4教案:向量的加法

合集下载

《向量的加法》教案完美版

《向量的加法》教案完美版

《向量的加法》教案完美版第一章:向量的概念回顾1.1 向量的定义:向量是有大小和方向的量,通常用箭头表示。

1.2 向量的表示方法:在坐标系中,向量可以用有序数对表示,即(x, y)。

1.3 向量的模:向量的模是指向量的大小,可以用|v|表示,计算公式为|v| = √(x^2 + y^2)。

第二章:向量的加法运算2.1 向量加法的定义:两个向量a和b的加法运算,记作a + b,结果是一个新的向量,其大小等于a和b大小的和,方向等于a和b方向的矢量和。

2.2 向量加法的表示方法:在坐标系中,向量加法可以通过将两个向量的坐标分别相加得到结果向量的坐标。

2.3 向量加法的性质:向量加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。

第三章:向量加法的几何解释3.1 向量加法的几何图形:在坐标系中,向量加法可以通过将两个向量的箭头首尾相接,得到结果向量的箭头。

3.2 平行向量的加法:当两个向量平行时,它们的加法运算结果是它们的模的和(或差,取决于它们的方向是否相同)。

3.3 非平行向量的加法:当两个向量不平行时,它们的加法运算结果是一个新的向量,其大小和方向由平行四边形法则确定。

第四章:向量加法的应用4.1 力的合成:在物理学中,向量加法可以用来计算两个力的合力,即力的合成。

4.2 位移的计算:在物理学中,向量加法可以用来计算物体的位移,即起点到终点的位移向量。

4.3 速度和加速度的合成:在物理学中,向量加法可以用来计算物体的速度和加速度的合成。

第五章:向量加法的练习题第六章:向量加法在坐标系中的运算规则6.1 直角坐标系:在直角坐标系中,向量的加法可以通过对应坐标轴上的坐标值进行运算。

6.2 斜坐标系:在斜坐标系中,向量的加法需要考虑角度和半径的变化。

6.3 空间坐标系:在空间坐标系中,向量的加法涉及到三个坐标轴的运算规则。

第七章:向量加法在实际问题中的应用7.1 力学问题:在力学中,向量加法可以用来计算物体所受多力的合力。

向量的加法运算的教学设计

向量的加法运算的教学设计

向量的加法运算的教学设计教学设计:向量的加法运算一、教学目标:1.理解向量的概念和性质。

2.掌握向量的加法运算规则。

3.能够通过向量的加法运算解决简单的几何问题。

4.培养学生的逻辑思维和分析问题的能力。

二、教学准备:1.课件、投影仪等教学工具。

2.长度和方向可调节的示教仪器。

3.相关教学素材和练习题。

4.活动和实例的设计。

三、教学过程:步骤一:导入(5分钟)1.利用多媒体展示各种不同方向和长度的箭头图形,引导学生思考箭头图形的特点和表示方式。

2.提问:这些箭头图形有什么共同点?学生回答后,引导学生认识到箭头图形代表量和方向,即向量。

步骤二:概念解释(10分钟)1.通过多媒体课件展示向量的定义和性质,包括大小、方向和平行性质。

2.解释向量加法的概念,即将两个向量的长度和方向相加得到一个新的向量。

步骤三:向量加法规则(15分钟)1.利用示教仪器展示向量的加法法则。

首先定义向量的起点和终点,然后将第二个向量的起点对准第一个向量的终点,得到一个新的向量。

2.引导学生自己发现向量加法规则,并总结出向量加法规则。

步骤四:情境演示(15分钟)1.设计一个实际生活中的情境,如小明从家里出发,先向东行走100米,再向南行走50米。

请问小明最后的位置在哪里?2.让学生使用向量的加法运算解决问题,并将解题思路和结果展示给全班。

