BD =,1DC =,60B ∠=,150ADC ∠=,则ABC ∆的面积为 .15. 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求角A 的大小;(2)若,求边c 的大小.i x 2(20)lg 0aax x-≤x a 1cos 2a C cb +=a =4b =16.经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系为:2920(0)31600vy v v v =>++. (1)在该时段内,当汽车的平均速度v 为多少时,车流量有何最大值?(保留分数形式) (2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?17.将n 2个数排成n 行n 列的一个数阵:111213121222323132333123n n n n n n nna a a a a a a a a a a a a a aa 已知a 11=2,a 13=a 61+1.该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,其中m 为正实数. (Ⅰ)求第i 行第j 列的数a ij ;(Ⅱ)求这n 2个数的和.参考答案:1、{|1x x >或0}x <.2、31. 3、4. 4、7. 5、123-⋅=n n a . 6、12. 7、1、51()22n -. 9、、. 12、(0,]3π. 14、解:在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o=3.在△ACD 中,AC 2=(3)2+12-2×3×1×cos150o =7,∴AC =7.∴AB =2cos60o =1.S △ABC =21×1×3×sin60o =343. 15(2)用余弦定理,得16、解:(Ⅰ)依题意,,83920160023920)1600(3920=+≤++=vv y 当且仅当1600v v =,即40v =时,max 92083y =(千辆/小时)(Ⅱ)由条件得,10160039202>++v v v整理得v 2-89v +1600<0, 即(v -25)(v -64)<0,解得25<v <64.答:当v =40千米/小时,车流量最大,最大车流量约为11.1千辆/小时.如果要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应大于25千米/小时且小于64千米/小时.2222cos .a b c bc A =+-17、解:(Ⅰ)由a 11=2,a 13=a 61+1,得2m 2=2+5m +1.………2分解得m =3或m =12-(舍去). ………………………………………4分11113[2(1)]3(31)3j j j ij i a a i m i ---=⋅=+-=-.…………………………7分(Ⅱ)S =111212122212()()()n n n n nn a a a a a a a a a ++++++++++=11121(13)(13)(13)131313n n n n a a a ---+++---………………………………10分=1(231)1(31)(31)(31)224n n n n n n +--⋅=+-.…………………………15分。

【高一】高一数学下册周末作业题(含参考答案)

【高一】高一数学下册周末作业题(含参考答案)

【高一】高一数学下册周末作业题(含参考答案)数学训练 9本卷满分150分,限时120分钟(2021.5)说明:1、本卷内容包括必修5的全部内容与必修2的直线方程的点斜式之前的内容.2、本卷可以作为1――15班的5月月考题,也可以作为16――21班的训练题.第I卷(共50分))一、:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知中,,那么角等于 ( )(A)(B)(C)(D)2、已知直线过点,它的倾斜角是直线的倾斜角的两倍,则直线的方程为 ( )(A)(B)(C)(D)3、关于直线以及平面,下面命题正确的是()(A)若,则(B)若,则(C)若,则(D)若且,则4、已知二面角的大小为,为异面直线,且,则所成的角为 ( )(A)(B)(C)(D)5、在中,,则 ( )(A)(B)(C)(D)6、将直线绕它上面一点沿逆时针方向旋转,得到的直线方程是 ( )(A)(B)(C)(D)7、在家电下乡活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用。

每辆甲型货车运输费用是400元,可装洗衣机20台;每辆乙型货车运输费用是300元,可装洗衣机10台。

若每辆车至多只运一次,则该厂所花的最少运输费用为()(A)2000元(B)2200元(C)2400元(D)2800元8、已知为等差数列,,,以表示的前项和,则使得达到最大值的是 ( )(A) 21 (B)20 (C)19 (D)189、已知等比数列满足且,则当时, ( )(A)(B)(C)(D)10、如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是())第II卷非选择题共100分二、题:(本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.)11、已知正四面体内的一点到各面的距离和为,则些正四面体的棱长为 .12、若为不等式组表示的平面区域,则当从-2连续变化到1时,动直线扫过中的那部分区域的面积为13、直线的斜率的取值范围是 .14、《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为 .15、若正数使不等式对一切正数都成立,则的最小值是 .三、解答题::(本大题共6小题,共75分.解答应写出字说明,证明过程或演算步骤.)16、(12分)求三边是连续的三个自然数且最大角是最小角的二倍的三角形的三边之长.17、(12分)过定点作直线分别与轴、y轴正向交与两点,求使面积最小时的直线方程.18、(12分)如图,在四棱锥中,底面是四边长为1的菱形, , , , 为的中点,为的中点.(1)证明:直线;(2)求异面直线AB与D所成角的大小.19、(12分)已知数列为等差数列,且 .(1)求证:数列是等比数列;(2)求的值.20、(13分)某工厂要建造一个长方形无盖贮水池,由于生产需要,水池的正面的长度x不得小于米,其容积做成立方米,深为米.如果池底每平方米的造价为元,池壁每平方米的造价为元.求(1)把水池总造价表示成的函数,并写出该函数的定义域;(2)当水池正面的长度为多少时,总造价最低?最低总造价是多少?21、(14分)设是正项数列的前项和,且 .(1)求数列的通项公式;(2)是否存在等比数列,使对一切正整数都成立?并证明你的结论;(3)设,且数列的前项和为,试比较与的大小.数学训练9参考答案第I卷一、选择题1~5、,6~10第II卷二、题11、2 12、 13、 14、 15、三、解答题16、设三角形的三边长分别是,三个内角分别是,由正弦定理得,由余弦定理得所以(舍去)或,所以三角形的三边长分别是 .17、设直线的方程为,由题意知 .令得,, .令,得,,当且仅当时,等号成立,,此时直线的方程是,即 .18、法一、取OB中点E,连接E,NE,如图1,证明法二、也可以取的中点 ,证明平面平面法三、构造截线的方法.延长交的延长线于,连证,如图2(2)为异面直线与所成的角(或其补角)如图3连在中,由余弦定理可求得在,由勾股定理可求得在中,,由余弦定理得,,所以与所成角的大小为 .19、(1) 为等差数列,首项,由此得,,是以2为首项,以2为公比的等比数列.(2)由(1)可知 ,.20、(1)由题意可得,(2)当且仅当时取等号.①若时,则函数在上是增函数,时,有最小值;②若,由均值不等式,时, .故当时,正面长度为米时,总造价最低,最低造价为元.当时,侧面长度为米时,造价最低,最低造价为元.21、(1)由已知,,则,两式相减,得,变形,,, .由已知,,,是以3为首项,以2为公差的等差数列. .(2)在中,令,得,由(1)知,;令,得 .…………猜想,使,证明如下: (1) (2)错位相减,并化简,得,这就是说存在,使得.(3) ,,故 .感谢您的阅读,祝您生活愉快。