步骤五:练习与巩固(15分钟)1.分发练习题,让学生在课堂上独立完成。

练习题包括计算已知向量的和、已知向量和其相反向量的和等。

2.提供答案并进行讲解,帮助学生检查答案和理解解题思路。

步骤六:情境设计(20分钟)1.分组讨论和设计新的情境问题,要求学生利用向量的加法运算解决问题。

2.学生展示自己的情境设计,并全班学生进行讨论和互动。

步骤七:拓展应用(10分钟)1.展示一些向量加法的应用实例,如矢量力学、向量运算在地图和导航中的应用等。

2.引导学生思考向量加法在实际问题中的应用和意义。

四、教学评价:1.课堂作业的完成情况和准确性。

题目:向量的加法和减法说课稿

题目:向量的加法和减法说课稿

题目:向量的加法和减法说课稿向量的加法和减法说课稿一、课程背景和目标本节课的主题是向量的加法和减法。

通过本课,学生将研究如何进行向量的加法与减法运算,并能够应用这些知识解决与向量相关的实际问题。

二、教学内容与方法1. 教学内容本节课的教学内容主要包括以下几个方面:- 向量的定义和表示方式- 向量的加法和减法的运算规则- 向量加法和减法的几何意义- 向量运算在实际问题中的应用2. 教学方法为了达到有效的教学效果,本课采用以下教学方法:- 讲授与演示结合,通过示例向学生介绍向量的定义和表示方式、向量加法和减法的运算规则等基本概念。

- 给予学生练机会,通过练题让学生巩固所学的知识。

- 强调实际应用,通过实际问题的分析和解决,帮助学生理解向量运算在现实生活中的应用场景。

三、教学流程第一步:引入通过引入一些生活中的例子,引起学生对向量的认知和兴趣。

第二步:向量的定义和表示方式- 通过图示介绍向量的定义和表示方式。

- 向学生解释向量的方向、大小等概念。

第三步:向量的加法和减法的运算规则- 通过示例演示向量的加法和减法的运算过程。

- 引导学生总结加法和减法的运算规则。

第四步:向量加法和减法的几何意义- 通过图示解释向量加法和减法的几何意义。

- 帮助学生理解向量加法和减法的结果在平面坐标系中的表示。

第五步:实际问题的应用- 选取一些简单的实际问题,引导学生运用向量的加法和减法解决问题。

- 提醒学生分析问题,找到解决问题的关键步骤。

第六步:总结与拓展- 总结本节课的教学内容和研究要点。

- 提供一些拓展性问题,激发学生对向量的进一步思考和研究热情。

四、教学资源- 平面坐标系示意图- 向量加法和减法的示例图片- 练题和答案五、教学评估通过教学过程中的参与情况、学生练题的完成情况以及对实际问题的解决能力等多个方面进行评估。

六、课后作业布置练题,要求学生运用所学的向量加法和减法解决问题,并编写课后总结报告。

以上是本节课《向量的加法和减法》的说课稿,希望通过本节课的教学,能够帮助学生深入理解和掌握向量的加法和减法运算,提高他们的问题解决能力和空间思维能力。

《向量的加法》教案优秀2篇

《向量的加法》教案优秀2篇

《向量的加法》教案优秀2篇《向量的加法》教案篇一总课题平面向量总课时第18课时分课题向量的加法分课时第1 课时教学目标理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作两个向量的和,掌握加法的交换律和结合律,并会用它们进行向量的运算。

重点难点向量加法的三角形法则和平行四边形法则。

向量加法的交换律和结合律。

引入新课问题1、利用向量的表示,从景点到景点的位移为,从景点到景点的位移为,那么经过这两次位移后游艇的合位移是(如图)这里,向量,,三者之间有什么关系?1、向量加法的定义2、向量加法的三角形法则具体步骤:(1)把两个向量平移后,使两个向量的一个起点与另一个起点相连。