高一数学下学期 第周周末练习 试题

高一数学下学期 第周周末练习 试题

心尺引州丑巴孔市中潭学校一中高一数学2021春学期第十八周双休练习班级 成绩一、填空题:本大题共14小题,每题5分,共70分. 把答案填写在题中的横线上. 1. 不等式11x>的解集为 . 2. 数列{}n a 满足110,2n n aa a +==+,那么2009a 的值为 .3. 在△ABC 中,假设22230,a b ab c ++-=那么C =____________.4. 假设关于x 的不等式2260ax x a -+<的解集为(1,)m ,那么实数m = .5. 在等比数列{}n a 中,59710,90,aa a === .6. 等比数列{}n a 的前三项依次为111,,24-,那么该数列第5项到第10项的和为 ________.7. 假设关于x 的方程222320kx x k ---=的两根一个小于1,一个大于1,那么实数k 的取值范围是 . 8. 记等差数列{}n a 、{}n b 的前n 项的和分别为nS 、n T ,且对*,n ∈N 都有11n n a n b n -=+, 那么77S T = . 9. 给出平面区域如下列图,假设使目标函数z = ax -y (a >0)取得最大值的最优解有无穷多个,那么a 的值为 .10. 设变量x 、y 满足约束条件230,3,0x y y x --<⎧⎪≤⎨⎪>⎩那么满足该约束条件的整数解(x , y )的个数是______.11. 点(0,0)和点(-1,-1)在直线y =2x +m 的同侧,那么m 的取值范围是___________12. 有一解三角形的题因纸张破损有一个条件不清,具体如下:在△ABC 中23,2cos (21)cos 2A Ca B +=-已知=, ,求角A . 经推断破损出的条件为三角形一边的长度,且答案提示60A =,试将条件补充完整.13. 三角形的三边构成等比数列,它们的公比为q ,那么q 的取值范围是 . 14. 一个小朋友按如下列图的规那么练习数数,1大拇指,2食指,3中指, 4无名指,5小指,6无名指,…,一直数到2021时,对应的指头是 (填指头的名称).一中高一数学2021春学期第十八周双休练习答题卡1、__________________ 6、__________________ 11、________________2、__________________ 7、__________________ 12、________________3、__________________ 8、__________________ 13、________________4、_________________ 9、_________________ 14、________________5、_________________ 10、_________________二、解答题:本大题共6小题,共90分.解容许写出文字说明、证明过程或演算步骤. 15. (此题总分值14分)假设()f x =的定义域为R ,求实数k 的取值范围.16. (此题总分值14分)某工厂生产甲、乙两种产品,生产甲种产品1 t,需矿石4 t,煤3 t ;生产乙种产品1t,需矿石5 t,煤10 t.每1 t 甲种产品的利润是16万元,每1 t 乙种产品的利润是12万元.工厂在生产这两种产品的方案中,要求消耗矿石不超过20 t,煤不超过30 t,那么甲、乙两种产品应各生产多少,才能使利润总额到达最大?最大利润是多少? 17. (此题总分值15分)等差数列{}n a 的前n 项和为n S ,2111,33a S ==. 〔Ⅰ〕求数列{}n a 的通项公式;〔Ⅱ〕设{},2nn n n n a b b n T =求数列的前项和. 18. (此题总分值15分)四边形ABCD 中,AD =1,CD =2, △ABC 是正三角形,设四边形ABCD 的面积为S ,D θ∠=. (1)用含θ的式子表示S ;(2)当θ为何值时,S 取得最大值?最大值是多少? 19. (此题总分值16分) 设数列{}n a 的前n 项和为nS,假设对任意n *∈N ,都有2n n S a =-〔Ⅰ〕求数列{}n a 的首项与它的一个递推关系式;〔Ⅱ〕数列{}n a λ+〔其中λ∈R 〕是等比数列,求λ的值及数列{}n a 的通项公式;〔Ⅲ〕在〔Ⅱ〕的条件下,假设数列{}n b 满足1,nn n b a λ+=+求证:数列{}n b 在*N 上是递减数列. 20设M 为局部正整数组成的集合,数列}{n a 的首项11=a ,前n 项和为n S ,对任意整数k 属于M ,当n >k 时,)(2k n k n k n S S S S +=+-+都成立.〔1〕设M ={1},22=a ,求5a 的值;〔2〕设M ={2,3},求数列}{n a 的通项公式. 一中高一数学2021春学期第十八周双休练习答案 一、填空题:1. 〔0, 1〕2. 40163. 1504. 25. 306. 21512 7. 40 k k <->或 8. 3 59. 1410. 6 11. 0 1 m m <>或 12. bBC13. 0 <q 14. 大拇指 二、解答题:15.解:设()268g x kx kx k =-++那么有对一切x ∈R ,()0g x ≥恒成立 ………………2分①当0k =时显然有()80g x =≥对一切x ∈R 恒成立. ………………6分 ②当0k ≠时 由{0,0k >∆≤得{20,0k k k >-≤所以0 1.k <≤ ………………………………12分 综上所述,0 1.k ≤≤ ………………………………14分 16.解:设甲乙两种产品分别生产x t 、y t,利润为z 万元, ………………1分那么约束条件为 4520,31030,0,0.x y x y x y +≤⎧⎪+≤⎨≥≥⎪⎩ ………………………………4分目标函数为1612.z x y =+ ………………………………5分 作出可行域为〔包括坐标轴〕9分13分. ………………………………………………14分17.解:〔1〕由题意有:l 0111,11101133.2a d a d +=⎧⎪⨯⎨+=⎪⎩ ……………………………2分解得11,21.2a d ⎧=⎪⎨⎪=⎩ ……………………………4分从而1.2n a n =………………………5分 〔2〕易得:12n n nb += ………………………6分 所以2341123 2222n n nT +=++++ ① 34121121 22222n n n n nT ++-=++++② …………………8分 ①-②得:2312111122222n n n nT ++=+++-2211(1)1242122212n n n n n ++-+=-=-- ………………………………13分 所以121 . 2n n nT ++=-………………………………15分 18.解:〔1〕在△ACD 中,由余弦定理得AC 2=12+12-2×1×2cos θ=5-4 cos θ. ………………4分于是,四边形ABCD 的面积为121sin (54cos )2ACDABCS SSθθ=+=⨯⨯⨯+- ………………………………6分sin θθ=+ ………………………………8分所以,2sin()(0,)3S πθθπ=-+∈ ………………12分 〔2〕由〔1〕知: 因为0<θ<π,所以当5,326ππθθπ-==即时,四边形ABCD 面积最大. 最大面积为2+………………………………15分 19.〔1〕由11123a S a ==-得1 3.a = ………………………2分因为 23n n S a n =-所以 1123(1)n n S a n ++=-+ …………………4分 两式相减得:123n n a a +=+. ……………6分 (2) 因为数列{}n a λ+〔其中λ∈R 〕是等比数列,设公比为q那么1n n a q a λλ++=+,即1n n a qa q λλ+=+- …………8分与123n n a a +=+比较,根据对应项系数相等得{{2,2, 3 3.q q q λλλ==∴-== ……………11分所以数列{}n a λ+是以6为首项,2为公比的等比数列. ………………12分 (3)由〔2〕知1162n n n b -+=⨯因为11210626262n n n n nn n nb b +-++--==-=<⨯⨯⨯ 所以数列{}n b 在*N上是递减数列. ………………16分说明:此题的第2问中亦可以直接用凑的方法在123n n a a +=+的两边加上3,变形成比例的形式后可以看出{}3n a +是以2为公比的等比数列. 20 解:〔1〕)1(),(2111>+=+-+k S S S S n n n∴数列}{n a 从第二项开始成等差数列 ∴当2≥n时22)2(2-=-+=n d n a a n注:⎩⎨⎧≥-==2,221,1n n n a n〔2〕由题设知,当}3,2{=∈M k 且k n >时,k n k n k n S S S S 22+=+-+恒成立,那么k n k n k n S S S S 22111+=++-+++,两式相减得1112+-+++=+n k n k n a a a 〔*〕∴当5≥n时,3113,,,++--n n n n a a a a 成等差数列,且33,,+-n n n a a a 也成等差数列∴ 1133-+-++=+n n n n a a a a 且 n n n a a a 233=+-+∴ n n n a a a 211=+-+,当4≥n 时,设d a a n n =-+1当42≤≤n 时,42≥+n ,由〔*〕式知422+++=n n n a a a ,故5132++++=n n n a a a两式相减得,d a a d n n +-=+12,即d a a n n =-+1∴ d a a n n =-+1对2≥n 都成立又由})3,2{(2)()(∈=----+k S S S S S k k n n n k n 得,224S d =,329S d =,∴ d a 253=,d a 232=,d a 211= ∴ 数列}{n a 为等差数列,由11=a 得2=d∴ 12-=n a n。

高一下数学训练题及答案

高一下数学训练题及答案

周末数学训练卷(三)一、选择题(每题5分,共计60分)1.若不等式20x ax b -+<的解集为(1,2),则不等式1bx a<的解集为( )A .2(,)3+∞B .3(,0)(,)2-∞+∞C .3(,)2+∞D .2(,0)(,)3-∞+∞ 2.设等比数列{}n a 的前n 项和为n S ,若633S S =,则96S S =( ) A .2 B .73 C .83D .33.已知非零向量a,b 夹角为45︒ ,且2a =,2a b -=. 则b等于( )B.24.已知点A (2,3)、B (-5,2),若直线l 过点P(-1,6),且与线段AB 相交,则直线l 斜率的取值范围是( )A .[1,1]-B .(,1][1,)-∞-+∞C . (1,1)-D .(,1)(1,)-∞-+∞5.两圆x 2+y 2﹣1=0和x 2+y 2﹣4x+2y ﹣4=0的位置关系是( )A . 内切B . 外切C .相交D .外离6.若实数x y 、满足2400 0x y x y +-≤⎧⎪≥⎨⎪≥⎩,则21y z x +=-的取值范围为 ( )A.2(,4][,)3-∞-⋃+∞B .2(,2][,)3-∞-⋃+∞C .2[2,]3-D .2[4,]3-7.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则⋅PA PB 的最大值为( ) A .3 B .4 C . 5D .68.设直线2x +3y +1=0和圆x 2+y 2-2x -3=0相交于点A 、B ,则弦AB 的垂直平分线的方程为( )A .3x -2y -3=0B .3x -2y +3=0C .2x -3y -3=0D .2x -3y +3=0 9.设m ,n ∈R ,若直线(m+1)x+(n+1)y ﹣2=0与圆(x ﹣1)2+(y ﹣1)2=1相切(m ﹣1)⋅(n ﹣1)等于( ) A . 2 B .1 C .﹣1D .﹣210.已知圆的方程为015822=+-+x y x ,若直线2+=kx y 上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是( ) A.43- B .53- C .35-D .54- 11.若⊙O 1:x 2+y 2=5与⊙O 2:(x ﹣m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是( ) A .1 B .2 C .3D .4 12.设M是)(,30,32,M f BAC AC AB ABC =︒=∠=⋅∆定义且内一点其中m、n、p分别是114,,,()(,,)2MBC MCA MAB f M x y x y∆∆∆=+的面积若则的最小值是 ( )A .8B .9C .16D .18 二、填空题(每题5分,共计20分)13.不论k 为何实数,直线(2k ﹣1)x ﹣(k+3)y ﹣(k ﹣11)=0恒通过一个定点,这个定点的坐标是 .14.已知实数x 、y 满足2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,则2Z x y=-的取值范围是 .15.已知直线:10()l x ay a R +-=∈是圆C:224210x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则AB = .16.若直线y x b =+与曲线3y =-2个不同的公共点,则实数b 的取值范围是____________. 三、解答题(17题10分,18,19,20,21,22每题12分)17.已知不等式22log (36)2ax x -+>的解集是{}|1x x x b <>或.(1)求,a b 的值; (2)解不等式0c xax b->+(c 为常数). 18.已知点(),x y 是圆222x y y +=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围. 19.已知直线062:1=++y ax l 和01)1(:22=-+-+a y a x l .(1)若21l l ⊥, 求实数a 的值;(2)若21//l l , 求实数a 的值.20.已知数列{}n a 的前n 项和为n S ,12a =,且满足112n n n a S ++=+*()n N ∈.(1)证明数列{}2nn S 为等差数列; (2)求12...n S S S +++.21.矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为x -3y -6=0,点T(-1,1)在AD 边所在直线上.(1)求AD 边所在直线的方程;(2)求矩形ABCD 外接圆的方程.22.已知以点)2,1(-A 为圆心的圆与直线072:1=++y x l 相切.过点)0,2(-B 的动直线l 与圆A 相交于M 、N 两点,Q 是MN 的中点,直线l与1l 相交于点P .(1)求圆A 的方程;(2线l 的方程;(3)BP BQ ⋅是否为定值,如果是,求出这个定值;如果不是,请说明理由.周末数学训练卷(三)答案一、选择题(题型注释) 1.若不等式20x ax b -+<的解集为(1,2),则不等式1bx a<的解集为( ) A .2(,)3+∞ B .3(,0)(,)2-∞+∞C .3(,)2+∞D .2(,0)(,)3-∞+∞【答案】B 试题分析:Q 不等式20x ax b -+<的解集为(1,2),1,2∴是一元二次方程20x ax b -+=的两个实根,由韦达定理得:123122a ab b +==⎧⎧⇒⎨⎨⨯==⎩⎩, 那么不等式1b x a<化为:1223300,332x x x x x-<⇒>⇒<>或,2.设等比数列{}n a 的前n 项和为n S ,若633SS =,则96SS =( ) A .2 B .73 C .83 D .3【答案】B 试题分析:设等比数列{}n a 的公比为()0q q ≠,则:由633S S =,知1q ≠,得:63313131q q q-=⇒+=-,那么93362963361(1)(1)3271(1)(1)33S q q q q S q q q --+++====--+3.已知非零向量a,b 夹角为45︒ ,且2a =,2a b -=. 则b 等于( )B.2【答案】A 试题分析:由题22220()2cos 45a b a b a a b b -=-=-+,则:244,b b -+==4.已知点A (2,3)、B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则直线l 斜率的取值范围是( )A .[1,1]-B . (,1][1,)-∞-+∞C . (1,1)-D .(,1)(1,)-∞-+∞【答案】B 试题分析:直线PA 的斜率36121k -==-+,倾斜角等于135°,直线PB 的斜率'26151k -==-+,倾斜角等于45°,结合图象由条件可得直线l 的倾斜角α的取值范围是:90°<α≤135°,或45°≤α<90°.5.两圆x 2+y 2﹣1=0和x 2+y 2﹣4x+2y ﹣4=0的位置关系是( )A . 内切B . 外切C .相交D .外离【答案】C 试题分析:由已知得:圆221=0x y +-,圆心()100O ,,半径11r =;圆22x y 4x 2y 40++=﹣﹣化为标准方程为()()22219x y -++=,圆心()2O 2,-1,半径23r =;则12OO =,124r r +=,1212OO r r <+,所以两圆相交.故选C.6.若实数x y 、满足2400 0x y x y +-≤⎧⎪≥⎨⎪≥⎩,则21y z x +=-的取值范围为 ( ) A.2(,4][,)3-∞-⋃+∞B .2(,2][,)3-∞-⋃+∞C .2[2,]3- D .2[4,]3- 【答案】B 试题分析:由不等式可知可行域为直线0,0,240x y x y ==+-=围成的三角形,顶点为()()()0,0,0,2,4,0,21y z x +=-看作点()(),,1,2x y -连线的斜率,结合图形可知斜率的范围为2(,2][,)3-∞-⋃+∞7.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则⋅PA PB 的最大值为( )A .3 B .4 C . 5D .6【答案】C 试题分析:由题意可知,动直线0x my +=经过定点()0,0A ,动直线30mx y m --+=即()130m x y --+=,经过点定点()1,3B , 动直线 0x my +=和动直线30mx y m --+=始终垂直,P 又是两条直线的交点,则有222,10P A P BP AP BA B⊥∴+==,故2252+⋅≤=PA PBPA PB (当且仅当P A P ===”) ,故选C.8.设直线2x +3y +1=0和圆x 2+y 2-2x -3=0相交于点A 、B ,则弦AB 的垂直平分线的方程为A .3x -2y -3=0B .3x -2y +3=0C .2x -3y -3=0D .2x -3y +3=0【答案】A 试题分析:弦AB 的垂直平分线必过圆心,而圆的标准方程是()4122=+-y x ,圆心()0,1,已知直线的斜率32-=k ,那么垂直平分线的斜率23='k ,故垂直平分线方程是()123-=x y ,整理为0323=--y x9.设m ,n ∈R ,若直线(m+1)x+(n+1)y ﹣2=0与圆(x ﹣1)2+(y ﹣1)2=1相切(m ﹣1)⋅(n ﹣1)等于()A . 2B .1C .﹣1 D .﹣2【答案】A 试题分析:由题意知:圆心()1,1到直线m 1x n 1y 20+++=()()﹣的距离等于半径1,所以1=,化简得1mn m n --=;则()()11111m n mn mn-⋅-=--. 10.已知圆的方程为015822=+-+x y x ,若直线2+=kx y 上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是A.43-B .53-C .35-D .54-【答案】A 试题分析::∵圆C 的方程为15822=+-+x y x ,∴整理得:()2241x y -+=,∴圆心为C (4,0),半径r=1.又∵直线2+=kx y 上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴点C 到直线y=kx+2的距离小于或等于2,2≤化简得:2340k k +≤,解之得43-≤k ≤0,∴k 的最小值是43-11.