(2)将剩下的起点与终点相连,并指向终点,则该向量为两个向量的和。

简记为“首尾相连,首是首,尾是尾”3、向量加法的平行四边形法则4、对于零向量和任一向量有,对于相反向量有5、向量加法的运算律交换律结合律6、如果平面内有个向量依次首尾连接组成一条封闭折线,那么这个向量的和是什么?例题剖析例1、作出下列向量的和:例2、如图,为正六边形的中心,作出下列向量:(1) (2) (3)例3、在长江南岸某渡口处,江水以的速度向东流,渡船的速度为。

渡船要垂直地渡过长江,其航向应如何确定?巩固练习1、化简。

2、已知点是平行四边形对角线的交点,则下面结论中正确的是( )A、B、C、D、3、在△ 中,求证;4、一质点从点出发,先向北偏东方向运动了,到达点,再从点向正西方向运动了到达点,又从点向西南方向运动了到达点,试画出向量以及。

课堂小结1、向量加法的定义。

2、向量加法的三角形法则和平行四边形法则。

3、向量加法的运算律。

课后训练班级:高一( )班姓名一、基础题1、已知正方形的边长为,则( )A、B、C、D、2、设点是△ 内一点,若,则必有( )A、点是△ 的垂心B、点是△ 的外心C、点是△ 的。

重心D、点是△ 的内心3、当时,; 时,平分之间的夹角。

(完整版)向量的加法教案

(完整版)向量的加法教案

《向量的加法》教案一、教学目的1、掌握向量加法的概念,能熟练掌握向量加法,平行四边形法则和三角形法投影,并能作出已知两向量的和向量。

2、理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。

掌握有特殊位置关系的两个向量之和,3、通过本节的学习,培养学生类比、迁移、分类、归纳等能力。

二、教学重难点:重点:向量加法的运算及其几何意义难点:对向量加法的三角形法则的理解,以及求两共线向量的和。

三、教学过程:一〉回顾旧知:1、什么叫向量?如何表示向量?2、什么叫相等向量? 二〉新课讲解:在数的运算中,加法运算是最基本的运算,类似地在向量的运算中,我们也从加法开始进行探索课题:向量的加法。

定义:求两个向量和的运算,收做向量的加法。

向量究竟是按怎样的方法相加的呢? 首先看下面的这个问题。

如图,作用在同一物体上的不共线的两个力和,它们是怎样合成的?以、为邻边作□ OACB ,则与、 共起点的对角线就是与的合力,即=+即它们是按平行四边形法则合成的。

力的合成等同于向量的加法。

说明向量的加法可以按照平行四边形法则来进行。

平行四边形法则如图,以同一点O 为起点的两个已知向量、为邻边作□ OACB ,则以O 为起点的对角线就是与的和,这种作两个向量的和的方法叫OCFBCAO+AO做向量加法的平行四边形法则,即: = + 。

法则特点:两个已知向量的起点相同。

例1:如图已知向量、,求作向量 + 。

作法:在平面内任取点O ,作 = ,OB =,以OA 、OB 为邻边作□ OACB ,则= + 。

练习:P84,2点评练习:O 点可以任意选取,因此可以的起点作为O 点,将的起点移到点O 作平行四边形。

问题:观察□ OACB 中还有与相等的向量吗?= ,可见求、之和,可以直接将它们首尾相连,然后连接OC ,则△OAC 边就是 + 。

由此可知,求两个向量的和,只需将它们首尾相连,然后由第一个向量的起点指向最后一个向量的终点就得到两个向量的和,这就是向量加法的:三角形法则如图,已知非零向量 、 在平面内任取一点A ,作=、= ,则向量叫做 与 的和。

中职数学教案:向量的加法运算(全2课时)

中职数学教案:向量的加法运算(全2课时)