若⊙O 1:x 2+y 2=5与⊙O 2:(x ﹣m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是( )A .1B .2C .3D .4【答案】D 解:由题意做出图形分析得:由圆的几何性质两圆在点A 处的切线互相垂直,且过对方圆心O 2O 1.则在Rt △O 2AO 1中,|O 1A|=|O 2A|=,斜边上的高为半弦,用等积法易得:AB52⋅=?|AB|=4 12.设M是)(,30,32,M f BAC AC AB ABC =︒=∠=⋅∆定义且内一点其中m、n、p分别是114,,,()(,,)2MBC MCA MAB f M x y x y∆∆∆=+的面积若则的最小值是 ( ) A .8 B .9 C .16 D .18【答案】D 试题分析: 因为在ABC ∆ 23,30AB AC BAC ⋅=∠=︒,所以01||||cos3023,||||4,S |||2ABC AB AC AB AC AB AC ∆=∴==,S ABC ∆是,,MBC MCA MAB ∆∆∆的面积之和,12x y +=,所以141428()(22)101018y x x y x y x y x y +=++=++≥+=,当且仅当28y x x y =,即2y x =时,即11,63x y ==时取等号,故选D.二、填空题(题型注释)13.不论k 为何实数,直线(2k ﹣1)x ﹣(k+3)y ﹣(k ﹣11)=0恒通过一个定点,这个定点的坐标是 . 【答案】(2,3)试题分析:直线(2k ﹣1)x ﹣(k+3)y ﹣(k ﹣11)=0 即 k (2x ﹣y ﹣1)+(﹣x ﹣3y+11)=0, 根据k 的任意性可得,解得,∴不论k 取什么实数时,直线(2k ﹣1)x+(k+3)y ﹣(k ﹣11)=0都经过一个定点(2,3).14.已知实数x 、y 满足2203x y xy y +≥⎧⎪-≤⎨⎪≤≤⎩,则2Z x y=-的取值范围是 .【答案】[5,7]-试题分析:画出可行域如图 由2z x y =-可变形得2y x z =-,当直线经过点B 时z 取得最小值,直线经过点C 时z 取得最大值,所以z 取得最小值是2(1)35⨯--=-, z 取得最大值是2537⨯-=,可得z 的取值范围是[5,7]-. 考点:利用线性规划求最值.15.已知直线:10()l x ay a R +-=∈是圆C:224210x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则AB = . 【答案】6试题分析:圆C:224210x y x y +--+=的圆心为)1,2(,直线l 是圆C 的对称轴,则直线过点)1,2(可求得1-=a ,01=--y x ,也即点)14(--,A ,则102,又圆的半径为2=r ,由圆的切线长定理可知6))((=-+=r AC r AC AB ,所以6=AB .16.若直线y x b =+与曲线3y =2个不同的公共点,则实数b 的取值范围是____________. 【答案】(11]--试题分析:曲线方程变形为()()22234x y -+-=,表示圆心A 为(2,3),半径为2的下半圆,根据题意画出图形,如图所示,当直线y=x+b 过B (4,3)时,将B 坐标代入直线方程得:3=4+b ,即b=-1;当直线y=x+b 与半圆相切时,圆心A 到直线的距离d=r ,即2=,即1b -=(不合题意舍去)或b-1=1b -=-,解得:1b =-则直线与曲线有两个公共点时b 的范围为11b -<≤-三、解答题(题型注释)17.已知不等式22log (36)2ax x -+>的解集是{}|1x x x b <>或.(1)求,a b 的值;(2)解不等式0c xax b->+(c 为常数).【答案】(1) 1,2a b ==;(2)当2c =-时,不等式的解集是∅,当2c >-时,不等式的解集为{}|2x x c -<<,当2c <-时,不等式的解集为{}|2x c x <<-.试题解析:(1)由22l o g (36)2ax x -+>得2364ax x -+>,即2320ax x -+>,由题可知2320ax x -+>的解集是{}|1x x x b <>或,则1,b 是2320ax x -+=的两根,由韦达定理得33121b a ab a -⎧+=-=⎪⎪⎨⎪⨯=⎪⎩,解得1,2a b ==(2)原不等式可化为()(2)0c x x -+>,即()(2)0x c x -+<.当2c =-时,不等式的解集是∅,当2c >-时,不等式的解集为{}|2x x c -<<;当2c <-时,不等式的解集为{}|2x c x <<-18.已知点(),x y 是圆222x y y +=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围. 【答案】(1)1⎡⎤⎣⎦;(2试题解析:(1)设圆的参数方程为cos sin x y θθ=⎧⎨=⎩(2)cos sin 10x y a a θθ++=+++≥19.已知直线062:1=++y ax l 和01)1(:22=-+-+a y a x l .(1)若21l l ⊥, 求实数a 的值;(2)若21//l l , 求实数a 的值. 【答案】(1)23a =;(2).1-=a 试题解析:(1)若21l l ⊥, 则212(1)0.3a a a ⨯+-=⇒=(2)若21//l l , 则(1)1201 2.a a a ⋅--⨯=⇒=-或 经检验, 2a =时, 1l 与2l 重合. 1-=a 时, 符合条件.∴ .1-=a20.已知数列{}n a 的前n 项和为n S ,12a =,且满足112n n n a S ++=+*()n N ∈.(1)证明数列{}2nn S 为等差数列; (2)求12...n S S S +++.【答案】(1)见解析; (2) 12(1)2n n ++-⋅.试题解析: (1) 证明:由条件可知,112n n n n S S S ++-=+,即1122n n n S S ++-=,整理得11122n nn nS S ++-=, 所以数列{}2nn S 是以1为首项,1为公差的等差数列.(2) 由(1)可知,112n n S n n =+-=,即2nn S n =⋅, 令12n n T S S S =+++212222nn T n =⋅+⋅++⋅①21212(1)22n n n T n n += ⋅++-⋅+⋅②①-②,212222n n n T n +-=+++-⋅,整理得12(1)2n n T n +=+-⋅.21.矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为x -3y -6=0,点T(-1,1)在AD 边所在直线上.(1)求AD 边所在直线的方程;(2)求矩形ABCD 外接圆的方程.【答案】(1)023=++y x ;(2)8)2(22=+-y x . 试题解析:(1)∵AB 所在直线的方程为x -3y -6=0,且AD 与AB 垂直,∴直线AD 的斜率为-3. 又∵点T(-1, 1)在直线AD 上,∴AD 边所在直线的方程为y -1=-3(x +1),即3x +y +2=0.(2)由360320x y x y --=⎧⎨++=⎩得02x y =⎧⎨=-⎩∴点A 的坐标为(0,-2),∵矩形ABCD 两条对角线的交点为M(2,0), ∴M 为矩形ABCD 外接圆的圆心,又|AM|==,∴矩形ABCD 外接圆的方程为(x -2)2+y 2=8 22.已知以点)2,1(-A 为圆心的圆与直线072:1=++y x l 相切.过点)0,2(-B 的动直线l 与圆A 相交于M 、N 两点,Q 是MN 的中点,直线l 与1l 相交于点P . (1)求圆A 的方程;(2直线l 的方程;(3)BP BQ ⋅是否为定值,如果是,求出这个定值;如果不是,请说明理由.【答案】(1)20)2()1(22=-++y x ;(2)2-=x 或0643=+-y x ;(3)BP BQ ⋅是定值,且5-=⋅.试题解析:(1)设圆A 的半径为R ,由于圆A 与直线072:1=++y x l 相切,∴525741=++-=R , ∴圆A 的方程为20)2()1(22=-++y x .(2)①当直线l 与x 轴垂直时,易知2-=x ,符合题意.②当直线l 与x 轴不垂直时,设直线l 的方程为)2(+=x k y ,即02=+-k y kx . 连结AQ ,则MNAQ ⊥,∵,∴,则由11222=++--=k k k AQ ,∴直线l :0643=+-y x . 故直线l 的方程为2-=x 或0643=+-y x .(3)解法1:∵BP AQ ⊥,∴0=⋅BP AQ ,∴BPBA BP AQ BA BP BQ ⋅=⋅+=⋅)(,①当直线l 与x 轴垂直时,解得)25,2(--P ,则)25,0(-=,又)2,1(=BA ,∴5-=⋅=⋅BP BA BP BQ .②当直线l 的斜率存在时,设直线l 的方程为)2(+=x k y ,由⎩⎨⎧=+++=072),2(y x x k y 得)215,2174(k kk k P +-+--,则)215,215(kkk BP +-+-=,(021≠+k ,否则l 与1l 平行).∴5110215-=+-++-=⋅=⋅kk .解法2:①当直线l 与x ,又)2,1(=BA ,∴5-=⋅=⋅BP BA BP BQ .②当直线l 的斜率存在时,设直线l 的方程为)2(+=x k y ,由⎩⎨⎧=+++=072),2(y x x k y 得,则,(021≠+k ,否则l 与1l平行) 由⎩⎨⎧=-+++=20)2()1(),2(22y x x k y ,得)1584()244()1(2222=--++-++k k x k k x k ,∴,∴1242221++=+k kk y y ,∴)12,1122(2222+++-+-k k k k k k Q , ∴)12,112(222++++=k kk k k , ∴5)21)(1()212(5)215,215()12,112(223222-=+++++-=+-+-⋅++++=⋅k k k k k k k k k k k k k ,综上所述,BP BQ ⋅是定值,且5-=⋅BP BQ . 解法3:设),(00y x P ,则07200=++y x ,),2(),2,1(00y x +==,∵BP AQ ⊥,∴0=⋅BP AQ , ∴52722),2()2,1()(0000-=+-=++=+⋅=⋅=⋅+=⋅y x y x BP BA BP AQ BA BP BQ ,∴BP BQ ⋅是定值,且5-=⋅BP BQ .。

【高一】高一数学下册周末训练试题及答案

【高一】高一数学下册周末训练试题及答案

【高一】高一数学下册周末训练试题及答案数学训练8本卷满分为100分,时限为60分钟(2022.5)第i卷重点题变形再做(每小题4分,共24分)1.不等式的解集为2、一个红色的棱长为4厘米的立方体,将其适当分割成棱长为1厘米的小正方体,则六个面都没有涂色的小正方体有个.3.对角折叠正方形。

当以四点为顶点的三角棱锥体体积最大时,直线与平面形成的角的大小为四、四棱锥中,底面是边长为2的正方形,其它四个侧面都是侧棱长为的等腰三角形,则二面角的平面角为.5.假设立方体外球面的体积为,立方体的边长等于6、设是两条不同的直线,是三个不同的平面,给出下列四个说法:①若,则②若,则③若,则④若,则.其中正确说法的序号是(把你认为正确的说法的序号都填上).第二册新增培训题(共76分)一、:(每小题6分,共36分)1.如果是一条直线,一条直线,则与的位置关系为()(a)(b)与异面(c)与相交(d)与没有公共点2.在三棱柱体中,每条边的长度相等,边垂直于底部,点是边的中心,因此与平面的角度大小为()(a)(b)(c)(d)3.在立方体中,来自不同平面的直线与直线之间的夹角为()(a)(b)(c)(d)4.如果三角形棱锥体的侧边长度相等,则该点在底面上的投影为()(a)内心(b)外心(c)垂心(d)重心5.在下列命题中(1)平行于同一直线的两个平面平行(2)平行于同一平面的两个平面平行(3)垂直于同一直线的两条直线是平行的其中正确的个数有()(a) 1(b)2(c)3(d)46、若是两条不同的直线,是三个不同的平面,则下列命题中为真命题的是()(a)如果,那么(b)如果,那么(c)若则(d)若,则二、问题:(每个子问题6分,共18分)7、空间两条异面直线与直线都相交,则由这三条直线中的任两条所确定的平面共有一8、棱长为1的正四面体内有一点,由点向各面引垂线,垂线段长度分别为则的值是.9.如果满足实数,则的最大值为第i卷1、2、3、4、5、6、.第二卷1~6;7、8、;9、.三、答:总共22分10、(10分)如图,已知,求证:.11.(12点)如果已知平面外的两条平行线中的一条平行于该平面,则验证另一条平行于该平面(需要书写已知、验证和绘制图片)数学训练8参考答案第一卷1、2、83、4、5、6、①②第二卷1~6、7、28、9、10.在一个平面上画两条相交的线因为,根据直线与平面垂直的定义知,,又,因此所以11.已知:直线、平面和所有平面外求证:证明:制作一个平面,使其与平面相交。

2021高一数学周末训练卷(解析版)

2021高一数学周末训练卷(解析版)