中等专业学校2024-2025-1教案教学内容通情况发现成昆之间的高速公路严重拥堵,只好改变出行路线,先驾车到重庆,再从重庆到成都.小张自驾旅程中的位移情况如图所示,其中,点A 、B、C分别代表昆明、重庆和成都三地.试问,小张从点A经点B到达点C接连两次位移,AB、BC的结果,与原计划从点A直接到达点C的位移AC有什么关系?三、探索新知可以看出,这两种方式的位移结果是一样的,都是从昆明到成都.因此我们可以把位移AC看作两次位移AB与BC的和.=AB a,=BC b,得到一个新的向量AC,称向量AC为向量a与向量b的和,记作a+b .一般地,对于平面内给定的两个不平行的非零向量a、b,在平面上任取一点A,依次做=AB a,教学内容=BC b,得到一个△ABC,称向量AC为向量a与向量b的和,也称为向量a与向量b的和向量,记作a+b,如图所示. 即a+b=AC=AB+BC.求两个向量的和的运算称为向量的加法.上述把两个非零向量表示成有向线段并借助于三角形作出其和向量的方法,称为向量加法的三角形法则.当非零向量平行时,在平面上任取一点A,依次作规定:a+b=0+a=a;a+(−a)=0 . 由上面的分析可知,表示各个向量的有向线段首尾相接,由起点指向终点的有向线段表示的向量就是这些向量的和向量,这是向量加法的几何意义,如图所示 .四、典型例题例1 如图所示,在⏥ABCD中,用向量AB、AD表示向量AC.解根据向量加法的三角形法则可知,AC=AB+BC.1. 如图所示,已知向量a、b、c,则板书设计教后札记中等专业学校2024-2025-1教案编号:备课组别数学组课程名称向量的加法运算所在年级主备教师授课教师授课系部人授课班级授课日期课题 2.2.1向量的加法运算(第二课时)教学目标通过学习,理解向量的加法、减法、数乘运算及其几何意义;能按要求作出两个向量的和向量、差向量;会判定两个非零向量是否平行;逐步提升直观想象、数学运算和数学抽象等核心素养.重点向量加法的运算、减法、数乘运算及其几何意义.难点向量减法法则.教法讲授法教学设备一体机教学环节教学活动内容及组织过程个案补充教学内容前面,我们利用双曲线的标准方程获得了双曲线的几何性质,是否可以利用抛物线的标准方程研究抛物线的几何性质呢?下面以抛物线的标准方程y²=2px为例,研究抛物线的几何性质.1.范围在方程y²=2px中,由p>0,y²≥0,可知x≥0. 这表明,抛物线在y轴的右侧,如图所示. 当x的值增大时,y²的值也随着教学内容又因为⏥ABCD中,AD=BC,所以AC=AB+AD.五、探索新知一般地,给定两个非零向量AB与AD,以线段AB和AD为邻边作⏥ABCD,则向量AC就是向量AB与AD的和,这种作两个向量的和向量的方法称为向量加法的平行四边形法则.可以验证,向量的加法满足以下运算律:a+b=b+a;(交换律)a+(b+c)= a+(b+c) .(结合律)六、典型例题例2 已知向量a、b,如图(1)所示,试分别用向量加法的三角形法则和平行四边形法则作向量a+b.解(1)运用三角形法则.如图(2)所示,在平面内任取一点O,作=OA a,=AB b,则=OB a+b;(2)运用平行四边形法则.如图(3)所示,在平面内任取一点O,作=OA a,=OB b,以OA、OB为邻边作⏥ABCD,连接OC,则=OC OA OB=a+b.例3一艘渡轮要从南岸到北岸,它在静水中速度的大小为12km/h,方向正北. 若水流速度的大小为 12km/h,方向正东,求渡轮实际航行的速度.解如图所示,AC表示船在静水中的速度, AB为水流速度. 以AB、AC为邻边作⏥ABCD,由向量加法的平行四边形法则可知,AD是船的实际航行速度.在RtΔABC中,教学内容因此, 船实际航行的速度大小是13km/h,方向为北偏东22°37’.七、巩固练习练习2.2.1如图所示,分别求作下列情形下的向量a+b2. 如图所示,已知向量a、b、c,则教学内容3.化简.4.某同学从A地向东走2km到达B地,又向北走2km到达C地.试求该同学的位移AC的大小和方向.八、布置作业1.书面作业:完成课后习题和《学习指导与练习》;2.查漏补缺:根据个人情况对课堂学习复习与回顾;3.拓展作业:阅读教材扩展延伸内容.板书设计教后札记。