2021高一数学周末训练卷(解析版)1. 如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .)()S C P M U ⋂⋂( D .)()S C P M U ⋃⋂( 【答案】C 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C .2.对于集合A ,B ,定义{|,}A B x x A x B -=∈∉,()()⊕=--A B A B B A .设{}1,2,3,4,5,6M =,{}4,5,6,7,8,9,10N =,则M N ⊕中元素的个数为( ).A .5B .6C .7D .8【答案】C 【详解】由已知{}{}1,2,3,7,8,9,10M N N M -=-=, ∴()(){1,2,3,7,8,9,10}MN M N N M ⊕=-⋃-=.故选:C.3.设甲是乙的必要条件;丙是乙的充分但不必要条件,那么( ) A .丙是甲的充分条件,但不是甲的必要条件 B .丙是甲的必要条件,但不是甲的充分条件 C .丙是甲的充要条件D .丙不是甲的充分条件,也不是甲的必要条件 【答案】A【详解】甲是乙的必要条件,所以乙是甲的充分条件,即乙⇒甲; 丙是乙的充分但不必要条件,则丙⇒乙,乙⇒丙,显然丙⇒甲,甲⇒丙,即丙是甲的充分条件,但不是甲的必要条件,故选A4.设集合{}260A x x x =+-=,{}10B x mx =+=,则B 是A 的真子集的一个充分不...必要..的条件是 A .11,23m ⎧⎫∈-⎨⎬⎩⎭B .0m ≠C .110,,23m ⎧⎫∈-⎨⎬⎩⎭D .10,3m ⎧⎫∈⎨⎬⎩⎭【答案】D 【详解】{}{}26023A x x x =+-==-,,若0m =,则B φ= ,B A,若12m =-,则{}2B =A, 若13m =,则{}3B =-A,B ∴A 的一个充分不必要条件是10,3m ⎧⎫∈⎨⎬⎩⎭.5.在下列三个结论中,正确的有( ) ①x 2>4是x 3<-8的必要不充分条件;②在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件. A .①② B .②③ C .①③ D .①②③【答案】C 【详解】①,x 2>4即2x >或2x <-,x 3<-8即2x <-,因为2x >或2x <-成立时,2x <-不一定成立,所以x 2>4是x 3<-8的不充分条件;因为2x <-成立时,2x >或2x <-一定成立,所以x 2>4是x 3<-8的必要条件.即x 2>4是x 3<-8的必要不充分条件.所以该命题正确.②, AB 2+BC 2=AC 2成立时,ABC 为直角三角形一定成立;当ABC 为直角三角形成立时,AB 2+BC 2=AC 2不一定成立,所以在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误.③,即判断“0,0a b ==”是“a 2+b 2=0”的什么条件,由于a 2+b 2=0即0,0a b ==,所以“0,0a b ==”是“a 2+b 2=0”的充要条件,所以“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 故选:C.6. 下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 【答案】C 【详解】解:命题“若2340x x --=,则4x =”的逆否命题为“若4x ≠,则2340x x --≠”,故A 正确; “2340x x --=” ⇔ “4x =或1x =”,故“4x =”是“2340x x --=”的充分不必要条件,故B 正确;对于C ,命题“若0m >,则方程20x x m +-=有实根”的逆命题为命题“若方程20x x m +-=有实根,则0m >,方程20x x m +-=有实根时,1144m m ∆=+⇒-,故C 错误. 命题“若220m n +=,则0m =且0n =”的否命题是“若220m n +≠.则0m ≠或0n ≠”,故正确;故选:C .7.已知a ,b ∈R ,则“0≤a ≤1且0≤b ≤1”是“0≤ab ≤1”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【详解】若“0≤a ≤1且0≤b ≤1”,则“0≤ab ≤1”.当a =-1,b =-1时,满足0≤ab ≤1,但不满足0≤a ≤1且0≤b ≤1, ∴“0≤a ≤1且0≤b ≤1”是“0≤ab ≤1”成立的充分不必要条件.故选A.8.如果对于任意实数[],x x 表示不超过x 的最大整数,那么“[][]=x y ”是“1x y -<成立”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若“[][]x y =”,设[][]x a y a x a b y a c ===+=+,,, 其中[01b c ∈,,) 1x y b c x y ∴-=-∴-< 即“[][]x y =”成立能推出“[]1x y -<”成立反之,例如 1.2 2.1x y ==, 满足[]1x y -<但[][]12x y ==,,即[]1x y -<成立,推不出[][]x y =故“[][]x y =”是“|x-y|<1”成立的充分不必要条件 故选A9.若“2340x x -->”是“223100x ax a -->”的必要不充分条件,则实数a 的取值范围是( ) A .635⎡⎤-⎢⎥⎣⎦,B .425⎡⎤-⎢⎥⎣⎦,C .(][)635-∞-+∞,, D .][425⎛⎫-∞-+∞ ⎪⎝⎭,, 【答案】D将2340x x -->的解集记为A ,223100x ax a -->的解集记为B .由题意2340x x -->是223100x ax a -->的必要不充分条件可知B 是A 的真子集.2340x x -->,解得{|4A x x =>或1}x <-,223100x ax a -->,则()()520x a x a -+>,(1)当0a ≥时,{|2B x x a =<-或5}x a >,则5421a a ≥⎧⎨-≤-⎩(等号不能同时成立),解得45a ≥.(2)当0a <时,{|5B x x a =<或2}x a >- ,则2451a a -≥⎧⎨≤-⎩(等号不能同时成立),解得2a ≤-.由(1)(2)可得45a ≥或2a ≤-. 故选:D .10.若实数a ,b 满足a≥0,b≥0,且ab=0,则称a 与b 互补,记φ(a ,b )=﹣a﹣b 那么φ(a ,b )=0是a 与b 互补的( ) A .必要不充分条件 B .充分不必要的条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】试题分析:由φ(a ,b )=0得22a b +-a -b =0且0,0a b ≥≥;所以φ(a ,b )=0是a 与b 互补的充分条件;再由a 与b 互补得到:0,0a b ≥≥,且ab =0;从而有,所以φ(a ,b )=0是a 与b 互补的必要条件;故得φ(a ,b )=0是a 与b 互补的充要条件;故选C.11.已知不等式()()120a x x x x -->的解集为A ,不等式()()120b x x x x --≥的解集为B ,其中a 、b 是非零常数,则“0ab <”是“A B R =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件【答案】A 【详解】(1)若0a >,0b >.①若12x x =,不等式()()120a x x x x -->即为()210x x ->,则{}1A x x x =≠,不等式()()120b x x x x --≥即为()210x x -≥,得B R =,A B ⊆,AB B R ==;②若12x x ≠,不妨设12x x <,不等式()()120a x x x x -->即为()()120x x x x -->,则()()12,,A x x =-∞+∞,不等式()()120b x x x x --≥即为()()120x x x x --≥,得(][)12,,B x x =-∞+∞,A B ⊆,则AB B R =≠;(2)同理可知,当0a <,0b <时,A B ⊆,A B B ⋃=不一定为R ; (3)若0a >,0b <.①若12x x =,不等式()()120a x x x x -->即为()210x x ->,则{}1A x x x =≠,不等式()()120b x x x x --≥即为()210x x -≤,则{}1B x =,此时,AB R =;②若12x x ≠,不妨设12x x <,不等式()()120a x x x x -->即为()()120x x x x -->,则()()12,,A x x =-∞+∞,不等式()()120b x x x x --≥即为()()120x x x x --≤,则[]12,B x x =,此时,A B R =;(4)同理,当0a <,0b >时,A B R =.综上所述,“0ab <”是“A B R =”的充分不必要条件.故选A.13.设p :|x ﹣1|≤1,q :x 2﹣(2m +1)x +(m ﹣1)(m +2)≤0.若p 是q 的充分不必要条件,则实数m 的取值范围是_____. 【答案】[0,1]由11x -≤得111x -≤-≤,得02x ≤≤.由2(21)(1)(2)0x m x m m -++-+≤,得[(1)][(2)]0x m x m ---+≤, 得12m x m -≤≤+, 若p 是q 的充分不必要条件,则1022m m -≤⎧⎨+≥⎩,得10m m ≤⎧⎨≥⎩,得01m ≤≤,即实数m 的取值范围是[0,1]. 故答案为:[0,1]14.已知:40p k -<<,:q 函数21y kx kx =--的值恒为负,则p 是q 的______条件. 【答案】充分不必要当40k -<<时,k 0<且24(4)0k k k k ∆=+=+<, 所以函数21y kx kx =--的值恒为负;反过来,函数21y kx kx =--的值恒为负不一定有40k -<<,如当0k =时,函数21y kx kx =--的值恒为负.所以p 是q 的充分不必要条件 故答案为:充分不必要15.设集合{}1,2,3,4,5I =,若非空集合A 同时满足①A I ⊆,②()min A A ≤(其中A 表示A 中元素的个数,()min A 表示集合A 中最小元素),称集合A 为I 的一个好子集,I 的所有好子集的个数为______. 【答案】12 【详解】由题意可知,()min A 的取值为1、2、3、4、5. (1)当()min 1A =时,1A ≤,则{}1A =;(2)当()min 2A =时,2A ≤,则符合条件的集合A 有:{}2、{}2,3、{}2,4、{}2,5,共4个;(3)当()min 3A =时,3A ≤,则符合条件的集合A 有:{}3、{}3,4、{}3,5、{}3,4,5,共4个;(4)当()min 4A =时,4A ≤,则符合条件的集合A 有:{}4、{}4,5,共2个;(5)当()min 5A =时,5A ≤,则符合条件的集合A 为{}5. 综上所述,I 的所有好子集的个数为1442112++++=. 故答案为12.16.Q 是有理数集,集合{},,,0M x x a a b Q x ==∈≠,在下列集合中:①}x M ∈;②1x M x ⎧⎫∈⎨⎬⎩⎭;③{}1212,x x x M x M +∈∈;④{}1212,x x x M x M ∈∈.与集合M 相等的集合序号是______. 【答案】①②④ 【解析】 【分析】利用集合的定义以及集合相等的定义进行验证,即可得出结论. 【详解】对于①中的集合,x M ∈,设x a =,a Q ∈,b Q ,)2a b ==+,则2b Q ∈,①中的集合与集合M 相等;对于②中的集合,x M ∈,设x a =,a Q ∈,b Q ,且a 、b 不同时为零.则2212a x a b ===-222a Q a b∈-,222bQ a b-∈-,②中的集合与集合M 相等;对于③中的集合,取1x a =,2x a =-,a Q ∈,bQ ,则120x x M +=∉,③中的集合与集合M 不相等;对于④中的集合,设111x a =,222x a =,其中1a 、2a 、1b 、2b Q ∈,则()()()(121122*********x x a a a a b b a b a b =+=+++12122a a b b Q +∈,1221a b a b Q +∈,④中的集合与集合M 相等.因此,集合M 相等的集合序号是①②④. 故答案为:①②④.17.设集合{|01}A x x a =≤+≤,{|10}B x a x =-≤≤,其中a ∈R ,求A B .【答案】0a <或1a >时,AB =∅;0a =或1a =时,{0}A B =102a <<时,{|0}A B x a x =-≤≤112a ≤<时,{|10}A B x a x =-≤≤ 【详解】当10a ->即1a >时,B =∅时,AB =∅;当10a -=即1a =时,{|10}A x x =-≤≤,{0}B =,则{0}A B =当10a -<即1a <时,10a -> 若0a ->即0a <时,如下图所示,AB =∅.若0a -=即0a =时,如下图所示,{|01}A x x =≤≤,{|10}B x x =-≤≤,则{0}A B =若10a a -<-<即102a <<时,如下图所示,{|0}A B x a x =-≤≤.若1a a -≤-即112a ≤<时,如下图所示,{|10}A B x a x =-≤≤.综上所述:0a <或1a >时,AB =∅;0a =或1a =时,{0}A B =102a <<时,{|0}A B x a x =-≤≤112a ≤<时,{|10}A B x a x =-≤≤ 18.已知下列三个方程:24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=至少有一个方程有实根,求实数a 的取值范围.【答案】32a ≤-或1a >- 【详解】先求使三个方程都没有实根的实数a 的取值范围:由()()()()()21222234443014024120a a a a a a ⎧∆=--+<⎪⎪∆=--<⎨⎪∆=-⨯⨯-<⎪⎩得2224430321020a a a a a a ⎧+-<⎪+->⎨⎪+<⎩解得:312a -<<- ∴至少有一个方程有实根,求实数a 的取值范围:32a ≤-或1a >-19.已知函数f(x)=x 2−2x,g(x)=ax −1,若∀x 1∈[−1,2],∃x 2∈[−1,2],使得f(x 1)=g(x 2),求a 的取值范围. 【答案】详见解析 【解析】若∀x 1∈[−1,2],∃x 2∈[−1,2],使得f(x 1)=g(x 2),即g(x)在[−1,2]上的值域要包含f(x)在[−1,2]上的值域,又在[−1,2]上f(x)∈[−1,3].①当a <0时,g(x)=ax −1单调递减,此时{g(−1)≥3g(2)≤−1, 解得a ≤−4;②当a =0时,g(x)=−1,显然不满足题设;③当a >0时,g(x)=ax −1单调递增,此时{g(2)≥3g(−1)≤−1, 解得a ≥2.综上,∀x 1∈[−1,2],∃x 2∈[−1,2],使得f(x 1)=g(x 2),a 的取值范围为(−∞,−4]∪[2,+∞).20.已知命题:“{}11x x x ∀∈-≤≤,都有不等式2x x m --<0成立”是真命题. (1)求实数m 的取值集合B ;(2)设不等式(3)(2)0x a x a ---<的解集为A ,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.【答案】(1)(2,)+∞;(2)2[,)3+∞.【详解】(1)命题:“{}11x x x ∀∈-≤≤,都有不等式2x x m --<0成立”是真命题, 得2x x m --<0在11x -≤≤时恒成立,∴2max ()m x x >-,得2m >,即{}2(2,)B m m =>=+∞. (2)不等式(3)(2)0x a x a ---<,①当32a a >+,即1a >时,解集{}23A x a x a =+<<,若x A ∈是x B ∈的充分不必要条件,则A 是B 的真子集,∴22a +≥,此时1a >;②当32a a =+,即1a =时,解集A φ=,满足题设条件;③当32a a <+,即1a <时,解集{}32A x a x a =<<+,若x A ∈是x B ∈的充分不必要条件,则A 是B 的真子集, 32a ∴≥,此时213a ≤<. 综上①②③可得2[,)3a ∈+∞ 21.设命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得不等式210x x m --+≤成立.(1)若p 为真命题,求实数m 的取值范围;(2)若命题p 、q 有且只有一个是真命题,求实数m 的取值范围.【答案】(1)12m ≤≤(2)1m <或524m <≤ 【详解】(1)对于命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立, 而[]0,1x ∈,有()min 222x -=-,223m m ∴-≥-,12m ∴≤≤, 所以p 为真时,实数m 的取值范围是12m ≤≤;(2)命题q :存在[]1,1x ∈-,使得不等式210x x m -+-≤成立, 只需()2min 10x x m -+-≤,而22151()24x x m x m -+-=-+-,2min 5(1)4x x m m ∴-+-=-+,504m ∴-+≤,54m ≤, 即命题q 为真时,实数m 的取值范围是54m ≤, 依题意命题,p q 一真一假, 若p 为假命题, q 为真命题,则1254m m m ⎧⎪⎨≤⎪⎩或,得1m <; 若q 为假命题, p 为真命题,则1254m m ≤≤⎧⎪⎨>⎪⎩,得524m <≤, 综上,1m <或524m <≤.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学周末练习 2015-5-24
1.不等式2x x <的解集是
2. 从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个 的两倍的概率为 .
3. 阅读右边的程序框图,运行相应的程序,则输出的值为 .
4.在各项均为正数的等比数列{}n b 中,若783b b ⋅=,
则3132log log b b ++……314log b += .
5. 数列{}n a 的前n 项和*23()n n S a n N =-∈,则=n a .
6. 一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法
从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为 .
7.ABC ∆中,若a ,b ,c 成等差数列,30B =,ABC ∆的面积为
23, 那么b =________.
8.数列{}n a 满足12a =,112n n n
a a --=,则n a = . 9.已知31x y +=,则28x y +的最小值为____________.
10.若ABC ∆的三个内角,,A B C 成等差数列,1AB =,4BC =,则边BC 上的中线AD 的长为 .
11. 设y x ,为实数,若1422=++xy y x ,,则y x +2的最大值是 .
12.在ABC ∆中边,,a b c 成等比数列,则B 的取值范围是 .
13.若关于的不等式对任意的正实数恒成立,则实数的取值范围是 .
14.ABC ∆中,D 在边BC 上,且2BD =,1DC =,60B ∠=,150ADC ∠=,则ABC ∆的面积为 .
15. 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,且. (1)求角A 的大小;
(2)若,,求边c 的大小.
i x 2(20)lg
0a ax x
-≤x a 1cos 2a C c b +=15a =4b =
16.经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系为:2920(0)31600
v y v v v =>++. (1)在该时段内,当汽车的平均速度v 为多少时,车流量有何最大值?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?
17.将n 2个数排成n 行n 列的一个数阵:
111213121222323132333123
n n n n n n nn
a a a a a a a a a a a a a a a a
已知a 11=2,a 13=a 61+1.该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,其中m 为正实数.
(Ⅰ)求第i 行第j 列的数a ij ;(Ⅱ)求这n 2个数的和.
参考答案:
1、{|1x x >或0}x <.
2、
3
1. 3、4. 4、7. 5、123-⋅=n n a . 6、1
2. 7
、1+、51()22n -. 9