向量的加法(说课稿)

向量的加法(说课稿)

案例4:向量的加法402013120144 陈杰华【教材分析】本节内容位于高中数学教材必修4第二章《平面向量》的第二节第一课(1课时)。

向量的加法是我们在学习完向量的基本概念后首先要掌握的一种运算,本节内容的学习既能够加深对向量概念的深层次理解,也能为以后学习向量减法,数乘向量及平面向量基本定理等知识奠定基础,因此,本节内容起着承上启下的重要作用。

由于之前物理里面也学习过力、速度等矢量的分解,因此学生对向量的加法具有一定的基础,在向量的加法学习过程,学生能够与物理中学习过的内容联系起来,对于新课学习很有帮助。

向量加法的三角形法则和平行四边形法则是一个本节课最重要的内容,讲授时应一次到位。

不仅要讲述清楚、表述规范,还有通过问题的解决加以强调,并要求学生亲自实践以加深理解。

向量加法的运算律也是本节课的重点内容。

其结论不应简单的给出,而应该让学生按照加法法则作图检验。

【学情分析】1.知识方面本节课学习之前,学生学习了向量的概念,对向量的方向性有了一定的认识。

更重要的是学生在物理中的学习过一些矢量的合成概念,这为学习向量的加法作了最好的铺垫。

2.能力方面理解力上,学生能够从生活中的一些实际例子对向量加法有一定的感性认识,在直观上能体会向量的加法与数量的加法之间有明显的不同,能分辨出二者具有很大差异性,但是这种差异在学习本课之前是学生难以表述清楚,如果学生能够将物理中学习过一些矢量的合成分解和这节课的内容联系起来,就完全能够做到实现物理中的矢量和数学中的向量之间的正迁移.【教学目标】(一)知识与技能:理解向量加法的定义;熟练掌握向量加法的三角形法则和平行四边形法则,会求两个向量的和,能准确理解,表述向量加法的交换律和结合律,并熟练运用向量加法的交换律和结合律(二)过程与方法:从学生感兴趣的故事,熟悉的实例出发,学生经过观察、分析、归纳、概括出向量加法的概念。

并且自然地得出向量加法满足三角形法则和平行四边形法则。

向量的加法教案

向量的加法教案

向量的加法教案教学目标:学生能够理解向量的概念,能够进行向量的加法运算。

教学重点:向量的加法运算。

教学难点:对向量进行加法运算。

教学准备:白板、黑板笔、教学PPT。

教学过程:Step 1:引入和导入(5分钟)- 引入:向量是数学中的重要概念,几何中通常用箭头来表示,用于描述方向和大小。

在几何中,向量是有长度和方向的,并且可用来表示物体在空间中的位置或方向。

- 导入:展示一些日常生活中的向量示例,如风的方向和大小、汽车的行驶方向和速度等,引导学生了解向量的概念和应用。

Step 2:向量的定义(10分钟)- 向量的定义:向量是有大小和方向的量,用箭头来表示。

向量的大小称为模,方向称为方向角。

- 向量的记法:通常用有向线段AB表示向量,也可以用小写字母加箭头表示,如a→表示向量a。

- 向量的模和方向:向量的模表示向量的大小,用 |a| 或 ||a|| 表示。

向量的方向角用α表示。

Step 3:向量的加法运算(15分钟)- 向量的加法:向量的加法运算是指对两个向量的长度和方向进行相加。

- 向量的加法法则:向量的加法满足交换律和结合律。

- 向量的加法运算示例:通过示例引导学生理解向量的加法运算,如向量A(3,4)和向量B(2,-1)的加法运算:A + B = (3+2,4+(-1)) = (5, 3)。

Step 4:解题方法和例题讲解(20分钟)- 解题方法:要进行向量的加法运算,需要对两个向量的坐标进行相加,即分别对横坐标和纵坐标进行相加。

- 例题讲解:通过几个例题讲解,巩固学生对向量加法的理解,提高解题能力。

Step 5:练习和巩固(15分钟)- 练习:分发练习题让学生进行练习,检验学生对向量加法的掌握程度。

- 巩固:通过板书问题和学生讨论的方式巩固学生对向量加法的理解和应用。

Step 6:作业布置(5分钟)- 布置书面作业:布置作业要求学生进行向量加法的计算练习。

Step 7:课堂总结(5分钟)- 总结:回顾本节课的重点内容,强调向量的概念和向量的加法运算,并与实际生活中的应用进行联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2向量的加法
教学目标
1.知识目标
掌握向量的加法定义,会用向量加法的三角形法则和平行四边形法则作出两个向量的和向量;掌握向量加法的运算律,并会用它们进行向量计算。

2.能力目标
使学生经历向量加法法则的探究和应用过程,体会数形结合、分类讨论等数学思想方法,进一步培养学生归纳、类比、迁移能力,增强学生的数学应用意识和创新意识。

3.情感目标
注重培养学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,培养学生学习数学的信心。

教学重点、难点
重点:.向量加法的两个法则及其应用;
难点:.对向量加法定义的理解。

突破难点的关键是抓住实例,借助多媒体动画演示,不断渗透数形结合的思想,使学生从感性认识升华到理性认识。

教学方法
结合学生实际,主要采用“问题探究”式教学方法。

通过创设问题情境,使学生对向量加法有一定的感性认识;通过设置一条问题链,引导学生在自主学习与合作交流中经历知识的形成过程;通过层层深入的例题与习题的配置,引导学生积极思考,灵活掌握知识,使学生从“懂”到“会”到“悟”,提高思维品质,力求把传授知识与培养能力融为一体。

采用计算机辅助教学,通过直观演示体现形、动、思于一体的教学效果,优化课堂结构,提高教学质量。

教学过程
请同学们思考
平行四边形法则的步骤。

为起点,,a b为邻边作平行四边形教师引导学生观察利用平行四边形求和时两向
=,
a=
BC
b
由此得出向量加法的交换律
c,怎么求三个向量的意的组合,任意的顺序进行了。

()
告诉我们,首尾相连首尾连,反过来,
三、例题
探究,变式引申
例3.(多媒体)如图,O 为正六边 形ABCDEF 的中心,求出下列向量:.
(1)OC +OA ;(2)BC FE +;(3)FE +OA
(学生回答,教师提问:.依据是什么?适时点评)
对于例1这个图形,你能设计出一个问题让别的同学解答吗?
变式:.如图,正六边形AOBCDE 中,
此题留为课后思考题
教师演示
学生自己提出问题,互相启发、补充。

教师完善。

向量的拆分,不仅开阔了学生的思路,而且再一次体现了向量是沟通几何与代数的桥梁。

巩固所学知识,进一步完善认知结构,并且使学生对自己的学习进行自我评价。

五、课堂小结.
1.向量加法的平行四边形法则,要点:.起点相同,过起点。

2.向量加法的三角形法则,要点:.首尾相连,首尾连。

3.向量加法满足交换律和结合律,即
,)+=+++=++a b b a (a b)c a (b c 。

学生思考,讨论补充,师生共同完善。

师生共探。

注重数学思想方法的提炼,可使学生逐渐把经验内化为能力。

E
D
A
P
O
C
B
表示出来
将,用OC OP b a b OB a OA ,.,==_ F
_ E
_ A
_ D
_ B
_ C。

相关文档
最新文档