. 11、. 12、(0,]3π. 14、解:在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o
=3.
在△ACD 中,AC 2=
(3)2+12-2×3×1×cos150o =7,∴AC =7.∴AB =2cos60o =
1.S △ABC =21×1×3×sin60o =34
3. 15(2)用余弦定理,得
16、解:(Ⅰ)依题意,,839201600
23920)1600(3920=+≤++=v
v y 当且仅当1600v v =,即40v =时,max 92083
y =(千辆/小时) (Ⅱ)由条件得,101600
39202>++v v v 整理得v 2-89v +1600<0, 即(v -25)(v -64)<0,解得25<v <64.
答:当v =40千米/小时,车流量最大,最大车流量约为11.1千辆/小时.如果要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应大于25千米/小时且小于64千米/小时. 2222cos .a b c bc A =+-
17、解:(Ⅰ)由a 11=2,a 13=a 61+1,得2m 2=2+5m +1.………2分
解得m =3或m =12
-(舍去). ………………………………………4分 11113[2(1)]3(31)3j j j ij i a a i m i ---=⋅=+-=-.…………………………7分 (Ⅱ)S =111212122212()()()n n n n nn a a a a a a a a a ++++++++++ =11121(13)(13)(13)131313
n n n n a a a ---+++---………………………………10分 =1(231)1(31)(31)(31)224
n n n n n n +--⋅=+-.…………………………15分。

相关文档
最新文档